Graded Homework VII

Correction.

1. Let u_{n} be the sequence defined by $u_{1}=\sqrt{2}, u_{2}=\sqrt{2+\sqrt{2}}, u_{n}=\sqrt{2+\sqrt{2+\ldots \sqrt{2}}}$.
(a) Give an induction formula $u_{n+1}=f\left(u_{n}\right)$ defining u_{n+1} as a function of u_{n}.
(b) Prove that $\left(u_{n}\right)$ is convergent and compute its limit (hint : show that $\left(u_{n}\right)$ is increasing and bounded above by 2).
Correction. (a) One has $u_{n+1}=\sqrt{2+u_{n}}$.
(b) Let us prove by induction that $u_{n} \leq u_{n+1}$: one has $u_{2}=\sqrt{2+\sqrt{2}} \geq \sqrt{2}=u_{1}$, so this is true if $n=1$. Assuming that $u_{n} \leq u_{n+1}$, one has $u_{n+2}=\sqrt{2+u_{n+1}} \geq \sqrt{2+u_{n}}=u_{n+1}$, so the statement $u_{n+1} \geq u_{n}$ is true for all $n \in \mathbb{N}$.
Now, let us prove by induction that $u_{n} \leq 2$ for all $n \in \mathbb{N}$: this is true for $n=1$, and if $u_{n} \leq 2$ then $u_{n+1}=\sqrt{2+u_{n}} \leq \sqrt{2+2}=2$. This shows that $u_{n} \leq 2$ for all $n \in \mathbb{N}$.
We proved that $\left(u_{n}\right)$ is an increasing, bounded above sequence : therefore $\left(u_{n}\right)$ is convergent.
Let $l=\lim \left(u_{n}\right)$; then $\left(\sqrt{2+u_{n}}\right)$ is convergent and has limit $\sqrt{2+l}$ (using an easy result proved in the textbook), so we obtain that $l=\sqrt{2+l}$. Thus $l^{2}=2+l$, and this implies that $l=2$ or $l=-1$. Yet, since $u_{n} \geq 0$ for all n, so $\lim \left(u_{n}\right)$ must be ≥ 0; thus it is impossible that $l=-1$. This means thatg $l=2$, so $\lim \left(u_{n}\right)=2$.
(Read the correction of this exercise carefully : we prove first that $\left(u_{n}\right)$ converges. Then, using the definition of the sequence, we get that the only possible limits are 2 and -1 ; using the fact that the sequence is nonnegative we remark that -1 is not a possible limit. Since $\left(u_{n}\right)$ has a limit, and only one limit is possible, we finally get $\lim \left(u_{n}\right)=2$.
2. Show that the sequences defined by the formulas $u_{n}=\frac{1}{n}+\cos \left(\frac{n \pi}{3}\right)$ and $v_{n}=\frac{(-1)^{n} n^{2}+n}{3 n^{2}+n}$ are not convergent.

Correction. One has $u_{6 n}=\frac{1}{6 n}+\cos (2 n \pi)=\frac{1}{6 n}+1$, so ($u_{6 n}$) converges to 1 . Similarly, one obtains
$u_{6 n+3}=\frac{1}{3 n+3}-1$, so $\left(u_{6 n+3}\right)$ converges to -1 . Thus $\left(u_{n}\right)$ has two subsequences which converge to different limits, and this proves that $\left(u_{n}\right)$ is not convergent.
One has $v_{2 n}=\frac{(2 n)^{2}+2 n}{3(2 n)^{2}+2 n}=\frac{1+\frac{1}{2 n}}{3+\frac{1}{2 n}}$, so $\left(v_{2 n}\right)$ converges to $\frac{1}{3}$. A similar computation yields that $\left(v_{2 n+1}\right)$ converges to $-\frac{1}{3}$; as above, this is enough to show that $\left(v_{n}\right)$ is not convergent.
3. Recall that we saw in class that if $\left(u_{n}\right)$ is a sequence of real numbers such that $\left(u_{2 n+1}\right)$ and $\left(u_{2 n}\right)$ converge to the same limit l then $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=l$.
(a) Use the same method to show that if $\left(u_{n}\right)$ is a sequence of real numbers such that $\left(u_{3 n}\right),\left(u_{3 n+1}\right)$ and $\left(u_{3 n+2}\right)$ converge to the same limit l, then $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=l$.
(b) Let $\left(u_{n}\right)$ be a sequence of real numbers such that $\left(u_{2 n}\right),\left(u_{2 n+1}\right)$ and $\left(u_{3 n}\right)$ are all convergent; show that $\left(u_{n}\right)$ is convergent (Hint : use the fact that $\left(u_{3 n}\right)$ converges to prove that ($u_{2 n}$) and ($u_{2 n+1}$) converge to the same limit, then use the result seen in class).
Correction. (a) Call l the common limit of the three sequences $\left(u_{3 n}\right),\left(u_{3 n+1}\right)$ and $\left(u_{3 n+3}\right)$. Pick $\varepsilon>0$; we know that there exist M_{1}, M_{2}, M_{3} such that $n \geq M_{1} \Rightarrow\left|u_{3 n}-l\right| \leq \varepsilon, n \geq M_{2} \Rightarrow\left|u_{3 n+1}-l\right| \leq \varepsilon$ and $n \geq M_{3} \Rightarrow\left|u_{3 n+2}-l\right| \leq \varepsilon$. Let then $M=3 M_{1}+3 M_{2}+3 M_{3}$, and pick $n \geq M$. We either have $n=3 k$ with $k \geq M_{1}$, or $n=3 k+1$ with $k \geq M_{2}$, or $3 k+2$ with $k \geq M_{3}$; in any case we get $\left|u_{n}-l\right| \leq \varepsilon$. This proves that $\left(u_{n}\right)$ converges to l.
(b) Let $l, l^{\prime}, l^{\prime \prime}$ denote the limits of $u_{2 n}, u_{2 n+1}$ and $u_{3 n}$ (in that order). Then $u_{6 n}=u_{2(3 n)}$, so $\left(u_{6 n}\right)$ is a
subsequence of $\left(u_{2 n}\right)$, which proves that $\left(u_{6 n}\right)$ converges to l. But $\left(u_{6 n}\right)$ is also a subsequence of $\left(u_{3 n}\right)$ (why ?), so it converges to $l^{\prime \prime}$. Since the limit of a sequence is unique, this yields $l=l^{\prime}$. In the same way, one sees that $\left(u_{6 n+3}\right)$ is a subsequence of both $\left(u_{3 n}\right)$ and $\left(u_{2 n+1}\right)$, so their limits are equal and $l^{\prime}=l^{\prime \prime}$.
Putting all this together, we obtain $l=l^{\prime}$, so $\left(u_{2 n}\right)$ and $\left(u_{2 n+1}\right)$ converge to the same limit, and we saw in class that this implies that $\left(u_{n}\right)$ is convergent.
4. Given a sequence $\left(u_{n}\right)$ of reals numbers, define another sequence s_{n} by the formula $\frac{u_{1}+u_{2}+\ldots+u_{n}}{n}$.
(a) Here we assume that $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=0$. Show that for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$ one has

$$
\left|s_{n}\right| \leq \frac{\left|u_{1}+u_{2}+\ldots u_{N}\right|}{n}+\frac{\varepsilon}{2}
$$

Use this to prove that $\lim \left(s_{n}\right)=0$.
(HInt : for the inequality, pick some suitable N and then cut the sum in two parts; use the triangle inequality, and the fact that the sum of $n-N$ reals having each an absolute value less than $\frac{\varepsilon}{2}$ has an absolute value less that $(n-N) \frac{\varepsilon}{2}$)
(b) Show that if $\left(u_{n}\right)$ is convergent and $\lim \left(u_{n}\right)=l$ then $\left(s_{n}\right)$ is convergent and $\lim \left(s_{n}\right)=l$.
(Hint : apply the result of question (a) to the sequence $\left(u_{n}-l\right)$)
(c) Show that the converse of this assertion is not true (look at what happens if $\left(u_{n}\right)=(-1)^{n}$ for instance).

Correction. (a) Pick $\varepsilon>0$; since $\lim \left(u_{n}\right)=0$, we know that there exists $N \in \mathbb{N}$ such that $n \geq N \Rightarrow\left|u_{n}\right| \leq \frac{\varepsilon}{2}$ (apply the definition of convergence with $\varepsilon^{\prime}=\frac{\varepsilon}{2}$. Then, for $n \geq N$, one has

$$
\left|s_{n}\right|=\left|\frac{u_{1}+u_{2}+\ldots+u_{n}}{n}\right| \leq\left|\frac{u_{1}+u_{2}+\ldots+u_{N}}{n}\right|+\frac{\left|u_{N+1}\right|+\ldots+\left|u_{n}\right|}{n} \leq \frac{\left|u_{1}+u_{2}+\ldots u_{N}\right|}{n}+\frac{(n-N)}{n} \frac{\varepsilon}{2}
$$

Thus, we finally obtain that for $n \geq N$ one has $\left|s_{n}\right| \leq \frac{1}{n} \frac{\left|u_{1}+u_{2}+\ldots u_{N}\right|}{n}+\frac{\varepsilon}{2}$.
Now pick $\varepsilon>0$ and find $N \in \mathbb{N}$ as above; the sequence $\frac{1}{n}\left(\left|u_{1}+u_{2}+\ldots u_{N}\right|\right)$ converges to 0 , so for some $M \in \mathbb{N}$ big enough one has $n \geq M \Rightarrow \frac{1}{n}\left(\left|u_{1}\right|+\left|u_{2}\right|+\ldots\left|u_{N}\right|\right) \leq \frac{\varepsilon}{2}$. But then, the inequality above shows that, for any $n \geq \max (M, N)$ one has $\left|s_{n}\right| \leq \varepsilon$.
This proves that $\left(s_{n}\right)$ converges to 0 if $\left(u_{n}\right)$ converges to 0 .
(b) If $\left(u_{n}\right)$ converges to l, then $\left(u_{n}-l\right)$ converges to 0 ; therefore the result of the preceding question tells us that $\frac{\left(u_{1}\right)-l+\left(u_{2}-l\right)+\ldots\left(u_{n}-l\right)}{n}$ converges to 0 . But one has

$$
\frac{\left(u_{1}-l\right)+\left(u_{2}-l\right)+\ldots\left(u_{n}-l\right)}{n}=\frac{u_{1}+u_{2}+\ldots+u_{n}-n l}{n}=\frac{u_{1}+u_{2}+\ldots u_{n}}{n}-l=s_{n}-l .
$$

So, the result of question (a) tells us that $\left(s_{n}-l\right)$ converges to 0 , in other words that $\left(s_{n}\right)$ is convergent and $\lim \left(s_{n}\right)=l$
(c) If $u_{n}=(-1)^{n}$, then $s_{n}=\frac{(-1)^{n}-1}{2 n}$ (proved by induction) so $\left(s_{n}\right)$ converges to 0 , whereas $\left(u_{n}\right)$ does not converge. This means that the converse of the assertion in (b) is not true.
5. Show that a subsequence of a Cauchy sequence is also a Cauchy sequence.

Correction. Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be strictly increasing, and let $\left(u_{n}\right)$ be a Cauchy sequence. Pick $\varepsilon>0$; we know that there exists $N \in \mathbb{N}$ such that for any $n, m \in \mathbb{N}, n, m \geq N \Rightarrow\left|u_{n}-u_{m}\right| \leq \varepsilon$. Since $\varphi(n) \geq n$ for all $n \in \mathbb{N}$, we get that

$$
n, m \geq N \Rightarrow \varphi(n), \varphi(m) \geq N \Rightarrow\left|u_{\varphi(n)}-u_{\varphi(m)}\right| \leq \varepsilon
$$

This proves that $\left(u_{\varphi(n)}\right)$ is a Cauchy sequence.

