Integration: correction of the exercises.

1. (a) Assume that \(f : [a,b] \to \mathbb{R} \) is a continuous function such that \(f(x) \geq 0 \) for all \(x \in (a,b) \), and \(\int_a^b f(t)dt = 0 \). Show that \(f(x) = 0 \) for all \(x \in [a,b] \); can you use the fundamental theorem of calculus to prove this result?

(b) Use this to show that if \(f \) is continuous on \([a,b] \) and \(\int_a^b f(t)dt = 0 \) then there must exist \(t \in (a,b) \) such that \(f(t) = 0 \).

Correction. First, notice that, since \(f \) is continuous, proving that \(f(t) = 0 \) for all \(t \in [a,b] \) is the same as proving that \(f(t) = 0 \) for all \(t \in (a,b) \). Now, let us prove the contrapositive of the result we are interested in; in other words, let us prove that if \(f(x) > 0 \) for some \(x \in (a,b) \), \(f(x) \geq 0 \) for all \(x \in (a,b) \) and \(f \) is continuous on \([a,b] \), then \(\int_a^b f(t)dt > 0 \). To prove this, notice that since \(f \) is continuous at \(x \) there exists \(\delta > 0 \) such that \(f(y) \geq \frac{f(x)}{2} \) for all \(y \in [a,b] \) such that \(|y - x| \leq \delta \). If \(\delta \) is small enough, \(|x - \delta, x + \delta| \subset [a,b] \); but then

\[
\int_{x-\delta}^{x+\delta} f(t)dt \geq 2\delta \frac{f(x)}{2} = \delta f(x) > 0.
\]

Since \(f(y) \geq 0 \) for all \(y \in [a,b] \), we know that \(\int_a^{x-\delta} f(t)dt \geq 0 \) and \(\int_{x+\delta}^b f(t)dt \geq 0 \); thus the additivity theorem shows that \(\int_a^b f(t)dt > 0 \), which is what we wanted.

One can indeed prove this result using the fundamental theorem of calculus (and the mean value theorem):
Set \(F(x) = \int_a^x f(t)dt \); then \(F \) is differentiable and \(F'(x) = f(x) \geq 0 \), hence \(F \) is increasing. We have \(F(a) = 0 \) by definition, and the assumption that \(\int_a^b f(t)dt = 0 \) gives \(F(b) = 0 \). Since \(F \) is increasing, this means that actually \(F \) is constant on \([a,b] \), thus its derivative is equal to 0 on \([a,b] \), and this gives \(f(x) = 0 \) for all \(x \in [a,b] \).

(b) First, notice that if \(f \) doesn’t take the value 0 on \((a,b) \) then \(f \) is either always > 0 or always < 0 on \([a,b] \) (because of the intermediate value theorem). But then the preceding question shows that one cannot have \(\int_a^b f(t)dt = 0 \). Hence there must exist \(t \in (a,b) \) such that \(f(t) = 0 \).

2. Use the result of the preceding exercise to solve the following questions.

(a) Find all the continuous functions \(f : [a,b] \to \mathbb{R} \) such that \(\int_a^b f(t)dt = (b-a) \sup\{|f(x)| : x \in [a,b]| \} \).

(b) Assume \(f : [0,1] \to \mathbb{R} \) is a continuous function such that \(\int_0^1 f(t)dt = \frac{1}{2} \); prove that there exists \(a \in (0,1) \) such that \(f(a) = a \).

(c) Show that if \(f, g \) are continuous on \([0,1]\) and \(\int_0^1 f(t)dt = \int_0^1 g(t)dt \) then there exists some \(c \in [0,1] \) such that \(f(x) = g(c) \).

Correction. The function \(g \) defined on \([a,b] \) by \(g(x) = \sup\{|f(x)| : x \in [a,b]| \} - f(x) \) is continuous, and \(g(x) \geq 0 \) for all \(x \in [a,b] \). The assumption \(\int_0^1 f(t)dt = (b-a) \sup\{|f(x)| : x \in [a,b]| \} \) is equivalent to \(\int_0^1 g(t)dt = 0 \), which in turn is equivalent to \(g(x) = 0 \) for all \(x \in [a,b] \). This means that the functions that satisfy the equality we are interested in are the functions \(f \) which are constant on \([a,b]\) and nonnegative.

(b) Assume that for all \(t \in (0,1) \) one has \(f(t) > t \); then we know that \(\int_0^1 (f(t) - t)dt > 0 \), and this is the same as saying that \(\int_0^1 f(t)dt > \frac{1}{2} \). Similarly, if \(f(t) < t \) for all \(t \in (0,1) \) one gets \(\int_0^1 f(t)dt > \frac{1}{2} \). Thus, it is only possible that \(\int_0^1 f(t)dt = \frac{1}{2} \) if there exist \(t,t' \in (0,1) \) such that \(f(t) \geq t \), \(f(t') \leq t' \). If either \(f(t) = t \) or \(f(t') = t' \) we are done; otherwise the function \(x \mapsto f(x) - x \) changes sign on \((0,1)\). Since this function is continuous, the mean value theorem ensures that it must have a zero on \((0,1)\), which shows that there exists \(a \in (0,1) \) such that \(f(a) = a \).

(c) This is a direct consequence of question 1(b) (applied to the continuous function \(f - g \)).
3. Using Riemann sums, compute the limits (when \(n \to +\infty \)) of the following sequences:

\[
\sum_{k=1}^{n} \frac{1}{n+k} : \sum_{k=1}^{n} \frac{n}{n^2+k^2} : \sum_{k=1}^{n} \frac{k^2}{n^2} : \sum_{k=1}^{n} \left(\sin\left(\frac{k\pi}{2n} - \sin\left(\frac{(k-1)\pi}{2n}\right) \right) \ln(1 + \sin(\frac{k\pi}{2n})); \right) : \sum_{k=1}^{n} \frac{(-1)^k}{k}.
\]

Correction. Here, the trick is to recognize Riemann sums: the first one is \(\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} \), and this is a Riemann sum for the function \(x \mapsto \frac{1}{1+x} \) for a tagged partition of \([0,1]\) with mesh \(1/n\). Thus, we obtain

\[
\lim \left(\frac{n}{k=1} \frac{1}{n+k} \right) \int_{0}^{1} \frac{dt}{1+t} = \ln(2).
\]

The second one is similar: \(\sum_{k=1}^{n} \frac{n}{n^2+k^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \left(\frac{k}{n}\right)^2} \), hence \(\lim \left(\frac{n}{k=1} \frac{n^2+k^2}{n^2} \right) \int_{0}^{1} \frac{dt}{1+t^2} = \frac{\pi}{4} \).

The third one is more of the same: \(\sum_{k=1}^{n} \frac{k^2}{n^2} = \frac{1}{n} \sum_{k=1}^{n} \frac{k^2}{n^2} \), hence \(\lim \left(\frac{n}{k=1} \frac{k^2}{n^2} \right) \int_{0}^{1} \frac{dt}{1+t^2} = \frac{1}{3} \).

The fourth one looks nasty, but again it is a Riemann sum for the continuous function \(t \mapsto \ln(1+t) \) on \([0,1]\), with regard to the tagged partition \{ \sin\left(\frac{(k-1)\pi}{2n}\right), \sin\left(\frac{k\pi}{2n}\right), \sin\left(\frac{k\pi}{2n}\right) \}, \) the mesh of which is smaller than \(\frac{1}{2n} \) (use the mean value theorem to prove this). Hence when \(n \to +\infty \) the sum converges to \(\int_{0}^{1} \ln(1+t) \, dt \), which is computable using integration by parts:

\[
\int_{0}^{1} \ln(1+t) \, dt = \left[(t+1) \ln(t+1) \right]_{t=0}^{t=1} - \int_{0}^{1} 1 \, dt = 2 \ln(2) - 1.
\]

The last one doesn't look like a Riemann sum; there is some work to be done before one can see a Riemann sum appear. Assume first that \(n = 2p \); one has

\[
u_{2p} = \sum_{k=1}^{n} \frac{(-1)^k}{k} = -\sum_{k=1}^{n} \frac{1}{k} + 2 \sum_{k=1}^{p} \frac{1}{2k} = -\sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{p} \frac{1}{k}.
\]

Hence, when \(n = 2p \), one has \(\sum_{k=1}^{n} \frac{(-1)^k}{k} = -\sum_{k=p+1}^{2p} \frac{1}{k} = -\sum_{k=p+1}^{2p} \frac{1}{k} \). The sum on the right is actually a Riemann sum for the continuous function \(t \mapsto -\frac{1}{t^2} \) on \([0,1]\) and the tagged partition \{ \frac{1}{2p}, \frac{1}{2p+1}, \frac{1}{2p} \}, \) the mesh of which is \(\frac{1}{2p} \) (can you see why?). So, we see that \(u_{2p} \) converges to \(-\int_{0}^{1} \frac{dt}{1+t^2} = \ln(2) \). Since \(u_{2p+1} \) converges to \(0 \), we see that one also has \(\lim(u_{2p+1}) = -\ln(2) \). A theorem we saw in class ensures that \((u_n) \) is convergent and \(\lim(u_n) = -\ln(2) \).

4. Let \(f, g: [0,1] \to \mathbb{R} \) be continuous functions. Show that \(\lim \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(\frac{k}{n} - 1\right) \right) = \int_{0}^{1} f(t)g(t) \, dt \).

Correction. This is trickier than it looks: if we had \(f\left(\frac{k}{n}\right)g\left(\frac{k}{n}\right) \) in the sum, then it would just be a usual Riemann sum and we could apply the results seen in class. Unfortunately, this is not what we have; how can we deal with this? One can proceed as follows: first, write that

\[
\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)g\left(\frac{k}{n} - 1\right) = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)g\left(\frac{k}{n}\right) + \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k}{n} - 1\right) - g\left(\frac{k}{n}\right)\right).
\]

The first term converges to \(\int_{0}^{1} f(t)g(t) \, dt \), so we want to prove that the second term converges to 0. For that, we use the fact that \(g \) is uniformly continuous on \([0,1]\); given \(\varepsilon > 0 \), there exists \(\delta_\varepsilon \) such that \(|x - y| \leq \delta_\varepsilon \Rightarrow \)
\[|f(x) - f(y)| \leq \varepsilon \text{ for all } x, y \in [a, b]. \] Hence if \(n \) is big enough one has \(|g\left(\frac{k-1}{n}\right) - g\left(\frac{k+1}{n}\right)| \leq \varepsilon \), so that
\[
\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k-1}{n}\right) - g\left(\frac{k+1}{n}\right)\right) \leq \varepsilon \frac{1}{n} \sum_{k=1}^{n} |f\left(\frac{k}{n}\right)|.
\]

Since \(f \) is Riemann-integrable \(|f| \) also is Riemann-integrable, hence \(\frac{1}{n} \sum_{k=1}^{n} |f\left(\frac{k}{n}\right)| \) converges to \(\int_{a}^{b} |f(t)| dt \).

So if \(n \) is big enough one has \(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k-1}{n}\right) - g\left(\frac{k+1}{n}\right)\right) \leq \varepsilon \left(\int_{a}^{b} |f(t)| dt + 1\right) \) for all \(n \geq K \). This proves that \(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\left(g\left(\frac{k-1}{n}\right) - g\left(\frac{k+1}{n}\right)\right) \) converges to 0 (when \(n \to +\infty \)), which is what we needed to prove.

5. Let \(f : [0, 1] \to \mathbb{R} \) be a continuous function such that \(\int_{0}^{1} f(u)u^k du = 0 \) for all \(k \in \{0, \ldots, n\} \). Show that \(f \) has at least \(n+1 \) distinct zeros in \((0, 1)\).

Hint: prove the result by induction using integration by parts and Rolle’s theorem.

Correction. Following the hint, let us prove the result by induction. For \(n = 0 \) the result is a direct consequence of exercise 1; assume the result is true for \(n \). Then pick a continuous function \(f \) such that \(\int_{0}^{1} f(u)u^k du = 0 \) for all \(k \in \{0, \ldots, n+1\} \), and set \(F(x) = \int_{0}^{x} f(t) dt \). The assumption on \(f \) for \(k = 0 \) yields \(F(0) = F(1) = 0 \).

Also, for any \(k = 1, \ldots, n \), one has
\[
\int_{0}^{1} u^k du = \left[ku^{k-1}\right]_{0}^{1} = k \int_{0}^{1} u^{k-1}f(u) du.
\]

Thus we obtain \(\int_{0}^{1} u^{k-1}F(u) du = 0 \) for all \(k = 1, \ldots, n \), which yields (because of our induction hypothesis) that \(F \) has at least \(n \) distinct zeros in \((0, 1)\). Since \(F(0) = F(1) = 0 \), \(F \) must have at least \(n+1 \) distinct zeros on \([0, 1]\). And \(F' = f \) has a zero between any two zeros of \(F \), which shows that \(f \) has at least \(n+1 \) distinct zeros on \((0, 1)\).

7.1.13. We need to use the definition of a Riemann integral; assume the points \(c_1, \ldots, c_n \) are indexed in such a way that \(c_1 < c_2 < \ldots < c_{n-1} < c_n \), and set \(M = \max\{|f(c_i)| : i = 1, \ldots, n\} \). Then pick a tagged partition \(P = \{[x_{i-1}, x_i], t_i\}_{i=1}^{n} \) of \([a, b]\). One has
\[
|S(f, P)| = \sum_{i=1}^{m} (x_i - x_{i-1})|f(t_i)| \leq \sum_{i=1}^{m} |x_i - x_{i-1}||f(t_i)| \leq |P| \sum_{i=1}^{m} |f(t_i)|.
\]

Since there are only \(n \) points in the interval at which \(f(x) \neq 0 \), and at each of these points one has \(|f(x)| \leq M\), we see that \(|S(f, P)| \leq |P|2nM \) (because there can be at most two \(t_i \) with the same value, and at most \(n \) points at which \(f \) is nonzero, so at most \(2n \) of them can appear in the sum). But then (since \(n, M \) are constant) we are done: if one sets \(\varepsilon = \frac{\varepsilon}{2nM} \), what we have proved implies that for any partition \(P \) with mesh less than \(\delta \) one has \(|S(f, P)| \leq \varepsilon \). This is exactly what we needed to prove that \(f \in \mathcal{R}(\mathbb{R}[a, b]) \) and \(\int_{a}^{b} f(x) dx = 0 \).

7.1.14. This is a consequence of the preceding exercise: indeed, the function \(f - g \) satisfies the condition of exercise 7.1.13, hence \(f - g \in \mathcal{R}(\mathbb{R}[a, b]) \) and \(\int_{a}^{b} (f - g)(t) dt = 0 \). But then \(f = (f - g) + g \) is the sum of two Riemann-integrable functions, so \(f \in \mathcal{R}(\mathbb{R}[a, b]) \) and \(\int_{a}^{b} f(t) dt = \int_{a}^{b} (f(t) - g(t)) dt + \int_{a}^{b} g(t) dt = \int_{a}^{b} g(t) dt \).

7.1.15. Let us follow the hint: pick \(\varepsilon > 0 \), set \(\delta = \frac{\varepsilon}{\max_{t \in [c, d]} f(t)} \) and pick a tagged partition \(P = \{[x_{i-1}, x_i], t_i\}_{i=1}^{n} \) with mesh \(\leq \delta \). Then by definition one has \(S(\varphi, P) = \sum_{i=1}^{n} (x_i - x_{i-1})\varphi(t_i) \). There are two possibilities for \(\varphi(t_i) \): either it is equal to 0, or it is equal to \(\alpha \). Only the \(t_i \)'s that belong to \([c, d]\) contribute to the sum. Let \(I = \{i : t_i \in [c, d]\} \). Then \(S(\varphi, P) = \alpha \sum_{i \in I} (x_i - x_{i-1}) \). Since \(t_i \in [x_{i-1}, x_i] \), \(t_i \) can only be in \([c, d]\) if \(x_{i-1} < a \) and \(x_i \geq a \), or \(x_{i-1}, x_i \) are both in \([c, d]\), or \(x_{i-1} \leq d \) and \(x_i > d \). The first and third condition can each
be satisfied at most by one index, and the remaining $[x_{i-1}, x_i]$ from a partition of a subinterval of $[c, d]$, so that $S(\varphi, \mathcal{P}_i) \leq \alpha(d-c) + 2\delta_c \alpha$. Similarly, the "chunk" of $[x, d]$ that can be missed by the t_i's is at most $2\delta_c$ long, hence $S(\varphi, \mathcal{P}_i) \geq \alpha(d-c) - 2\delta_c \alpha$. This shows that whenever \mathcal{P}_i is a tagged partition with mesh less than $\delta_c = \frac{\varepsilon}{2}$, one has
\[
\alpha(d-c) - \frac{\varepsilon}{2} \leq S(\varphi, \mathcal{P}_i) \leq \alpha(d-c) + \frac{\varepsilon}{2}.
\]
This is enough to show that $\varphi \in \mathcal{R}([a, b])$ and $\int_a^b \varphi(t)dt = \alpha(d-c)$.

7.2.11. Let's follow the hint and define (given $\varepsilon > 0$) $\alpha_\varepsilon, \omega_\varepsilon$ by $\alpha_\varepsilon(x) = \begin{cases} -M & \text{if } x \in [a, c] \\ f(x) & \text{if } x \in [c, b] \end{cases}$ and $\omega_\varepsilon(x) = \begin{cases} M & \text{if } x \in [a, c] \\ f(x) & \text{if } x \in [c, b] \end{cases}$ (is to be specified later). Then one has $\alpha_\varepsilon(x) \leq f(x) \leq \omega_\varepsilon(x)$ for all $x \in [a, b]$. Also, $\alpha_\varepsilon, \omega_\varepsilon$ are both Riemann-integrable on $[a, b]$ because of the Additivity theorem. Finally, one has $\int_a^b (\omega_\varepsilon(t) - \alpha_\varepsilon(t))dt = \int_a^c 2M dt = 2M(c-a)$ by definition of $\alpha_\varepsilon, \omega_\varepsilon$. Hence if one sets $c = a + \frac{\varepsilon}{2M}$ we get that $\int_a^b (\omega_\varepsilon(t) - \alpha_\varepsilon(t)) \leq \varepsilon$.

So we managed to prove that the assumptions of the Squeeze Theorem are satisfied, hence $f \in \mathcal{R}([a, b])$. Then since $|f(x)| \leq M$ for all $x \in [a, b]$ we see that $\left| \int_a^c f(t)dt \right| \leq M(c-a)$, and the Chain Rule yields $\left| \int_a^c f(t)dt \right| = 0$. Thus the additivity theorem gives $\lim_{c \to a} \int_a^b f(t)dt = \int_a^b f(t)dt$.

7.2.12. This is a consequence of the preceding exercise : $|g(x)| \leq 1$ for all $x \in [0, 1]$, and g is continuous on $[c, 1]$ for all $c \in (0, 1)$. Hence it is Riemann-integrable on $[0, 1]$.

7.2.16. Set $F(x) = \int_a^x f(t)dt$; since f is continuous on $[a, b]$, the fundamental theorem of calculus ensures that F is differentiable on $[a, b]$, hence it satisfies the assumptions of the Mean Value theorem on this interval, so there exists $c \in (a, b)$ such that $F(b) - F(a) = F'(c)(b-a)$. This is the same as saying that there exists $c \in (a, b)$ such that $\int_a^b f(t)dt = f(c)(b-a)$.

One can also solve this exercise differently : one has $f([a, b]) = [m, M]$ by the theorems about continuous functions, from which we get $m(b-a) \leq \int_a^b f(t)dt \leq M(b-a)$ But then $m \leq \frac{\int_a^b f(t)dt}{b-a} \leq M$, hence there exists c such that $f(c) = \frac{\int_a^b f(t)dt}{b-a}$, which is the same as saying that $(b-a)f(x) = \int_a^b f(t)dt$.

7.2.17. We can apply a similar method to the one in the exercise above : denote again $f([a, b])$ by $[m, M]$.

Then one has $\int_a^b f(t)g(t)dt - m \int_a^b g(t)dt = \int_a^b (f(t) - m)g(t)dt \geq 0$ (because $f(t) \geq m$ and $g(t) \geq 0$ for all $t \in [a, b]$). Similarly, one finds that $\int_a^b f(t)g(t)dt \leq M \int_a^b g(t)dt$. Put together, this yields
\[
m \leq \frac{1}{\int_a^b g(t)dt} \int_a^b f(t)g(t)dt \leq M.
\]

Thanks to the intermediate value theorem, we can now conclude : there exists $c \in [a, b]$ such that $f(c) = \frac{1}{\int_a^b g(t)dt} \int_a^b f(t)g(t)dt$, which is the same as $\int_a^b f(t)g(t)dt = f(c) \int_a^b g(t)dt$. This result is clearly false if one no longer assumes that g takes nonnegative values ; for instance, let $a = -1$, $b = 1$, $f(t) = t$ and $g(t) = t$. Then one has $\int_a^b f(t)g(t)dt = 1$ but $f(c) \int_a^b g(t)dt = 0$ for all $c \in [0, 1]$.

7.3.11. Here one needs to apply the Chain Rule (and the fundamental theorem of calculus), which yields :

(a) In this case $F(x) = G(x^2)$, where $G'(x) = \frac{1}{1+x^2}$; hence $F'(x) = \frac{2x}{1+(x^2)^2} = \frac{2x}{1+x^6}$.

(b) This time $F(x) = G(x^2) - G(x^2)$, where $G'(x) = \sqrt{1+x^2}$. Hence $F'(x) = G'(x) - 2xG'(x^2) = \sqrt{1+x^2} - 2x\sqrt{1+x^4}$.

7.3.13. Set first $F(x) = \int_x^0 f(t)dt$. Then we know that F is differentiable and $F'(x) = f(x)$. By definition, we have $g(x) = F(x+c) - F(x-c)$, hence g is a composition of differentiable functions. Thus g is differentiable on \mathbb{R}, and the Chain Rule yields $g'(x) = F'(x+c) - F'(x-c) = f(x+c) - f(x-c)$.
7.3.14. First notice that the assumption on \(f \) implies that \(\int_a^b f(t)dt = 0 \) (take \(x = 0 \)). Set \(F(x) = \int_0^x f(t)dt \). Then the assumption on \(F \) become \(F(x) = F(1) - F(x) \) for all \(x \in [0,1] \), and since \(F(1) = 0 \) this yields \(F(x) = 0 \) for all \(x \in [0,1] \). Since \(f \) is continuous the fundamental theorem of calculus gives \(F' = f \), hence \(f(x) = 0 \) for all \(x \in [0,1] \).

7.3.21. (a) The functions \(x \mapsto (tf(x) + g(x))^2 \) and \(x \mapsto (tf(x) - g(x))^2 \) are both Riemann-integrable on \([a,b]\) and take nonnegative values, hence \(\int_a^b (tf(u) \pm g(u))^2 dt \geq 0 \).

(b) We have:
\[
\int_a^b (tf(u) + g(u))^2 du = \int_a^b (t^2f^2(u) + 2tf(u)g(u) + g^2(u)) du = t^2 \int_a^b f(u)^2 du + 2t \int_a^b f(u)g(u) du + \int_a^b g(u)^2 du.
\]
Since the quantity on the left is positive, we obtain \(-2t \int_a^b f(u)g(u) du \leq t^2 \int_a^b f(u)^2 du + \int_a^b g(u)^2 du \). Hence for any \(t > 0 \) we have \(-2 \int_a^b f(u)g(u) du \leq t \int_a^b f(u)^2 du + \frac{1}{t} \int_a^b g(u)^2 du \). Similarly, using the fact that \(\int_a^b (tf(u) - g(u))^2 du \geq 0 \), one obtains \(2 \int_a^b f(u)g(u) du \leq t \int_a^b f(u)^2 du + \frac{1}{t} \int_a^b g(u)^2 du \). The two inequalities together yield
\[
2|\int_a^b f(u)g(u) du| \leq t \int_a^b f(u)^2 du + \frac{1}{t} \int_a^b g(u)^2 du.
\]
(c) If \(\int_a^b f^2(u) du = 0 \) then the result above implies that \(2|\int_a^b f(u)g(u) du| \leq \frac{1}{2} \int_a^b g(u)^2 du \) for all \(t > 0 \). This is only possible if \(\int f(u)g(u) du = 0 \).

(d) Since one has both \(fg \leq |fg| \) and \(-fg \leq |fg| \), it is true that both \(\int_a^b f(u)g(u) du \leq \int_a^b |f(u)g(u)| du \) and \(-\int_a^b f(u)g(u) du \leq \int_a^b |f(u)g(u)| du \). This means that \(|\int_a^b f(u)g(u) du| \leq \int_a^b |f(u)g(u)| du \), which is equivalent to the inequality on the left.

To prove the inequality on the right, recall that we know from (b) (applied to \(|f|, |g|\)) that \(t^2 \int_a^b f^2(u) du + 2t \int_a^b f(u)g(u) du + \int_a^b g(u)^2 du \geq 0 \) for all \(t \in \mathbb{R} \). This means that the polynomial function \(t \mapsto t^2 \int_a^b f^2(u) du + 2t \int_a^b f(u)g(u) du + \int_a^b g(u)^2 du \) keeps a constant sign on \(\mathbb{R} \), and this is possible only if its discriminant \(4(\int_a^b |f(u)g(u)| u)^2 - 4 \int_a^b f^2(u) du \int_a^b g^2(u) du \) is \(\leq 0 \). In other words, one must have
\[
\left(\int_a^b |f(u)g(u)| du \right)^2 \leq \int_a^b f^2(u) du \int_a^b g^2(u) du.
\]
To get the inequality we are asked to prove, apply this inequality to the functions \(f(t) = 1/t \) and \(g(t) = 1 \):
\[
\left(\int_a^b \frac{dt}{t} \right)^2 \leq \int_a^b \frac{dt}{t^2} \int_a^b dt = \left(\frac{1}{a} - \frac{1}{b} \right)(b - a) = \frac{(b-a)^2}{ab}.
\]
Taking the square root, one has
\[
\int_a^b \frac{dt}{t} \leq \frac{(b-a)}{\sqrt{ab}}.
\]