Graded Homework VII

Due Friday, October 27.

1. Let u_{n} be the sequence defined by $u_{1}=\sqrt{2}, u_{2}=\sqrt{2+\sqrt{2}}, u_{n}=\sqrt{2+\sqrt{2+\ldots \sqrt{2}}}$.
(a) Give an induction formula $u_{n+1}=f\left(u_{n}\right)$ defining u_{n+1} as a function of u_{n}.
(b) Prove that $\left(u_{n}\right)$ is convergent and compute its limit (hint : show that $\left(u_{n}\right)$ is increasing and bounded above by 2).
2. Show that the sequences defined by the formulas $u_{n}=\frac{1}{n}+\cos \left(\frac{2 n \pi}{3}\right)$ and $v_{n}=\frac{(-1)^{n} n^{2}+n}{3 n^{2}+n}$ are not convergent.
3. Recall that we saw in class that if $\left(u_{n}\right)$ is a sequence of real numbers such that $\left(u_{2 n+1}\right)$ and $\left(u_{2 n}\right)$ converge to the same limit l then $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=l$.
(a) Use the same method to show that if $\left(u_{n}\right)$ is a sequence of real numbers such that $\left(u_{3 n}\right),\left(u_{3 n+1}\right)$ and $\left(u_{3 n+2}\right)$ converge to the same limit l, then $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=l$.
(b) Let $\left(u_{n}\right)$ be a sequence of real numbers such that $\left(u_{2 n}\right),\left(u_{2 n+1}\right)$ and $\left(u_{3 n}\right)$ are all convergent; show that $\left(u_{n}\right)$ is convergent (Hint : use the fact that $\left(u_{3 n}\right)$ converges to prove that $\left(u_{2 n}\right)$ and $\left(u_{2 n+1}\right)$ converge to the same limit, then use the result seen in class).
4. Given a sequence $\left(u_{n}\right)$ of reals numbers, define another sequence s_{n} by the formula $s_{n}=\frac{u_{1}+u_{2}+\ldots+u_{n}}{n}$.
(a) Here we assume that $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=0$. Show that for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$ one has

$$
\left|s_{n}\right| \leq \frac{\left|u_{1}+u_{2}+\ldots u_{N}\right|}{n}+\frac{\varepsilon}{2} .
$$

What can you conclude from this?
(HInt : for the inequality, pick some suitable N and then cut the sum in two parts; use the triangle inequality.).
(b) Show that if $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=l$ then $\left(s_{n}\right)$ is convergent and $\lim \left(s_{n}\right)=l$.
(c) Show that the converse of this assertion is not true (look at what happens if $\left(u_{n}\right)=(-1)^{n}$ for instance).
5. Show that a subsequence of a Cauchy sequence is also a Cauchy sequence.

