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Graded Homework VII

Correction.

1. Let un be the sequence de�ned by u1 =
√

2, u2 =
√

2 +
√

2, un =
√

2 +
√

2 + . . .
√

2.
(a) Give an induction formula un+1 = f(un) de�ning un+1 as a function of un.
(b) Prove that (un) is convergent and compute its limit (hint : show that (un) is increasing and bounded above
by 2).
Correction. (a) One has un+1 =

√
2 + un.

(b) Let us prove by induction that un ≤ un+1 : one has u2 =
√

2 +
√

2 ≥
√

2 = u1, so this is true if n = 1.
Assuming that un ≤ un+1, one has un+2 =

√
2 + un+1 ≥

√
2 + un = un+1, so the statement un+1 ≥ un is true

for all n ∈ N.
Now, let us prove by induction that un ≤ 2 for all n ∈ N : this is true for n = 1, and if un ≤ 2 then
un+1 =

√
2 + un ≤

√
2 + 2 = 2. This shows that un ≤ 2 for all n ∈ N.

We proved that (un) is an increasing, bounded above sequence : therefore (un) is convergent.
Let l = lim(un) ; then (

√
2 + un) is convergent and has limit

√
2 + l (using an easy result proved in the

textbook), so we obtain that l =
√

2 + l. Thus l2 = 2 + l, and this implies that l = 2 or l = −1. Yet, since
un ≥ 0 for all n, so lim(un) must be ≥ 0 ; thus it is impossible that l = −1. This means thatg l = 2, so
lim(un) = 2.
(Read the correction of this exercise carefully : we prove �rst that (un) converges. Then, using the de�nition of
the sequence, we get that the only possible limits are 2 and −1 ; using the fact that the sequence is nonnegative
we remark that −1 is not a possible limit. Since (un) has a limit, and only one limit is possible, we �nally get
lim(un) = 2.

2. Show that the sequences de�ned by the formulas un =
1
n

+ cos(
nπ

3
) and vn =

(−1)nn2 + n

3n2 + n
are not convergent.

Correction. One has u6n =
1
6n

+ cos(2nπ) =
1
6n

+ 1, so (u6n) converges to 1. Similarly, one obtains

u6n+3 =
1

3n + 3
− 1, so (u6n+3) converges to −1. Thus (un) has two subsequences which converge to di�erent

limits, and this proves that (un) is not convergent.

One has v2n =
(2n)2 + 2n

3(2n)2 + 2n
=

1 + 1
2n

3 + 1
2n

, so (v2n) converges to
1
3
. A similar computation yields that (v2n+1)

converges to −1
3
; as above, this is enough to show that (vn) is not convergent.

3. Recall that we saw in class that if (un) is a sequence of real numbers such that (u2n+1) and (u2n) converge
to the same limit l then (un) is convergent and lim(un) = l.
(a) Use the same method to show that if (un) is a sequence of real numbers such that (u3n), (u3n+1) and
(u3n+2) converge to the same limit l, then (un) is convergent and lim(un) = l.
(b) Let (un) be a sequence of real numbers such that (u2n), (u2n+1) and (u3n) are all convergent ; show that
(un) is convergent (Hint : use the fact that (u3n) converges to prove that (u2n) and (u2n+1) converge to the
same limit, then use the result seen in class).
Correction. (a) Call l the common limit of the three sequences (u3n), (u3n+1) and (u3n+3). Pick ε > 0 ;
we know that there exist M1,M2,M3 such that n ≥ M1 ⇒ |u3n − l| ≤ ε, n ≥ M2 ⇒ |u3n+1 − l| ≤ ε and
n ≥ M3 ⇒ |u3n+2 − l| ≤ ε. Let then M = 3M1 + 3M2 + 3M3, and pick n ≥ M . We either have n = 3k with
k ≥ M1, or n = 3k + 1 with k ≥ M2, or 3k + 2 with k ≥ M3 ; in any case we get |un − l| ≤ ε. This proves that
(un) converges to l.
(b) Let l, l′, l′′ denote the limits of u2n, u2n+1 and u3n (in that order). Then u6n = u2(3n), so (u6n) is a



subsequence of (u2n), which proves that (u6n) converges to l. But (u6n) is also a subsequence of (u3n) (why ?),
so it converges to l′′. Since the limit of a sequence is unique, this yields l = l′. In the same way, one sees that
(u6n+3) is a subsequence of both (u3n) and (u2n+1), so their limits are equal and l′ = l′′.
Putting all this together, we obtain l = l′, so (u2n) and (u2n+1) converge to the same limit, and we saw in
class that this implies that (un) is convergent.

4. Given a sequence (un) of reals numbers, de�ne another sequence sn by the formula
u1 + u2 + . . . + un

n
.

(a) Here we assume that (un) is convergent and lim(un) = 0. Show that for any ε > 0 there exists N ∈ N such
that for all n ≥ N one has

|sn| ≤
|u1 + u2 + . . . uN |

n
+

ε

2
.

Use this to prove that lim(sn) = 0.
(HInt : for the inequality, pick some suitable N and then cut the sum in two parts ; use the triangle inequality,

and the fact that the sum of n−N reals having each an absolute value less than
ε

2
has an absolute value less

that (n−N)
ε

2
)

(b) Show that if (un) is convergent and lim(un) = l then (sn) is convergent and lim(sn) = l.
(Hint : apply the result of question (a) to the sequence (un − l))
(c) Show that the converse of this assertion is not true (look at what happens if (un) = (−1)n for instance).

Correction. (a) Pick ε > 0 ; since lim(un) = 0, we know that there exists N ∈ N such that n ≥ N ⇒ |un| ≤
ε

2
(apply the de�nition of convergence with ε′ =

ε

2
. Then, for n ≥ N , one has

|sn| =
∣∣∣∣u1 + u2 + . . . + un

n

∣∣∣∣ ≤ ∣∣∣∣u1 + u2 + . . . + uN

n

∣∣∣∣ +
|uN+1|+ . . . + |un|

n
≤ |u1 + u2 + . . . uN |

n
+

(n−N)
n

ε

2
.

Thus, we �nally obtain that for n ≥ N one has |sn| ≤
1
n

|u1 + u2 + . . . uN |
n

+
ε

2
.

Now pick ε > 0 and �nd N ∈ N as above ; the sequence
1
n

(|u1 + u2 + . . . uN |) converges to 0, so for some

M ∈ N big enough one has n ≥ M ⇒ 1
n

(|u1|+ |u2|+ . . . |uN |) ≤
ε

2
. But then, the inequality above shows that,

for any n ≥ max(M,N) one has |sn| ≤ ε.
This proves that (sn) converges to 0 if (un) converges to 0.
(b) If (un) converges to l, then (un − l) converges to 0 ; therefore the result of the preceding question tells us

that
(u1)− l + (u2 − l) + . . . (un − l)

n
converges to 0. But one has

(u1 − l) + (u2 − l) + . . . (un − l)
n

=
u1 + u2 + . . . + un − nl

n
=

u1 + u2 + . . . un

n
− l = sn − l .

So, the result of question (a) tells us that (sn − l) converges to 0, in other words that (sn) is convergent and
lim(sn) = l

(c) If un = (−1)n, then sn =
(−1)n − 1

2n
(proved by induction) so (sn) converges to 0, whereas (un) does not

converge. This means that the converse of the assertion in (b) is not true.

5. Show that a subsequence of a Cauchy sequence is also a Cauchy sequence.
Correction. Let ϕ : N → N be strictly increasing, and let (un) be a Cauchy sequence. Pick ε > 0 ; we know
that there exists N ∈ N such that for any n, m ∈ N, n, m ≥ N ⇒ |un − um| ≤ ε. Since ϕ(n) ≥ n for all n ∈ N,
we get that

n, m ≥ N ⇒ ϕ(n), ϕ(m) ≥ N ⇒ |uϕ(n) − uϕ(m)| ≤ ε .

This proves that (uϕ(n)) is a Cauchy sequence.


