University of Illinois at Urbana-Champaign Math 444

Graded Homework VII Correction.

1. Let u_n be the sequence defined by $u_1 = \sqrt{2}$, $u_2 = \sqrt{2 + \sqrt{2}}$, $u_n = \sqrt{2 + \sqrt{2 + \dots \sqrt{2}}}$. (a) Give an induction formula $u_{n+1} = f(u_n)$ defining u_{n+1} as a function of u_n .

(b) Prove that (u_n) is convergent and compute its limit (hint : show that (u_n) is increasing and bounded above by 2).

Correction. (a) One has $u_{n+1} = \sqrt{2+u_n}$.

(b) Let us prove by induction that $u_n \leq u_{n+1}$: one has $u_2 = \sqrt{2 + \sqrt{2}} \geq \sqrt{2} = u_1$, so this is true if n = 1. Assuming that $u_n \leq u_{n+1}$, one has $u_{n+2} = \sqrt{2 + u_{n+1}} \geq \sqrt{2 + u_n} = u_{n+1}$, so the statement $u_{n+1} \geq u_n$ is true for all $n \in \mathbb{N}$.

Now, let us prove by induction that $u_n \leq 2$ for all $n \in \mathbb{N}$: this is true for n = 1, and if $u_n \leq 2$ then $u_{n+1} = \sqrt{2+u_n} \le \sqrt{2+2} = 2$. This shows that $u_n \le 2$ for all $n \in \mathbb{N}$.

We proved that (u_n) is an increasing, bounded above sequence : therefore (u_n) is convergent.

Let $l = \lim(u_n)$; then $(\sqrt{2+u_n})$ is convergent and has limit $\sqrt{2+l}$ (using an easy result proved in the textbook), so we obtain that $l = \sqrt{2+l}$. Thus $l^2 = 2+l$, and this implies that l = 2 or l = -1. Yet, since $u_n \ge 0$ for all n, so $\lim(u_n)$ must be ≥ 0 ; thus it is impossible that l = -1. This means that l = 2, so $\lim(u_n) = 2.$

(Read the correction of this exercise carefully : we prove first that (u_n) converges. Then, using the definition of the sequence, we get that the only possible limits are 2 and -1; using the fact that the sequence is nonnegative we remark that -1 is not a possible limit. Since (u_n) has a limit, and only one limit is possible, we finally get $\lim(u_n) = 2.$

2. Show that the sequences defined by the formulas $u_n = \frac{1}{n} + \cos(\frac{n\pi}{3})$ and $v_n = \frac{(-1)^n n^2 + n}{3n^2 + n}$ are not convergent.

Correction. One has $u_{6n} = \frac{1}{6n} + \cos(2n\pi) = \frac{1}{6n} + 1$, so (u_{6n}) converges to 1. Similarly, one obtains

 $u_{6n+3} = \frac{1}{3n+3} - 1$, so (u_{6n+3}) converges to -1. Thus (u_n) has two subsequences which converge to different

3n+3limits, and this proves that (u_n) is not convergent. One has $v_{2n} = \frac{(2n)^2 + 2n}{3(2n)^2 + 2n} = \frac{1 + \frac{1}{2n}}{3 + \frac{1}{2n}}$, so (v_{2n}) converges to $\frac{1}{3}$. A similar computation yields that (v_{2n+1}) converges to $-\frac{1}{3}$; as above, this is enough to show that (v_n) is not convergent.

3. Recall that we saw in class that if (u_n) is a sequence of real numbers such that (u_{2n+1}) and (u_{2n}) converge to the same limit l then (u_n) is convergent and $\lim(u_n) = l$.

(a) Use the same method to show that if (u_n) is a sequence of real numbers such that (u_{3n}) , (u_{3n+1}) and (u_{3n+2}) converge to the same limit l, then (u_n) is convergent and $\lim(u_n) = l$.

(b) Let (u_n) be a sequence of real numbers such that (u_{2n}) , (u_{2n+1}) and (u_{3n}) are all convergent; show that (u_n) is convergent (Hint : use the fact that (u_{3n}) converges to prove that (u_{2n}) and (u_{2n+1}) converge to the same limit, then use the result seen in class).

Correction. (a) Call *l* the common limit of the three sequences (u_{3n}) , (u_{3n+1}) and (u_{3n+3}) . Pick $\varepsilon > 0$; we know that there exist M_1, M_2, M_3 such that $n \ge M_1 \Rightarrow |u_{3n} - l| \le \varepsilon$, $n \ge M_2 \Rightarrow |u_{3n+1} - l| \le \varepsilon$ and $n \ge M_3 \Rightarrow |u_{3n+2} - l| \le \varepsilon$. Let then $M = 3M_1 + 3M_2 + 3M_3$, and pick $n \ge M$. We either have n = 3k with $k \ge M_1$, or n = 3k + 1 with $k \ge M_2$, or 3k + 2 with $k \ge M_3$; in any case we get $|u_n - l| \le \varepsilon$. This proves that (u_n) converges to l.

(b) Let l, l', l'' denote the limits of u_{2n} , u_{2n+1} and u_{3n} (in that order). Then $u_{6n} = u_{2(3n)}$, so (u_{6n}) is a

subsequence of (u_{2n}) , which proves that (u_{6n}) converges to l. But (u_{6n}) is also a subsequence of (u_{3n}) (why?), so it converges to l''. Since the limit of a sequence is unique, this yields l = l'. In the same way, one sees that (u_{6n+3}) is a subsequence of both (u_{3n}) and (u_{2n+1}) , so their limits are equal and l' = l''.

Putting all this together, we obtain l = l', so (u_{2n}) and (u_{2n+1}) converge to the same limit, and we saw in class that this implies that (u_n) is convergent.

4. Given a sequence (u_n) of reals numbers, define another sequence s_n by the formula $\frac{u_1 + u_2 + \ldots + u_n}{n}$. (a) Here we assume that (u_n) is convergent and $\lim(u_n) = 0$. Show that for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $z \geq N$. that for all $n \geq N$ one has

$$|s_n| \leq \frac{|u_1 + u_2 + \dots + u_N|}{n} + \frac{\varepsilon}{2}.$$

Use this to prove that $\lim(s_n) = 0$.

(HInt : for the inequality, pick some suitable N and then cut the sum in two parts; use the triangle inequality, and the fact that the sum of n-N reals having each an absolute value less than $\frac{\varepsilon}{2}$ has an absolute value less

that $(n-N)\frac{c}{2}$)

(b) Show that if (u_n) is convergent and $\lim(u_n) = l$ then (s_n) is convergent and $\lim(s_n) = l$. (Hint : apply the result of question (a) to the sequence $(u_n - l)$)

(c) Show that the converse of this assertion is not true (look at what happens if $(u_n) = (-1)^n$ for instance). **Correction.** (a) Pick $\varepsilon > 0$; since $\lim(u_n) = 0$, we know that there exists $N \in \mathbb{N}$ such that $n \ge N \Rightarrow |u_n| \le \frac{\varepsilon}{2}$ (apply the definition of convergence with $\varepsilon' = \frac{\varepsilon}{2}$. Then, for $n \ge N$, one has

$$|s_n| = \left|\frac{u_1 + u_2 + \ldots + u_n}{n}\right| \le \left|\frac{u_1 + u_2 + \ldots + u_N}{n}\right| + \frac{|u_{N+1}| + \ldots + |u_n|}{n} \le \frac{|u_1 + u_2 + \ldots + u_N|}{n} + \frac{(n-N)}{n}\frac{\varepsilon}{2}.$$

Thus, we finally obtain that for $n \ge N$ one has $|s_n| \le \frac{1}{n} \frac{|u_1 + u_2 + \dots + u_N|}{1} + \frac{\varepsilon}{2}$.

Now pick $\varepsilon > 0$ and find $N \in \mathbb{N}$ as above; the sequence $\frac{1}{n}(|u_1 + u_2 + \dots + u_N|)$ converges to 0, so for some $M \in \mathbb{N}$ big enough one has $n \ge M \Rightarrow \frac{1}{n}(|u_1| + |u_2| + \dots |u_N|) \le \frac{\varepsilon}{2}$. But then, the inequality above shows that, for any $n \ge \max(M, N)$ one has $|s_n| \le \varepsilon$.

This proves that (s_n) converges to 0 if (u_n) converges to 0.

(b) If (u_n) converges to l, then $(u_n - l)$ converges to 0; therefore the result of the preceding question tells us that $\frac{(u_1) - l + (u_2 - l) + \dots + (u_n - l)}{n}$ converges to 0. But one has

$$\frac{(u_1-l)+(u_2-l)+\dots(u_n-l)}{n} = \frac{u_1+u_2+\dots+u_n-nl}{n} = \frac{u_1+u_2+\dots+u_n}{n} - l = s_n - l \; .$$

So, the result of question (a) tells us that $(s_n - l)$ converges to 0, in other words that (s_n) is convergent and $\lim(s_n) = l$

(c) If $u_n = (-1)^n$, then $s_n = \frac{(-1)^n - 1}{2n}$ (proved by induction) so (s_n) converges to 0, whereas (u_n) does not converge. This means that the converse of the assertion in (b) is not true.

5. Show that a subsequence of a Cauchy sequence is also a Cauchy sequence.

Correction. Let $\varphi \colon \mathbb{N} \to \mathbb{N}$ be strictly increasing, and let (u_n) be a Cauchy sequence. Pick $\varepsilon > 0$; we know that there exists $N \in \mathbb{N}$ such that for any $n, m \in \mathbb{N}$, $n, m \ge N \Rightarrow |u_n - u_m| \le \varepsilon$. Since $\varphi(n) \ge n$ for all $n \in \mathbb{N}$, we get that

$$n, m \ge N \Rightarrow \varphi(n), \varphi(m) \ge N \Rightarrow |u_{\varphi(n)} - u_{\varphi(m)}| \le \varepsilon$$

This proves that $(u_{\varphi(n)})$ is a Cauchy sequence.