University of Illinois at Urbana-Champaign Math 444 Fall 2006 Group E13

Graded Homework VII Due Friday, October 27.

1. Let u_n be the sequence defined by $u_1 = \sqrt{2}$, $u_2 = \sqrt{2 + \sqrt{2}}$, $u_n = \sqrt{2 + \sqrt{2 + \dots \sqrt{2}}}$. (a) Give an induction formula $u_{n+1} = f(u_n)$ defining u_{n+1} as a function of u_n .

(b) Prove that (u_n) is convergent and compute its limit (hint : show that (u_n) is increasing and bounded above by 2).

2. Show that the sequences defined by the formulas $u_n = \frac{1}{n} + \cos(\frac{2n\pi}{3})$ and $v_n = \frac{(-1)^n n^2 + n}{3n^2 + n}$ are not convergent.

3. Recall that we saw in class that if (u_n) is a sequence of real numbers such that (u_{2n+1}) and (u_{2n}) converge to the same limit l then (u_n) is convergent and $\lim(u_n) = l$.

(a) Use the same method to show that if (u_n) is a sequence of real numbers such that (u_{3n}) , (u_{3n+1}) and (u_{3n+2}) converge to the same limit l, then (u_n) is convergent and $\lim(u_n) = l$.

(b) Let (u_n) be a sequence of real numbers such that (u_{2n}) , (u_{2n+1}) and (u_{3n}) are all convergent; show that (u_n) is convergent (Hint : use the fact that (u_{3n}) converges to prove that (u_{2n}) and (u_{2n+1}) converge to the same limit, then use the result seen in class).

4. Given a sequence (u_n) of reals numbers, define another sequence s_n by the formula $s_n = \frac{u_1 + u_2 + \ldots + u_n}{n}$. (a) Here we assume that (u_n) is convergent and $\lim(u_n) = 0$. Show that for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \ge N$ one has

$$|s_n| \leq \frac{|u_1 + u_2 + \dots + u_N|}{n} + \frac{\varepsilon}{2}.$$

What can you conclude from this?

(HInt : for the inequality, pick some suitable N and then cut the sum in two parts; use the triangle inequality.). (b) Show that if (u_n) is convergent and $\lim(u_n) = l$ then (s_n) is convergent and $\lim(s_n) = l$.

(c) Show that the converse of this assertion is not true (look at what happens if $(u_n) = (-1)^n$ for instance).

5. Show that a subsequence of a Cauchy sequence is also a Cauchy sequence.