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Abstract

This is a survey article about the geometry and dynamical properties
of the Urysohn space. Most of the results presented here are part of the
author's Ph.D thesis and were published in the articles [Me1], [Me2]
and [Me3]; a few results are new, most notably the fact that Iso(U) is
not divisible.

Introduction.

This paper has two main objectives: presenting the author's results about
the Urysohn space and its isometry group in a uni�ed setting, and providing
an introduction to the techniques and methods that are commonly used to
study this space. Hopefully the paper is su�ciently self-contained to be of
use to people who haven't worked on the Urysohn space before, and still
covers basic material fast enough not to bore people who already know it.
Urysohn's universal metric space U was characterized in Urysohn's original
paper [Ur] as being, up to isometry, the unique Polish metric space with the
following two properties:
- Given any two isometric �nite metric subsets A,A′ ⊂ U, and any isometry
ϕ : A→ A′, there exists an isometry ϕ̃ of U which extends ϕ;
- Any separable metric space is isometric to a subspace of U.
The �rst property is now called ω-homogeneity (or ultrahomogeneity) the sec-
ond is called universality. There are other examples of ω-homeogenous Polish
metric spaces, for example the Hilbert space; similarly, there are other uni-
versal Polish metric spaces, the best-known example being perhaps C([0, 1]).
It was universality which interested Urysohn when he built U, but it's the
combination of both properties that makes it an important and fascinat-
ing geometric object, which may be thought of as an analogue of the random
graph (within the more general setting of Polish metric spaces). Remarkably,
this space was constructed more than 30 years before the random graph was!
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There was little interest in this space during the �rst 50 years after its con-
struction; Kat¥tov's work in [Kat], and the way Uspenskij applied it in [Usp2]
to prove that its group of isometries is a universal Polish group, �nally piqued
the curiosity of mathematicians. Most notably, A. Vershik lobbied to gen-
erate interest in the Urysohn space, and since 10 years or so it is actively
studied. In this article, we focus on the geometry of the Urysohn space, and
some of its dynamical properties (by which we mean properties of isometries
and the way they act on the space); most of the results presented here have
already been published and were part of the author's Ph.D thesis (and of
the articles [Me1], [Me3]). Some results are new, including the construction
of translations (section 4), and the proof that Iso(U) is not a divisible group
(section 5).
The paper is organized as follows: after setting the basic notations and def-
initions, we introduce and study Kat¥tov maps, then recall Kat¥tov's con-
struction of the Urysohn space. Then we try to give the reader a feel for the
geometry of this space via several examples and exercises. Over the remain-
der of the article, we study some properties of Iso(U) as a topological group,
dynamical properties of isometries, and discuss quickly the embeddings of
the Urysohn space into Banach spaces. Throughout the text, we propose
exercises to the reader, the purpose of which is to help understand the geom-
etry of U and the techniques that are used to study it; some exercises consist
in verifying a technical lemma used in the proof of a theorem. Hints and
references for the exercises are given at the end of the paper. We attribute,
to the extent possible, each theorem to its author, and provide a reference to
the article in which it was originally published. Hopefully, this should help
the reader determine which results are due to the author, and which among
those are presented here for the �rst time.

Acknowledgements. I'm happy to have the opportunity to thank Mati Rubin,
Arkady Leiderman and Vladimir Pestov, the organizers of the workshop on
the Urysohn space that took place in Beer Sheva in May 2006 and is at the
origin of the volume on the Urysohn space in which this article is published.
I also would like to thank Thierry Monteil once again, since without him
I wouldn't have worked on the Urysohn space and his insights helped me
considerably when trying to understand properties of this space. I am also
indebted to the anonymous referee for pointing out several mistakes of mine
and prompting me to clarify some of the proofs.
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1 Notations and de�nitions.

Throughout this paper, we'll be dealing with metric spaces (X, d). When
there is no risk of confusion, we don't mention the metric on a metric space
(X, d) and simply denote it as X (this will lead to statements such as "let X
be a metric space ...").
A map ϕ : (X, d) → (Y, d′) is said to be an isometric map if d(x, x′) =
d′(ϕ(x), ϕ(x′)) for all x, x′ ∈ X. We say that ϕ is an isometry from (X, d)
onto (Y, d′) if it is a bijective isometric map.
Also, if X is a metric space and x ∈ X, we denote the closed (resp. open)
ball with center d and radius r by B(x, r] (resp. B(x, r[). The sphere
{x′ ∈ X : d(x, x′) = r} is denoted by S(x, r).
A Polish metric space is a separable, complete metric space.
If X is a topological space such that there is a distance turning X into a
Polish metric space, we say that the topology of X is Polish. We only use
this notion in the setting of topological groups: a Polish group is de�ned
as a topological group whose topology is Polish. For an introduction to the
theory of Polish groups, see [BK] or [Ke2].
The reason we are focusing on Polish groups here is that they are the groups
of transformations corresponding to isomorphisms of Polish spaces. To make
this clear, de�ne Iso(X) as the group of isometries of a metric space X, en-
dowed with the pointwise convergence topology (i.e the topology it inherits
as a subset of XX endowed with the product topology). Then, Iso(X) is
a Polish group if X is a Polish metric space. Conversely, Gao and Kechris
proved in [GK] that, for any Polish group G, there exists a Polish metric
space X such that G is isomorphic (as a topological group) to Iso(X).
Several constructions below will be based on the notion of amalgam of
two metric spaces X, Y over a common metric subspace Z; we only use
it in the case when Z is closed in X. To de�ne it properly, assume that
Z ⊂ X is closed and i : Z → Y is an isometric embedding. Let A denote
the disjoint union of X and Y ; de�ne a pseudo-distance d on A that ex-
tends the distances on X and Y by setting, for all x ∈ X and all y ∈ Y ,
d(x, y) = inf{d(x, z) + d(y, i(z)) : z ∈ Z}. The metric amalgam of X and Y
over Z is then de�ned as the metric space obtained by quotienting the pseudo-
metric space (A, d) by the zeroset of d (in other words, "sticking" the two
copies of Z together).
There is another essential de�nition to introduce; we discuss it in detail in
the next section.
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2 One-point metric extensions: Kat¥tov maps.

Before we turn our attention to the real subject matter of this article, it
seems worthwile to take the time to detail some properties of the so-called
Kat¥tov maps. These are the essential tool to study the Urysohn space. The
reason these maps are of interest for us is that they appear naturally when
one tries to build isometries, as we will see below.

De�nition 2.1. A map f : X → R is a Kat¥tov map if

∀x, y ∈ X |f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y) .

We denote by E(X) the set of Kat¥tov maps on X.

These maps correspond to one-point metric extensions X ∪ {z} of X in the
following way: f is a Kat¥tov map if, and only if, setting d(x, z) = f(x)
de�nes an extension to X ∪ {z} of the distance d on X (in other words, the
triangle inequality is still satis�ed). This correspondence was known well
before Kat¥tov's time; his contribution was to introduce a distance between
these maps, de�ned by

∀f, g ∈ E(X) d(f, g) = sup{|f(x)− g(x)| : x ∈ X} .

It is well-de�ned because, for any x, x0 ∈ X one has |f(x)−d(x, x0)| ≤ f(x0)
and |g(x)−d(x, x0)| ≤ g(x0), so that necessarily |f(x)−g(x)| ≤ f(x0)+g(x0).
An equivalent way of de�ning d(f, g) is saying that it is equal to the smallest
distance d(z, z′), where X ∪{z, z′} is a two-point metric extension of X such
that d(z, x) = f(x) and d(z′, x) = g(x) for all x ∈ X (the above majoration
of d(f, g) may then be seen as a consequence of the triangle inequality in any
two-point metric extension of X).
Endowed with this distance, E(X) is a complete metric space; it has several
nice properties, which make it very useful for the type of problems we concern
ourselves with here.

Proposition 2.2. X embeds isometrically in E(X) via the Kuratowski map
x 7→ d(x, .); identifying X with its image under this embedding, one has
d(f, x) = f(x) for all f ∈ E(X) and all x ∈ X, and each isometry of X
admits a unique extension to an isometry of E(X).

Proof. The �rst two statements of the proposition are a direct consequence
of the triangle inequallity. To see that isometries of X extend uniquely to
isometries of E(X), pick ϕ ∈ Iso(X), let ϕ̃ be an extension of ϕ (if there
exists one) and pick f ∈ E(X). Then one must have, for all x ∈ X, that
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d(ϕ̃(f), ϕ(x)) = d(f, x), which yields ϕ̃(f)(ϕ(x)) = f(x). Hence ϕ̃(f)(x) =
f(ϕ−1(x)) for all x ∈ X. This shows that the only possible isometric exten-
sion of ϕ to E(X) is de�ned by ϕ̃(f)(x) = f(ϕ−1(x)). Conversely, if ϕ̃ is de-
�ned by the preceding equation, it is clearly onto, is indeed an extension of ϕ,
and one has, for all f, g ∈ E(X): d(ϕ̃(f), ϕ̃(g)) = supX |ϕ̃(f)(x)−ϕ̃(g)(x)| =
supX |f(ϕ−1(x))− g(ϕ̃−1(x))| = d(f, g) . ♦

Unfortunately for our purposes, E(X) is not separable in general, and the
extension morphism from Iso(X) to Iso(E(X)) does not have to be contin-
uous: there are two many possible one-point metric extensions of X, and
they are too complicated. There does exist a remarkable separable subset of
E(X), which plays a fundamental role in the forthcoming constructions. To
introduce it, we need to explain the notion of Kat¥tov extension.

De�nition 2.3. If Y ⊂ X and f ∈ E(Y ), then its Kat¥tov extension to X
f̂ is de�ned by

∀x ∈ X f̂(x) = inf{f(y) + d(x, y) : y ∈ Y }

Geometrically, f̂ corresponds to the one-point extension of X obtained by
amalgamating Y ∪ {f} and X over Y . Thus f̂ coincides with f on Y , and
belongs to E(X).
If f ∈ E(X) and Y ⊂ X are such that f is the Kat¥tov extension of f|Y , we
say that Y is a support for f (notice that then any Z ⊃ Y is also a support
for f).

De�nition 2.4. We let E(X,ω) = {f ∈ E(X) : f has a �nite support}.

Exercise 1. Let Y ⊂ X. Prove that the Kat¥tov extension from Y to X
induces an isometric embedding of E(Y ) into E(X), and of E(Y, ω) into
E(X,ω).

We will often use an equivalent version of this statement: if f, g ∈ E(X)
have a common support S ⊂ X, then d(f, g) = sup{|f(s)− g(s)| : s ∈ S}.

Exercise 2. Prove that X embeds isometrically in E(X,ω) via the Kura-
towski map, and that the embedding is such that any isometry of X uniquely
extends to an isometry of E(X,ω).

Proposition 2.5. The extension morphism from Iso(X) to Iso(E(X,ω)) is
continuous.

Proof. We have to show that, given any f ∈ E(X,ω), the map from Iso(X)
to E(X,ω) de�ned by ϕ 7→ ϕ̃(f) is continuous. By de�nition, there are
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x1, . . . , xm such that f(x) = inf{f(xi) + d(x, xi)} for all x ∈ X. Pick some
ϕ ∈ Iso(X) and a sequence (ϕn) ∈ Iso(X)N that converges to ϕ in Iso(X).
Then, given any ε > 0, there exists N such that d(ϕn(xi), ϕ(xi)) ≤ ε for
all n ≥ N and all i = 1, . . . ,m. Given that ψ̃(f)(xi) = f(ψ−1(xi)) for all
ψ ∈ Iso(X), the triangle inequality implies that ϕ̃n(f) and ϕ̃(f) di�er by at
most ε on their common support {ϕ(x1), . . . , ϕ(xm)}∪{ϕn(x1), . . . , ϕn(xm)};
therefore, one must have d(ϕ̃n, ϕ̃) ≤ ε for all n ≥ N . ♦

We are now ready to move on to the study of the Urysohn space; before
we do this, however, we wish to unearth a necessary and su�cient condition
for E(X) to be separable, which will be useful below when we study the
homogeneity properties of the Urysohn space. The reader uninterested in
this problem may safely skip the remainder of this section for the time being.

Proposition 2.6. [Me3] If X is Polish and not Heine-Borel, then E(X) is
not separable.

Proof. Recall that a metric space has the Heine-Borel property if closed
bounded subsets of X are compact. If X doesn't have this property, then
there exist M, ε > 0 and (xi)i∈N such that ε ≤ d(xi, xj) ≤M for all i 6= j.

For A ⊆ N, de�ne fA : {xi}i≥0 → R by fA(xi) =

{
M if i ∈ A
M + ε else

.

It is easy to check fA ∈ E({xi}i≥0), and if A 6= B one has d(fA, fB) = ε.
Hence E({xi}i≥0) is not separable; since it is isometric to a subspace of E(X),
this concludes the proof. ♦

De�nition 2.7. If (X, d) is a nonempty metric space and ε > 0, we say that
a sequence (un)n∈N in X is ε-inline if

∑r
i=0 d(ui, ui+1) ≤ d(u0, ur+1) + ε for

every r ≥ 0 . A sequence (un)n∈N in X is said to be inline if for every ε > 0
there exists N ≥ 0 such that (u0, uN , uN+1, . . .) is ε-inline.

Theorem 2.8. [Me3] Let X be a Polish metric space.
The following assertions are equivalent:
(a) E(X) = E(X,ω).
(b) E(X) is separable.
(c) For any δ > 0, for any sequence (xn) of elements of X, there exists an
integer N such that

∀n ≥ N ∃i ≤ N d(x0, xn) ≥ d(x0, xi) + d(xi, xn)− δ .

(d)Any sequence of elements of X admits an inline subsequence.
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Proof of Theorem 2.8.

(a) ⇒ (b) is obvious; let us show that ¬(c) ⇒ ¬(b). Assume that, for some
δ > 0, X contains a sequence (xn) such that

∀N ∃n ≥ N ∀i ≤ N d(x0, xn) + δ ≤ d(x0, xi) + d(xi, xn) .

Then one may extract a subsequence of (xn), which we still denote by (xn),
such that for all i < j one has

d(x0, xj) + δ ≤ d(x0, xi) + d(xi, xj) (∗)

This sequence cannot have a convergent subsequence, so if it is bounded
then X is not Heine-Borel, hence E(X) is not separable. If the sequence
is unbounded, we may make the additional assumption that d(x0, xi+1) ≥
d(x0, xi)+1. Assume also for simplicity that δ = 1. Then let f : {xi}i≥0 → R
be de�ned by f(xi) = d(xi, x0). Obviously, f is a Kat¥tov map. If A ⊆ N is
nonempty, we let fA : {xi}i≥0 → R be the Kat¥tov extension of f|{xi : i∈A} .
Suppose now that A 6= B are nonempty subsets of N, let m be the smallest
element of A∆B, and assume without loss of generality that m ∈ A. Then
one has fA(xm) = d(xm, 0), and fB(xm) = d(xm, xi)+d(xi, 0) for some i 6= m.
If i < m, then (∗) shows that fB(xm)− fA(xm) ≥ 1; if i > m, then fB(xm)−
fA(xm) ≥ d(xi, 0)− d(xm, 0) ≥ 1.
In any case, one obtains d(fA, fB) ≥ 1 for any A 6= B, which shows that
E({xi}i≥0) is not separable. Hence E(X) cannot be separable either.
To see that (c) ⇒ (d), notice �rst that property (c) implies that, for any
ε > 0 and any sequence (xn) ∈ XN, one may extract a subsequence (xϕ(n))
with ϕ(0) = 0 such that

∀n ≤ m d(xϕ(0), xϕ(n)) + d(xϕ(n), xϕ(m)) ≤ d(xϕ(0), xϕ(m)) + ε .

Then a diagonal process enables one to build the desired inline subsequence
of (xi).
It remains to prove that (d) ⇒ (a). For that, suppose by contradiction
that some Polish metric space X has property (d), but not property (a).
Notice �rst that this implies that X is Heine-Borel. Indeed, assume by
contradiction that there exist ε, M > 0 and a sequence (xn) ∈ XN such that
ε ≤ d(xn, xm) ≤M for all n < m. Then this sequence cannot have an inline
subsequence.
Choose now f ∈ E(X) \ E(X,ω), and let fn be the Kat¥tov extension to X
of f|B(z,n]

(where z is some point in X). Then for all x ∈ X, n ≤ m, one
has fn(x) ≥ fm(x) ≥ f(x); hence the sequence (d(fn, f)) converges to some
a ≥ 0.
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Notice that, since closed balls in X are compact, each fn is in E(X,ω): this
proves that a > 0, and one has d(fn, f) ≥ a for all n.
One can then build inductively a sequence (xi)i≥1 of elements of X, such that
for all i ≥ 1 d(xi+1, z) ≥ d(xi, z) + 1 and

f(xi) ≤ min
j<i

{f(xj) + d(xi, xj)} −
3a

4

Since |f(xi)− d(xi, z)| ≤ f(z), one can assume, up to some extraction, that
(f(xi)− d(xi, z)) converges to some l ∈ R.
Now, let δ = a

4
. Property (d) tells us that we can extract from the sequence

(xi) a subsequence (xϕ(i)) having the additional property that

∀1 ≤ j ≤ i, d(z, xϕ(i)) ≥ d(z, xϕ(j)) + d(xϕ(i), xϕ(j))− δ

To simplify notation, we again call that subsequence (xi).
Choose then M ∈ N such that n ≥M ⇒ |f(xn)− d(xn, z)− l| ≤ δ

2
.

For all n ≥ M , we have f(xM) + d(xM , xn) − f(xn) = (f(xM) − d(xM , z) −
l)− (f(xn)−d(xn, z)− l)+(d(xM , z)−d(xn, z)+d(xM , xn)), so that f(xM)+
d(xM , xn)− f(xn) ≤ 2δ = a

2
< 3a

4
.

This contradicts the de�nition of the sequence (xi), and we are done. ♦

Notice that in the course of the proof of theorem 2.8 we proved that, if E(X)
is separable and f ∈ E(X), then for any ε > 0 there exists a compact K ⊆ X

such that d(f, f̂|K ) < ε (This fact will be used later on).

We may add yet another line to the list of equivalent conditions in Theorem
2.8; to explain it, we follow Kalton ([Kal]) and say that an ordered triple of
points {x1, x2, x3} is ε-collinear (ε > 0) if d(x1, x3) ≥ d(x1, x2)+d(x2, x3)−ε.
We say that a metric space X has the collinearity property if for every in�nite
subset A ⊂ X and every ε > 0 there are x1, x2, x3 ∈ A (pairwise distinct)
such that {x1, x2, x3} is ε-collinear.
Using the in�nite Ramsey theorem, Kalton proved in [Kal] that a space X
has the collinearity property if, and only if, any sequence of elements of X
admits an inline subsequence. Therefore, we have the following corollary.

Corollary 2.9. [Me3] Let X be a Polish metric space. Then E(X) is sepa-
rable if, and only if, X has the collinearity property.

3 Construction of the Urysohn space.

As explained in the introduction, the Urysohn space U is characterized as
being, up to isometry, the only Polish metric space which is both universal
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and ω-homogeneous. It turns out that having these two properties is equiv-
alent to a universal property, which is the starting point of our study of the
geometry of U.

De�nition 3.1. A space X has the approximate extension property if

∀A �nite ⊂ X ∀f ∈ E(A)∀ε > 0 ∃z ∈ X ∀a ∈ A |d(z, a)− f(a)| ≤ ε .

We say that X has the extension property if one can take ε = 0 in the above
de�nition; in other words, X has the extension property i� any one-point
metric extension of any �nite subset of X is realized in X.

Spaces with the extension property are also commonly called �nitely injective
metric spaces. The reason is that a space X has the extension property if,
and only if, given any two �nite metric subsets A,A′ such that A ⊂ A′

and any isometric embedding ϕ : A → X there is an isometric embedding
ϕ′ : A′ → X which extends ϕ. In the remainder of the text, we'll often use
this terminology.

Exercise 3. Prove that a metric space is �nitely injective if, and only if, it
has the extension property.

Theorem 3.2. (Urysohn [Ur2]) A Polish metric space is �nitely injective if,
and only if, it is both universal and ω-homogeneous.

Proof of Theorem 3.2.

Assume that P is a �nitely injective Polish metric space, and let X = {xi}i∈N
be a countable metric space. One may build by induction isometric maps
ϕi : {x0, . . . , xi} → P such that ϕi+1 extends ϕi for all i. To do this, be-
gin by picking any element y0 ∈ P , and set ϕ0(x0) = y0. Assume now
that ϕi is de�ned; to de�ne ϕi+1, we need to �nd some point yi+1 such
that d(yi+1, ϕi(xj)) = d(xi+1, xj) for all j ≤ i. This is possible because
P is �nitely injective (that's precisely the extension property of P ); setting
ϕi+1(xi+1) = yi+1 de�nes a suitable extension of ϕi. This shows that one may
embed isometrically any countable metric space in P ; therefore, the theorem
of extension of isometries, and the fact that P is complete, prove that any
separable metric space may be embedded in P , so that P is universal.
Now, let ϕ : A → A′ be an isometry between two �nite subsets of P . To
extend ϕ, one uses the so-called back-and-forth method. For this, begin by
picking some countable dense subset {pi}i≥1 of P . Then, using the �nite
injectivity of P , one may build a sequence of �nite subsets Ai of P , and
isometric maps ϕi : Ai → P such that:
- A0 = A, ϕ0 = ϕ;
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- Ai ⊂ Ai+1, and ϕi+1 extends ϕi for all i;
- ∀i pi ∈ A2i ("forth");
- ∀i pi ∈ ϕ2i+1(A2i+1) ("back").
Assume that we have built Ai, ϕi for all i ≤ n. If n = 2k, we �rst notice
that the extension property of P ensures that there exists z ∈ P such that
d(z, a) = (.pn+1, ϕ(a)) for all a ∈ An. We then set An+1 = An ∪ {z}, and
ϕ(z) = p2n+1. A similar method works in the case when n is odd, so we as-
sume that the sequence (Ai) is built. Let now A = ∪Ai; the maps ϕi induce
an isometric map ϕ∞ : A → P . Since A is dense (this is what the "forth"
step is for), ϕ∞ extends to an isometric map from P into P ; and the "back"
step ensures that the image of ϕ∞ is dense. Since ϕ∞ is an isometry, and
P is complete, ϕ∞(P ) must be closed; therefore, the back step ensures that
ϕ∞(P ) = P . Given that the �rst step ensured that ϕ∞ extends ϕ, we are
done.
Now, assume that P is both universal and ω-homogeneous, and let A =
{a1, . . . , an} be a �nite subset of P , and f ∈ E(A). Because of the universal-
ity of P , there exists an isometric copy of A∪{f} which is contained in P ; call
this copy {b1, . . . , bn, z}, where the enumeration is such that ϕ : ai 7→ bi is an
isometric map, and d(z, bi) = f(ai). Then our assumption on P implies that
ϕ extends to an isometry of P , which we still denote by ϕ. Let y = ϕ−1(z):
we have d(y, ai) = d(ϕ(y), ϕ(ai)) = d(z, bi) = f(ai), which proves that P is
�nitely injective . ♦

We gave the proof above in detail because it is a good illustration of how the
back-and forth method works, and this method is the fundamental tool to
study the geometry of the Urysohn space.

Theorem 3.3. (Urysohn [Ur2]) Any two �nitely injective Polish metric
spaces are isometric.

Exercise 4. Use the back-and-forth method to prove the theorem above.

We now have a nice characterization of the Urysohn space as being the
only �nitely injective Polish metric space; the problem, of course, is that
we haven't proved that such a space exists. Before building a �nitely injec-
tive metric space, we need to establish the following result.

Theorem 3.4. (Urysohn [Ur2]) If X is complete and has the approximate
extension property, then X actually has the extension property.

It is obvious that the completion of a space with the approximate extension
property also has the approximate extension property; therefore, the above
theorem implies that the completion of a �nitely injective metric space is
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also �nitely injective.

Proof.

Let X satisfy the hypotheses of the theorem; pick {x1, . . . , xn} ⊂ X and
f ∈ E({x1, . . . , xn}). Since X is complete, it is enough to build a sequence
(zp) such that |d(zp, xi)− f(xi)| ≤ 2−p for all i, and d(zp, zp+1) ≤ 21−p.
The fact that X has the approximate extension property enables us to de�ne
z0; assume now that we have de�ned z0, . . . , zp.
Let fp ∈ E({x1, . . . , xn}) be the map de�ned by fp(xi) = d(zp, xi); by de�ni-
tion of zp we have d(fp, f) ≤ 2−p (where the distance d(fp, f) is computed in
E({x1, . . . , xn})).
The map gp de�ned on {x1, . . . , xn} ∪ {zp} by gp(xi) = f(xi), gp(zp) =
d(fp, f) is a Kat¥tov map, since these distances are realized by a subset
of E({x1, . . . , xn}). Hence there exists z ∈ X such that |d(z, xi)− gp(xi)| =
|d(z, xi)− f(xi)| ≤ 2−(p+1) and d(z, zp) ≤ d(fp, f) + 2−(p+1) ≤ 21−p.
We can now set zp+1 = z and go on to the next step. ♦

Building a �nitely injective Polish metric space is now rather straightfor-
ward: we only need to build a �nitely injective separable metric space, and
its completion will work. This is easier because such a space may be built
inductively; Kat¥tov was the �rst to notice this, and it is his construction
which led to the current interest in the Urysohn space. Beginning with any
separable metric space X, we build inductively an increasing sequence of
separable metric spaces by setting Xi+1 = E(Xi, ω) (at each step we iden-
tify Xi to a subspace of Xi+1 via the Kuratowski map). Let now Y = ∪Xi;
the construction ensures that Y is �nitely injective. Indeed, any �nite sub-
set {y1, . . . , yn} of Y is contained in Xm for some big enough m; then, the
Kat¥tov extension to Xm of any map f ∈ E({y1, . . . , yn}) appears as an el-
ement of Xm+1, which shows that there is indeed a point y ∈ Y such that
d(y, yi) = f(yi) for all i = 1, . . . , n. Hence, the completion of Y is a �nitely
injective Polish metric space, and we have �nally proved the existence of
the Urysohn space. For de�niteness, we denote by U the space obtained by
applying the above construction starting with X0 = {0}. In particular, we
always consider 0 as an element of the Urysohn space (this simpli�es some
statements).
It might be interesting to mention that the way Urysohn built his univer-
sal space was di�erent, even though it was based on similar ideas. He be-
gan by building a countable metric space which is both universal for spaces
with rational distances and ultrahomogenous; in modern terms, he built the
Fraïssé limit of the �nite metric spaces with rational distances (30 years be-
fore Fraïssé de�ned this notion in a general setting; this is perhaps the earliest

11



example of such a construction). Then, he proved that this space (which we
denote by QU, for "rational Urysohn space") has the approximate extension
property (it actually has the rational extension property, meaning that one
only considers Kat¥tov maps with rational values on their support), and con-
cluded that the completion of QU must have the extension property. This
construction is quite remarkable, especially considering when it was done.
Notice that there are many possible variants of Kat¥tov's construction: namely,
one can build Urysohn spaces for spaces of diameter ≤ d, for spaces with dis-
tances in N, for spaces with distances in Q (obtaining QU), in {q ∈ Q : q ≥ 1},
etc. By "Urysohn space for spaces with distances in A ⊂ R", we mean a
Polish metric space UA with distances in A, which is ω-homogenous and uni-
versal for spaces with distances in A; equivalently, a space with the extension
property for extensions with values in A. Such Urysohn spaces don't exist
for all A ⊂ R, but for simple A (as the ones above) one may simply mimic
Kat¥tov's construction to obtain UA.

Exercise 5. WhenA = {1, 2}, one obtains a corresponding countable Urysohn
space U{1,2}; de�ne a graph structure on U{1,2} by saying that there is an edge
between x, y ∈ U{1,2} if and only if d(x, y) = 1. Prove that this graph is iso-
morphic to the random graph (see for instance [Bol] for a de�nition and
characterizations of the random graph).

This statement explains why one may consider the Urysohn space as a "gen-
eralized random graph"; A. Vershik proved that the analogy goes further,
showing that the Urysohn space is the generic Polish space, just as the ran-
dom graph is the generic countable graph (see [Ve]). Recently A. Usvyastov
proved (in the context of model theory for metric structures) that the anal-
ogy is even more far-reaching; see the paper [Usv] for detailed statements
and explanations.

4 Simple geometric properties of U.
In this section, we try to give the reader a feel for the geometry of U; for this,
we discuss a few examples, and propose some exercises which seem helpful
for learning basic methods that are adapted to proving statements about U.

4.1 Geodesic segments.

Say that a map γ : I → R, where I is an interval of R, is a geodesic if one
has d(γ(t), γ(t′)) = |t − t′| for all t, t′ ∈ I. In other words, it is just an
isometric map from I into U. It is clear that any two points x, y in U are

12



joined by a geodesic segment: since U is universal, there exists an isometric
image of the segment [0, d(x, y)] that is contained in U; let a be the image
of 0, and b be the image of d(x, y). Then {a, b} and {x, y} are isometric, so
there exists ϕ ∈ Iso(U) such that ϕ(a) = x and ϕ(b) = y. Composing by ϕ,
the geodesic segment between a and b becomes a geodesic segment between x
and y. The existence of geodesics is nothing really surprising. Here, however,
geodesics usually have nontrivial intersections: for instance, if γ : [0, 1] → U
and γ′ : [1, 2] → U are geodesics such that γ(1) = γ′(1), then their union
γ′′ : [0, 2] → U is a geodesic if, and only if, d(γ(0), γ(1)) + d(γ′(1), γ′(2)) =
d(γ(0), γ′(2)) (this is a direct consequence of the triangle inequality). Given
that U is �nitely injective, it is therefore very easy to build geodesic segments
which coincide on some segment, then are di�erent, then coincide again, etc.
Thus, we see that there are actually uncountably many di�erent geodesic
segments between any two distinct points x, y ∈ U. The properties above
were already mentioned in Urysohn's original article.

Exercise 6. Prove the results about geodesics stated above.

Exercise 7. Let B be a nonempty ball centered in 0, S its boundary, and x
a point outside of B. Prove that

d(x, 0) =
1

2
(inf
z∈B

d(x, z) + sup
z∈B

d(x, z)) =
1

2
(inf
z∈S

d(x, z) + sup
z∈S

d(x, z)) .

Find a similar formula, assuming now that x ∈ B.

4.2 Subsets isometric to the whole space.

Since U is universal, it is reasonable to expect that it contains many isometric
copies of itself; let us give some concrete examples.
Pick x1, . . . , xn ∈ U, and consider the set

Med(x1, . . . , xn) = {z ∈ U : ∀i, j d(z, xi) = d(z, xj)} .

We claim that this set is isometric to U.
The proof is typical of how one proves that a given set is isometric to U, so
we give it in full. The set M = Med(x1, . . . , xn) is closed in U, so we simply
need to prove that M is �nitely injective. To that end, pick a1, . . . , ap ∈M ,
and f ∈ E({a1, . . . , ap}). We want to �nd some point z ∈ M such that
d(z, ai) = f(ai) for all i; in other words, we want to �nd some point in U
such that d(z, ai) = f(ai) for all i = 1, . . . , p and d(z, xj) = d(z, xk) for all
j, k = 1, . . . , n. We need to use the universal property of U: let g denote
the Kat¥tov extension of f to {a1, . . . , ap} ∪ {x1, . . . , xn}; then necessarily
g(xj) = g(xk) for all j, k = 1, . . . , n. By the �nite injectivity of U, there
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exists a point z ∈ U such that d(z, ai) = g(ai) and d(z, xj) = g(xj) for all
i, j. This z witnesses that Med(x1, . . . , xn) is �nitely injective.

By de�nition of the Urysohn space, isometries between �nite subsets of U
can always be extended to isometries of U; the example above shows that
this is not true for countable subsets. Indeed, if one lets A1, A2 be isometric
countable subsets with A1 dense in U and A2 dense in Med(x1, x2) (where
x1 6= x2), then an isometry between A1 and A2 obviously cannot be extended
to an isometry of U. We'll say more about this later on.
Up to now, all the isometric copies of U we have encountered have empty
interior. It is then natural to wonder whether this is always the case. The
following proposition shows that there are actually many isometric copies of
U which have nonempty interior; recall that a Polish metric space X has the
Heine-Borel property if all closed bounded balls in X are compact (these
spaces are also known as proper metric spaces).

Proposition 4.1. [Me3] Let X ⊂ U be a Polish metric space with the Heine-
Borel property, and M ∈ R. Then {z ∈ U : d(z,X) ≥M} is isometric to U.
In particular, U and U \B(0, 1[ are isometric.

Proof.

Let Y = {z ∈ U : d(z,X) ≥M}; once again, since Y is a closed subset of U,
we only need to prove that Y is �nitely injective.
Let y1, . . . , yn ∈ Y and f ∈ E({y1, . . . , yn}). We want to �nd some z ∈ Y
such that d(z, yi) = f(yi) for all i = 1, . . . , n. We begin by doing this under
the additional assumption that X is compact.
De�ne ε = min{f(yi) : 1 ≤ i ≤ n}. We may of course assume ε > 0.
Since X is compact, we may �nd x1, . . . , xp ∈ X with the property that for
all x ∈ X there exists j such that d(x, xj) ≤ ε .
Let then g be the Kat¥tov extension of f to {y1, . . . , yn} ∪ {x1, . . . , xp}.
There exists some z ∈ U such that d(z, yi) = g(yi)(= f(yi)) for all i ≤ n and
d(z, xj) = g(xj) = d(xj, yij) + f(yij) ≥M + ε for all j ≤ p.
Since for all x ∈ X there is j ≤ p such that d(x, xj) ≤ ε, the triangle
inequality shows that d(z, x) ≥ d(z, xj) − d(xj, x) ≥ M , hence z ∈ Y . This
proves that Y is �nitely injective.
Suppose now that X is Heine-Borel but not compact; pick some x ∈ X and
let m = f(y1) + d(y1, x). Since B(x,M +m]∩X is compact, there exists, by
the above argument, a point z ∈ U such that d(z, yi) = f(yi) for all i ≤ n,
and d(z, B(x,M +m]∩X) ≥M . Then we claim that for all x′ ∈ X we have
d(z, x′) ≥ M ; indeed, if d(x′, x) ≤ M + m then this is true by de�nition of
z, and if d(x′, x) > M + m then one has d(z, x′) ≥ d(x, x′) − d(z, x) > M
(because d(z, x) ≤ f(y1) + d(y1, x) = m). ♦
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4.3 Spheres and sets of uniqueness.

We saw earlier that there existed analogues of the Urysohn space for spaces
of diameter bounded by some constant λ ∈ R, i.e ultrahomogenous metric
spaces which are universal for separable metric spaces of diameter less than
λ. Equivalently, these spaces are characterized among Polish metric spaces
of diameter ≤ λ by the analogue of the extension property where one asks
for the extension to still be of diameter ≤ λ. We then have the following
fact (which was already mentioned in Urysohn's original article): spheres of
diameter 2λ in U (i.e boundaries of balls of diameter λ) are isometric to the
Urysohn space of the corresponding diameter. This is not true for balls, since
they are not homogenous (any isometry of a ball with center x must have x
as a �xed point).
To prove that the sphere S = S(0, 1) has the extension property for spaces
of diameter 2, pick x1, . . . , xn ∈ S and some f ∈ E({x1, . . . , xn}) such that
sup(f(xi)) ≤ 2. De�ne a mapping g : {x1, . . . , xn} ∪ {0} → R by setting
g(xi) = f(xi), and g(0) = 1. Then g is a Kat¥tov map, so that there exists
z ∈ U such that d(z, 0) = g(0) = 1 (so z is in S) and d(z, xi) = f(xi) for all
i = 1, . . . , n.
That universal property of spheres may be used to prove the following fact.

Exercise 8. Let S1, . . . , Sn ⊂ U be spheres. Prove that S1 ∩ . . . ∩ Sn, if
nonempty, is isometric to the sphere of smallest diameter.

De�nition 4.2. [Me3] We say that A ⊂ U is a set of uniqueness if it has
the following property:

∀x, y ∈ U (∀a ∈ A d(x, a) = d(y, a)) ⇒ x = y .

Then one has the following folklore result, which has been rediscovered several
times, the �rst person to notice it being apparently Mati Rubin:

Proposition 4.3. (Rubin) Nonempty spheres are sets of uniqueness.

Proof. It is enough to prove the proposition in the case when S = S(0, 1].
Let now x, y be two points in U, and assume that x 6= y. Assume also,
without loss of generality, that d(y, 0) ≥ d(x, 0). Now de�ne, for ε > 0, a
map gε on {0, x, y} by setting gε(0) = 1, gε(x) = 1 + d(x, 0) and gε(y) =
1 + d(y, 0) − ε. Then a simple veri�cation shows that for ε small enough
gε is a Kat¥tov map, so that there exists z ∈ U with d(z, 0) = gε(0) = 1,
d(z, x) = gε(x) = 1 + d(x, 0) and d(z, y) = gε(y) = 1 + d(y, 0) − ε. If ε is
well-chosen then gε(x) 6= gε(y), so that the above point z is an element of S
such that d(z, x) 6= d(z, y) . ♦
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Notice that, since obviously a set containing a set of uniqueness is also a set
of uniqueness, this proves that balls, and more generally subsets of U with
nonempty interior, are sets of uniqueness. In turn, this proves that an iso-
metric map de�ned on U and which has a set of �xed points with nonempty
interior must actually leave every point �xed; equivalently, an isometric map
which coincides with an isometry on a nonempty open ball must coincide with
it everywhere, so it has to be onto. To prove this, assume that ϕ ∈ Iso(U)
is such that ϕ(x) = x for all x in a nontrivial ball B. Then one has, for any
x ∈ X, and any z ∈ B, that d(ϕ(x), z) = d(ϕ(x), ϕ(z)) = d(x, z). But then
one must have ϕ(x) = x.

There are many other examples of sets of uniqueness, as the following exer-
cises show.

Exercise 9. Let x1, . . . , xn ∈ U and f : {x1, . . . , xn} → U be a Kat¥tov map
such that

∀i 6= j |f(xi)− f(xj)| < d(xi, xj) and f(xi) + f(xj) > d(xi, xj) .

Show that K = {x1, . . . , xn} ∪ {z ∈ U : ∀i d(z, xi) = f(xi)} is a set of
uniqueness (This is proposition 3.2 in [Me3]).

Exercise 10. Let x1, . . . , xn ∈ U. Prove that Med(x1, . . . , xn)∪{x1, . . . , xn}
is a set of uniqueness. Prove that Med(x1, x2) ∪ {x1} also is a set of unique-
ness, whereas Med(x1, x2) obviously is not if x1 6= x2!

We saw above that if an isometric map coincides with an isometry on a ball
(or even just on a sphere), then both maps must coincide everywhere; it
should be mentioned that this is not true for isometric maps (it is true only
if the image of the ball is a set of uniqueness).

Exercise 11. Build two isometric maps ϕ, ϕ′ : U → U such that ϕ = ϕ′ on
B(0, 1] but ϕ(x) 6= ϕ′(x) everywhere else.

4.4 Extensions of isometries.

We saw that, given any �nite metric space A ⊂ U and any isometry ϕ of A, ϕ
extends to an isometry of U. This property does not hold for general subsets
of U. Let us check this for balls in U, for instance. We saw above that U and
U \B(0, 1[ are isometric; let ϕ : U → U \B(0, 1[ witness this fact, and x ∈ U
be such that d(x, 0) ≥ 2. There exists, because of the ultrahomogeneity
of U \ B(0, 1[, an isometry ψ of U \ B(0, 1[ such that ψ(ϕ(x)) = x. Thus,
composing if necessary ϕ with ψ, we may suppose that x is a �xed point of ϕ.
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But then ϕ must send the ball of center x and radius 1 (in U) onto the ball
of center x and radius 1 (in U \ B(0, 1[). Since by choice of x both balls are
the same, we see that ϕ|B(x,1]

is an isometry of B(x, 1], yet it cannot coincide
on this ball with an isometry of U, since otherwise it would have to be onto
because of the fact that balls are sets of uniqueness. Notice that the same
fact holds for spheres.
There exists at least one other proof of this fact, which we sketch in the
following exercise.

Exercise 12. Prove that there exists a sequence (ϕn) of isometries of U and
z ∈ U such that ϕ(0) = 0, ϕn(x) → x for all x ∈ B(0, 1[ but ϕn(z) does
not converge. Using automatic continuity of Baire-measurable morphisms
between Polish groups (see [Ke1]), use this to prove that there exist isometries
of B(0, 1] which do not extend to U.

Question. Does there exist an isometry ϕ of B(0, 1] which cannot be ex-
tended to an isometric map ϕ̃ : Z → U, where Z ) B(0, 1]? Same question
for spheres. Very little is known (at least to the author) on this question,
so one may ask a similar question in the opposite direction: is it true that,
given any isometry ϕ of a ball, there exists Z ⊂ U isometric to U such that ϕ
extends to an isometric map from Z to U? One could ask the same question
replacing the ball by an arbitrary subset of U.

4.5 Compact homogeneity.

We saw that U is characterized, among universal Polish metric spaces, by the
fact that it is ultrahomogeneous, i.e any isometry between two �nite metric
subspaces extends to the whole space. It actually has a (apparently) stronger
property, which is called compact homogeneity : any isometry between two
compact subspaces of U extends to the space itself. This was �rst proved by
Huhunai²vili [Hu] in 1955; this result seems to have been largely unnoticed,
since it was proved again in the special case of countable compact metric
subspaces of U by Joiner in 1973 [Jo], then it appears (without reference to
the preceding articles) as an exercise in Gromov's book [Gro], and it was
again independently proved (without reference to any of the aforementioned
papers) by Bogatyi in 2002 ([Bog]).
As in the case of ω-homogeneity, compact homogeneity has an equivalent
formulation (for universal Polish metric spaces), which we call compact in-
jectivity : a space X is compactly injective if, and only if,

∀Kcompact ⊂ U ∀f ∈ E(K) ∃z ∈ X ∀k ∈ K d(z, k) = f(k) .
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Exercise 13. Prove that compact injectivity and compact homogeneity are
indeed equivalent for universal Polish metric spaces.

Let us now explain how to prove that U is compactly injective; pick some
compact K ⊂ U and f ∈ E(K). Fix also ε > 0. Since K is totally bounded,
there exist x1, . . . , xn ∈ K such that for all k ∈ K d(k, xi) ≤ ε for some i. By
the universal property of U, there exists z ∈ U such that d(z, xi) = f(xi) for
all i = 1, . . . , n. Then, the triangle inequality implies that |d(z, x)− f(x)| ≤
2ε for all x ∈ K. We just proved that for any compact subset K ⊂ U, any
map f ∈ E(K) and any ε > 0, there exists z ∈ U such that |d(z, x)−f(x)| ≤ ε
for all x ∈ K. Now, we may conclude as in the proof of the fact that the
approximate extension property and the extension property are equivalent
for Polish metric spaces: what we saw above implies that we may de�ne
inductively a sequence (zn) such that:
- ∀n ≥ 0 d(zn, zn+1) ≤ 21−n.
- ∀x ∈ K |d(zn, x)− f(x)| ≤ 2−n.
The sequence (zn) is Cauchy, so it converges to some z, which must be such
that d(z, x) = f(x) for all x ∈ K.

4.6 Translations.

In [CV], Cameron and Vershik established the remarkable result that U could
be endowed with a structure of monothetic Polish group, i.e a Polish group
with an element generating a dense subgroup. In particular, this proves that
one may de�ne "translations" in U, i.e continuous maps (x, y) 7→ ϕx,y from
U2 to Iso(U) with the property that ϕx,y(x) = y, and ϕy,z ◦ ϕx,y = ϕx,z (co-
cycle identity).
The translation cocycle obtained as a corollary of Cameron and Vershik's
construction is particularly simple, but not so easy to visualize geometri-
cally. Here is another way to build one; though it is more complicated than
Cameron and Vershik's, we think it is worth including here because the map
built here is actually continuous with regard to a stronger topology on Iso(U),
the so-called "uniform topology" (de�ned later in the article). It also gives
a hint of why the situation is di�erent when one tries to build �nite-order
isometries of U, as opposed to arbitrary isometries: in the second case, one is
obliged to ensure that the isometric map obtained at the end of the construc-
tion is onto, which leads to using some type of back-and-forth method. In the
�rst case, however, it is enough to de�ne ϕ(x), . . . , ϕn−1(x), ϕn(x) = x, and
then the map obtained is necessarily onto. In particular, building isometric
involutions is very di�erent from building general isometries.
Let us now go on to the construction; we �rst de�ne a continuous map (rel-
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ative to the uniform topology) x 7→ ϕx such that each ϕx is an isometric
involution and ϕx(x) = 0. Then, setting ϕx,y = ϕy ◦ ϕx de�nes the desired
translation operator.
Let {0 = x0, x1, . . . , xn, . . .} be a countable dense subset of U (we assume our
enumeration to be injective).
We wish to de�ne a sequence (ϕn) of isometries of U such that :

• ϕ0 = idU;
• ∀n ϕn(xn) = 0;
• ∀n ϕ2

n = idU;
• ∀n,m ∀x ∈ U d(ϕn(x), ϕm(x)) = d(xn, xm)

If we manage to do this, then the map xn 7→ ϕn extends to a map x 7→
ϕx from U into Iso(U), such that ϕ2

x = idU for all x, ϕx(x) = 0, and
d(ϕx(z), ϕy(z)) = d(x, y) for all x, y, z ∈ U.
In particular, this map is a continous right inverse to the orbit map (from
Iso(U) to U); notice that each of our translations was obtained as a product
of two isometric involutions ("re�ections"). The construction proceeds as fol-
lows: we �rst let ϕ0 = idU. Now, assume that ϕ0, . . . , ϕn have been built; we
need to explain how to obtain ϕn+1.
We use a variant of the back-and-forth method adapted to building involu-
tions. To apply it, we �rst pick a countable set {yi)i∈N which is dense in U;
then we build by induction a sequence of �nite sets Fi, and isometric involu-
tions ψi : Fi → Fi such that :

• F0 = {xn+1, 0} and ψ0(xn+1) = 0;
• yi ∈ Fi ⊂ Fi+1, and ψi+1 extends ψi;
• ∀j ≤ n ∀i ∀x ∈ Fi d(ψi(x), ϕj(x)) = d(xn+1, xj).

First, we need to show that the third assertion is true when i = 0; in other
words, we need to check that d(0, ϕj(xn+1)) = d(xn+1, ϕj(0)) = d(xn+1, xj).
This is obvious, since by de�nition we have 0 = ϕj(xj), and ϕj is an involu-
tion so we also have xj = ϕj(0).
We now need to explain how to build Fi+1 and ψi+1 from Fi, ψi.
If yi+1 ∈ Fi, we let Fi+1 = Fi, and we are done. Otherwise, we de�ne a map
g on Fi ∪ {ϕj(yi+1) : j ≤ n} by setting :
- g(z) = d(yi+1, ψi(z)) for all z ∈ Fi;
- g(ϕj(yi+1)) = d(xn+1, xj) for all j ≤ n.
(Notice that if some ϕj(yi+1) belongs to Fi, then both lines give the same
de�nition for g(ϕj(yi+1)), since then one must have d(ψi(ϕj(yi+1)), yi+1) =
d(ψi(ϕj(yi+1)), ϕj(ϕj(yi+1))) = d(xn+1, xj) by de�nition of Fi).
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We claim that this is a Kat¥tov map. The only nonobvious inequalities are
those involving g(z) + g(ϕj(yi+1)) and |g(z)− g(ϕj(yi+1))| (where z ∈ Fi).
We have
g(z)+g(ϕj(yi+1)) = d(yi+1, ψi(z))+d(xn+1, xj) = d(yi+1, ψi(z))+d(ψi(z), ϕj(z))
(since z ∈ Fi), so g(z)+ g(ϕj(yi+1) ≥ d(yi+1, ϕj(z)) = d(z, ϕj(yi+1)) (remem-
ber that ϕj is an involution). Similarly, we have
|g(z) − g(ϕj(yi+1))| = |d(yi+1, ψi(z)) − d(ψi(z), ϕj(z))| ≤ d(yi+1, ϕj(z)), and
we are done.
Since g is a Kat¥tov map and Fi ∪ {ϕj(yi+1) : j ≤ n} is �nite, there exists
some b in U such that d(b, .) = g; we may now let Fi+1 = Fi ∪ {yi+1, b} and
set ψi+1(yi+1) = b, ψi+1(b) = yi+1.
The fact that this is a suitable extension of ψi is a direct consequence of
the de�nition of z, and the fact that ψi is an involution (so that d(b, z) =
d(yn+1, ψi(z)) is equivalent to d(b, ψi(z)) = d(yn+1, z) for z ∈ Fi).
This construction enables us to de�ne ϕn+1 by setting ϕn+1(yi) = ψi(yi) for
all i, and using the theorem of extension of isometries. ♦

5 Algebraic and topological properties of Iso(U).

Let us �rst emphasize a consequence of Kat¥tov's construction: recall that,
to build the Urysohn space, one may start with any separable metric space
X = X0, then let Xi+1 = E(Xi, ω) (identifying Xi to a subset of Xi+1 via
the Kuratowski map). This yields an increasing sequence of metric spaces
(Xi); if we let Y = ∪Xi, it is �nitely injective by construction, so that its
completion is a Urysohn space. Recall that we saw that any isometry of
a separable metric space X extends uniquely to an isometry of E(X,ω),
and that the extension morphism from Iso(X) to Iso(E(X,ω)) is continuous.
Thus, we see that all isometries of X extend to isometries of Y = ∪Xi,
and what we described above actually de�nes a continuous morphism from
Iso(X) to Iso(Y ). It is a classical result that all isometries of Y extend to
isometries of its completion (which we identify with U) and that once again
the associated morphism between the isometry groups is continuous. This
way, we see that there is a continuous morphism Ψ: Iso(X) → Iso(U) such
that for all ϕ ∈ Iso(X) Ψ(ϕ) is an extension of ϕ.

De�nition 5.1. We follow [Pe2] and say that a space X is g-embedded in an-
other space Y if it isometrically embeds in Y in such a way that all isometries
of X extend to Y and the associated morphism is continuous.

What we saw above implies that any separable metric space may be g-
embedded in U; now, notice that any Polish group G admits a left-invariant
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distance. Denote by X the completion of G endowed with this distance; then
the left-translation action of G extends to an action by isometries of G on X,
so we see that G is isomorphic to a (necessarily closed) subgroup of Iso(X).
Hence, any Polish group is a subgroup of the isometry group of some Polish
metric space. Actually, Gao and Kechris proved that any Polish group is
isomorphic to Iso(X) for some suitable Polish metric space X (see [GK] for
their original proof or [Me2] for a shorter one).
Going back to the Urysohn space, the discussion above established the fol-
lowing result.

Theorem 5.2. (Uspenskij [Usp2]) Any separable metric space may be g-
embedded in U; consequently, any Polish group is isomorphic to a (necessarily
closed) subgroup of Iso(U).

It is common usage to state this by saying that Iso(U) is universal for Polish
groups.
We will see in the next section that one can give a more accurate version of
Theorem 5.2, which shows what the isomorphic image of G "looks like" in
Iso(U).
Remark. The term "universal" is a bit misleading, since there is not a
unique (up to isomorphism of topological groups) universal Polish group.
For instance, the homeomorphism group of the Hilbert Cube is also uni-
versal (see [Usp1]) in the above sense, yet it is not isomorphic to Iso(U):
indeed, the former group admits a transitive action on a compact space (the
Hilbert Cube), while Pestov established in [Pe1] that the latter is extremely
amenable, which means that any continuous action of Iso(U) on a compact
space admits a (global) �xed point. Perhaps we should borrow terminology
from algebraic geometers here and simply call such groups "versal Polish
groups". I'm grateful to Mathieu Florence for pointing out to me this incon-
sistency in terminology, and how algebraic geometers deal with it.

5.1 Iso(U) is not divisible.
Let's turn to some algebraic properties of Iso(U). In [Pe3], Pestov asks
whether it is a divisible group; in other words, given ϕ ∈ Iso(U) and n ∈ N∗,
does there always exist some isometry τ such that τn = ϕ ? It turns out that
the answer is negative, as established by the following theorem.

Theorem 5.3. There exists an isometry σ of U such that σ doesn't admit a
n-th root for any n > 1.
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Proof.

The proof is based on a variant of Kat¥tov's construction; the idea is to begin
by �nding a Polish metric space which has an isometry with no n-th root for
any n > 1, and then build a suitable embedding of this space into U. The
following easy lemma takes care of the �rst step.

Lemma 5.4. Let σ : Z → Z denote the shift, i.e σ(k) = k+1 for any k ∈ Z.
Then the only maps from Z to Z which commute with σ are its powers.

Exercise 14. Prove this lemma.

Let now X0 denote Z endowed with the discrete distance; σ may be seen as
an isometry of X0.
We build an embedding of X0 into U, and an extension σ̃ ∈ Iso(U) of σ which
has the following property:

∀x, y ∈ U lim inf
|n|→∞

d(σ̃n(x), y) ≥ 1 + d(x,X0) + d(y,X0) .

Assume for now that such an embedding has been built, and that τ ∈ Iso(U)
is such that τm = σ̃ for some m ∈ N.
Then τ and σ̃ commute, so one has, for all i ∈ X0 and all n ∈ Z \ {0}, that

d(τ(i), σ̃n(τ(i))) = d(σ(i), τm−1σ̃nτ(i)) = d(σ(i), σn+1(i)) = 1 .

Hence τ(i) must belong to X0 for all i ∈ X0, and the same is true for τ−1;
this implies that τ|X0

is an isometry of X0 = Z which commutes with σ, so
the lemma above tells us that τ|X0

= σp for some p ∈ N, and this combined
with τm = σ̃ eventually gives us σmp = σ, which is only possible if mp = 1,
hence m = 1, and we are done.
One may notice that the proof also shows that Iso(QU) is not divisible, but
this was already known: it is a direct consequence of the result, due to
Cameron and Vershik ( [CV]), stating that there exists a transitive isometry
of QU. Indeed, a transitive automorphism of a countable structure cannot
have a root of any order n ≥ 2, as shown by the lemma. It is not clear (at
least to the author) whether one can use this result to �nd another proof of
the fact that Iso(U) is not divisible.

Going back to the proof, we still need to explain how to obtain the desired
embedding of X0 in U, and the isometry σ̃.
If X is a metric space, we let E(X,ω,Q) denote the set of Kat¥tov maps on
X which take rational values on some �nite support.
The construction proceeds as follows: we de�ne inductively a sequence Xi
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of countable metric spaces with rational distances, such that Xi ⊂ Xi+1 and
for all f ∈ E(Xi, ω,Q) there exists z ∈ Xi+1 such that d(z, x) = f(x) for all
x ∈ Xi. We also de�ne inductively a sequence of isometries σi of Xi which
are such that:
• lim inf d(σn

i (x), y) ≥ 1 + d(x,X0) + d(y,X0) for all x, y ∈ Xi;
• σ0 = σ, and σi+1 extends σi.
Then ∪Xi is isometric to the rational Urysohn space QU, so its completion
is isometric to U; also, the isometries σi induce an isometry of ∪Xi which
extends σ, and which may be extended by uniform continuity to an isometry
σ̃ of ∪̂Xi which extends σ and has the desired property.
Assume now that (Xi, σi) has been built.
If fi ∈ E(X,ω,Q), then we de�ne for all j ∈ Z a one-point metric extension
Xj

i = Xi ∪{yf
j } of Xi by setting d(yf

j , x) = f(σ−j
i (x)). We let Xf

i denote the

metric amalgam of the Xj
i over Xi.

Now, we de�ne Xi+1 as the metric amalgam of the Xf
i over Xi; σi extends

to an isometry of Xi+1 which maps each yf
j to yf

j+1, and which we denote by
σi+1. For the proof to be complete, we only need to prove by induction that
for all i and for all x, y ∈ Xi one has

lim inf
|n|→∞

{d(σn
i+1(x), y)} ≥ 1 + d(x,X0) + d(y,X0) .

This is true when i = 0.
To prove that the property is hereditary, notice that is is enough to show
that each (Xf

i , σi+1) has it whenever Xi has it .
One has d(σn

i+1(y
f
p ), yf

q ) = inf{d(yf
p+n, x) + d(x, yf

q ) : x ∈ Xi}. by de�nition of
σi+1 and of a metric amalgam; let {x1, . . . , xm} denote a �nite support for f ,
pick ε > 0, and assume that M is big enough that

∀|n| ≥M ∀j, k d(σn
i (xj), xk) ≥ 1 + d(xj, X0) + d(xk, X0)− ε .

By de�nition, for all n and all x ∈ Xi we have d(y
f
p+n, x) = f(xk)+d(σ

p+n(xk), x)
and d(yf

q , x) = f(xj) + d(σq
i (xj), x) for some (j, k); hence

d(yf
p+n, x)+d(x, y

f
q ) ≥ f(xk)+f(xj)+d(σ

p+n
i (xk), σ

q
i (xj)), so for |n| ≥M+|p−q|

d(yf
p+n, x)+d(x, y

f
q ) ≥ 1+f(xk)+d(xk, X0)+f(xj)+d(xj, X0)−ε ≥ 1+2d(f,X0)−ε ,

and 1+2d(f,X0) = 1+d(yf
p , X0)+d(yf

q , X0), so the above inequality is what
we were looking for.
We also need to check that d(σn

i+1(y
f
p ), x) ≥ 1 + d(f,X0) + d(x,X0) for |n|

big enough; let again {x1, . . . , xm} denote a �nite support for f , pick ε > 0
and let M be big enough that d(σn

i (xj), x) ≥ 1 + d(xj, X0) + d(x,X0)− ε for
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all |n| ≥ M and all j, k. One has d(σn
i+1(y

f
p ), x) = f(xj) + d(σn+p

i (xj), x) for
some j, so that for all |n| ≥M + |p| one has

d(σn
i+1(y

f
p ), x) ≥ f(xj)+1+d(xj, X0)+d(x,X0)−ε ≥ 1+d(yf

p , X0)+d(x, x0)−ε ,

and the proof is complete . ♦

Remarks. 1. The proof can easily be adapted to show that the isometry
groups of the bounded Urysohn spaces (i.e Urysohn spaces for spaces of di-
ameter at most d) are not divisible either. To see it for instance for d = 1,
it is enough to reproduce the above proof, except that one needs to replace
the metric amalgam in the de�nition of Xf

i and Xi+1 by "metric amalgams
of diameter 1", i.e one needs to replace the metric d used in the proof by
min(d, 1).
2. C. Rosendal has proved that a generic element of Iso(U) does have roots
of any order; so the behavior described above is pathological. Actually, it
seems that one can prove that a generic element of Iso(U) embeds in a �ow.

5.2 The uniform topology on Iso(U).

The topology of Iso(U) is now completely understood : it is homeomorphic
to the Hilbert space 1 (notice that Uspenskij proved that the same is true of
U itself, see [Usp4]). There is more than one "natural" topology on Iso(U),
however: �rst, de�ne d′(x, y) = min(d(x, y), 1) for x, y ∈ U (beware: (U, d′) is
not the Urysohn space for spaces of diameter 1, but for our purposes this does
not matter). Then, de�ne the uniform distance d∞(ϕ, ψ) between two ele-
ments ϕ and ψ of Iso(U) by setting d∞(ϕ, ψ) = sup{d′(ϕ(x), ψ(x)) : x ∈ X} .
Then (Iso(U), d∞) is a topological group with a complete metric(it is perhaps
more natural to consider the uniform topology on the isometry group Iso(U1);
the facts and questions below have obvious counterparts in that setting).
The following two exercises sum up all that the author knows about (Iso(U), d∞).

Exercise 15. Prove that (Iso(U), d∞) is not separable.

Exercise 16. Prove that, if A ⊂ U is �nite and ϕ : A → U is an isometric
map such that d(a, ϕ(a)) ≤ λ for all a ∈ A, then ϕ extends to an isometry
(still denoted by ϕ) of U such that d(z, ϕ(z)) ≤ λ for all z ∈ Z. Deduce from
this that (Iso(U), d∞) is not discrete (this is lemma 11 in [CV], and answers
a question asked by Pestov in [Pe3]). Notice that the construction of the
translation operator in Section 4 was already enough to prove this, since we
saw that (U,min(d, 1)) isometrically embeds in (Iso(U), d∞).

1This is an as yet unpublished result of the author, see the webpage
http://www.math.uiuc.edu/emelleray for a draft of proof
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Open problems about the uniform topology on Iso(U).

- (Pestov [Pe3]) Does Iso(U) possess a uniform neighborhood of 0 covered by
1-parameter subgroups?
- (Pestov [Pe3] ) Does Iso(U) have a uniform neighborhood of 0 containing
non-trivial subgroups?
(The two questions above were asked of Iso(U1) instead of Iso(U))
- Linked to these questions, one may wonder whether (Iso(U), d∞) is path-
connected; the proof above does not adapt. It is possible to build a path
of nonsurjective isometries which is continuous with regard to the above
uniform distance (which is still well de�ned even it the isometries are not
onto); the problem is that it turns out to be di�cult in that case to �nd a
back-and-forth argument that would ensure surjectivity of these maps.

6 Action of Iso(U) on F(U).

A classical fact of descriptive set theory is that the set F(P ) of closed sets
of a given Polish metric space P may be endowed with a Borel structure,
the E�ros Borel structure, which is the σ-algebra generated by sets of the
form {F ∈ F(U) : F ∩ U = ∅}, where U varies over open subsets of P .
Endowed with this structure, F(U) is a standard Borel space, i.e the σ-
algebra above is isomorphic to the σ-algebra of Borel subsets of [0, 1] (or any
other uncountable Polish space; see [Ke1] for detailed explanations). Then
one may see the left-translation action of Iso(U), de�ned by ϕ.F = ϕ(F ), as a
Borel action of Iso(U) on the standard Borel space F(U). The complexity of
this action was computed by Gao and Kechris in [GK]: it is Borel bireducible
to the universal relation for actions of Polish groups. Loosely speaking, this
means that the induced relation is as complicated as a relation induced by a
Borel action of a Polish group can be.

Theorem 6.1. [Me1] Let G be a Polish group. Then there exists a closed set
F ⊂ U such that G is isomorphic (as a topological group) to the stabilizer of
F for the left-translation action; explicitly, this means that G is isomorphic
to {ϕ ∈ Iso(U) : ϕ(F ) = F}.

Actually, the proof gives slightly more: it produces a set F ⊂ U such that
G is isomorphic to Iso(F ), and any isometry of F extends uniquely to an
isometry of U.
This result answers a question asked by Gao and Kechris in [GK]. It is
an illustration of the complexity of the action of Iso(U) on F(U): indeed,
a result of Becker and Kechris [BK] states that, given a Borel action of a
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Polish group H, the stabilizer of any point is necessarily a closed subgroup
of H. In other words, stabilizers of points are always Polish groups; the
above theorem states that the converse holds in that case, meaning that all
the "theoretically possible" stabilizers are actually obtained. Notice though
that, since the relation is not Borel, the map which to a closed set F ⊂ U
associates its stabilizer, from F(U) to the set of closed subgroups of Iso(U)
(which is a Borel subset of F(Iso(U))), cannot be Borel either (see [Ke1]).
This result was published in [Me1]; the proof below is a simpli�ed rendering
of the original proof.

Proof of Theorem 6.1.

The starting point of this proof is the following result, due to Gao and Kechris
(see [GK] or [Me2] for a proof): any Polish group is (isomorphic to) the isom-
etry group of some Polish metric space. Let now G be a Polish group, and
�nd X such that G is isomorphic to Iso(X); if one applies Kat¥tov's construc-
tion with X as a starting point, then one obtains an increasing sequence of
subsets (Xn) in U with dense union such that X1 = X and each isometry
of Xi extends uniquely to an isometry of Xi+1, which proves that G is iso-
morphic to {ϕ ∈ Iso(U) : ∀i ∈ N ϕ(Xi) = Xi}. It is not very hard to ensure
also that each Xi is closed, so that one obtains that G is isomorphic to the
subgroup of isometries which stabilize each member of a countable sequence
of closed subsets of U; this was �rst proved by Gao and Kechris. Here, we
want to show that it is possible to replace the sequence by a single closed set;
for that, we use a variant of Kat¥tov's construction, based on the following
remark: to ensure that ∪Xi is �nitely injective, it is not necessary to have
Xi+1 = E(Xi, ω); it is su�cient that Xi+1 ⊃ E(Xi, ω). Thus, one may add
"control points" at each step, which enables us to construct the set F .
Before proceeding with the proof, we need to introduce some new notation:
if Y is a bounded, nonempty subset of a metric space X, we set

E(X, Y ) = {f ∈ E(X) : ∃d ∈ R+ ∀x ∈ X f(x) = d+ d(x, Y )} .

Notice that E(X, Y ) is isometric to R+; in particular, it is closed in E(X).
For technical reasons, assume w.l.o.g that the space X such that G = Iso(X)
that we have chosen is bounded, of diameter ≤ 1, and has more than two
elements.
We begin by setting X0 = X, and then de�ne inductively a sequence of
bounded Polish metric spaces Xi, of diameter di, by:

Xi+1 =
{
f ∈ E(Xi, ω) ∪

⋃
j<i

E(Xi, Xj) : ∀x ∈ Xi f(x) ≤ 2di

}
.
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(We endow Xi+1 with the distance induced by that of E(Xi); the Kura-
towski map isometrically embeds Xi in Xi+1, and we identify Xi with the
corresponding subspace of Xi+1).
Then we see that di → +∞ with i, and each Xi is a Polish metric space. The
construction ensures that ∪Xi has the extension property, consequently its
completion Y is isometric to U. Notice also that any isometry g ∈ G extends
to an isometry gi of Xi for all i.

Exercise 17. Prove that, for all i, gi is the unique isometry of Xi whose
restriction to X is g and such that gi(Xj) = Xj for all j ≤ i. Show also that
each map g 7→ gi, from G into Iso(Xi), is continuous.

This enables us to associate to each g ∈ G an isometry g∗ of Y de�ned by
g∗|Xi

= gi, and this induces an embedding of topological groups from G into

Iso(Y ). Notice now that, if f ∈ Xi+1 is de�ned by f(x) = d + d(x,Xj) for
some d, some j < i, and all x ∈ Xi, then g

∗(f) = f for all g ∈ G; indeed,
any element of Xi+1 is uniquely determined by its distances to elements of
Xi, and any g∗ has to �x Xj.
The construction implies that an isometry ϕ ∈ Iso(Y ) is equal to some g∗ if,
and only if, ϕ(Xn) = Xn for all n. We now wish to build a closed set F ⊂ Y
such that for all ϕ ∈ Iso(Y ) one has ϕ(F ) = F if and only if ϕ(Xn) = Xn for
all n.
Begin by �xing an enumeration (ki)i≥1 of the nonnegative integers, such that
each integer appears an in�nite number of times.
The de�nition of Xi ensures that one can choose inductively points ai ∈ ∪Xn,
positive reals ei, and an increasing sequence of integers (ji) such that:

• e1 ≥ 4; ∀i ≥ 1 ei+1 > 4ei .
• ∀i ≥ 1 ji ≥ ki , ai ∈ Xji+1 and ∀x ∈ Xji

d(ai, x) = ei + d(x,Xki−1) .
• ∀i ≥ 1 ∀g ∈ G g∗(ai) = ai.

Exercise 18. Check that this is indeed possible.

We now let F = X0 ∪ {ai}i≥1; sinceX0 is complete and d(ai, X0) = ei → +∞,
we see that F is a closed subset of Y . It is also clear that ϕ ∈ G∗ ⇒ ϕ(F ) = F
(since each ai is �xed by G∗). All that remains to be done is to prove the
converse; for that, we use the following lemma:

Lemma 6.2. For all ϕ ∈ Iso(F ), one has ϕ(X0) = X0 and ϕ(ai) = ai for
all i. Furthermore, there exists some (necessarily unique) g ∈ G such that
ϕ = g∗|F .
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Proof of lemma 6.2:

Notice that we only need to prove that ϕ(X0) = X0; then, each ai has to
be �xed since the mapping i 7→ d(ai, X0) is injective, and this proves that ϕ
coincides with the restriction to F of ϕ|X0

. The fact that ϕ(X0) = X0 is a
consequence of the fact that each ei = d(ai, X0) is large: since X0 has more
than two elements and diam(X0) ≤ 1, the de�nition of F implies that

∀x ∈ F (x ∈ X0) ⇔ (∃y ∈ F 0 < d(x, y) ≤ 1)

The right-hand side of this equivalence is invariant under the action of isome-
tries of F , which is enough to ensure that ϕ(X0) = X0 for all ϕ ∈ Iso(F ). ♦

The idea behind the de�nition of the ai's is that, if ϕ ∈ Iso(Y ) maps some
element of Xji

into Xki−1
, then one must have ϕ(ai) 6= ai; but the distances

d(ai, aj) are such that each isometry of F must leave each ai �xed.
Lemma 6.2 implies that G is isomorphic to Iso(F ); furthermore, each isom-
etry of F extends to Y (since they coincide with elements of G), and this
induces a continuous morphism from Iso(F ) into Iso(Y ) is continuous.
To �nish the proof of Theorem 6.1, it is therefore enough to show that each
isometry of F admits a unique extension to Y . We saw above that it is
enough to show that, if ϕ ∈ Iso(Y ) is such that ϕ(F ) = F then ϕ(Xn) = Xn

for all n ≥ 0. Pick some ϕ ∈ Iso(Y ) such that ϕ(F ) = F .
It is enough to show that ϕ(Xn) ⊇ Xn for all n ∈ N; assume that this is
not true, i.e that there exists some n ∈ N and x 6∈ Xn such that ϕ(x) ∈ Xn.
Let δ = d(x,Xn) > 0 (recall that Xn is complete); pick y ∈ ∪Xm such that
d(x, y) ≤ δ

4
. Then y ∈ Xm \ Xn for some m > n; one may �nd i such that

ki = n+ 1 and ji ≥ m .
Then one has d(ϕ(y), ϕ(ai)) = d(y, ai) = ei + d(y,Xn) ≥ ei + 3δ

4
, and

d(ai, ϕ(y)) ≤ d(ai, ϕ(x)) + d(x, y) ≤ ei + δ
4
, so d(ϕ(ai), ai) ≥ δ

2
, and this

contradicts Lemma 6.2. ♦

Now that we saw what the stabilizers look like for the left-translation action
of Iso(U) on F(U) (or rather now that we saw that the stabilizers look like
nothing in particular, since any Polish group is the stabilizer of some closed
set), it is natural to ask what the orbits under this action are. Of course, the
orbit of F is contained in {F ′ ∈ F(U) : F ′ is isometric to F}. The universal
property of U ensures that the converse is true if F is �nite; we saw earlier in
the paper a proof, originally due to Huhunai²vili, that it also holds when F
is compact. In the original paper of Urysohn, the question of determining for
which sets the converse holds is asked; he was already aware that it could not
hold for all sets. We saw in the examples of Section 4 that there are many
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proper subsets of U which are isometric to it, so in particular the converse
does not hold for F = U.
There is also a related question: which Polish metric spaces X are such that
given any X ′, X ′′ ⊂ U isometric to X, any isometry ϕ : X → X ′ extends
to an isometry of U? This is obviously a stronger property than the one
considered above, and we already saw that spheres do not have this property.
It turns out that both properties are equivalent, as implied by the following
theorem (published for the �rst time in [Me3]), which provides the answer to
Urysohn's question.

Theorem 6.3. [Me3] Let X be a Polish metric space. The following asser-
tions are equivalent:
(a) X is compact.
(b) If X1, X2 ⊆ U are isometric to X and ϕ : X1 → X2 is an isometry, then
there exists ϕ̃ ∈ Iso(U) which extends ϕ.
(c) If X1, X2 ⊆ U are isometric to X, then there exists ϕ ∈ Iso(U) such that
ϕ(X1) = X2.
(d) If X1 ⊆ U is isometric to X and f ∈ E(X1), there exists z ∈ U such that
d(z, x) = f(x) for all x ∈ X1.

As explained above, (a) ⇒ (b) has been known for 50 years; (b) ⇒ (c)
is obvious. We have to note here that E. Ben Ami and C. Ward Henson
independently obtained (di�erent) proofs of the equivalence between (a), (b)
and (c); to the knowledge of the author, there is as yet no preprint or article
containing any of these two proofs, so the curious reader will have to look up
references himself.

Exercise 19. Using the fact that there exists a copy of X which is g-
embedded in U, prove that (c) ⇒ (d).

The proof of (d) ⇒ (a) is much more intricate; we postpone it for the mo-
ment (it will be a consequence of Proposition 6.10 below). We begin by
analyzing what it means for a Polish metric space to have property (d), and
establish that it is necessary that X have the collinearity property. Then we
will provide a construction that proves that a Polish metric space with the
collinearity property can only have property (d) if it is compact, which will
be enough to �nish the proof of Theorem 6.3.
For a subset X of U, the map ΦX : U → E(X) de�ned by z 7→ (x 7→ d(z, x))
is continuous (it is 1-Lipschitz), so the image of U is separable. Property (d)
is equivalent to ΦX′

being onto for any isometric copy X ′ of X contained in
U; it is possible that ΦX′

is onto for some isometric copy X ′ of X contained
in U only if E(X) is separable. Therefore, for X to have property (d), it is
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necessary that E(X) be separable. As a side remark, notice that if E(X)
is separable then there does exist some X ′ ⊂ U isometric to X and such
that all f ∈ E(X ′) are realized in U: just begin Kat¥tov's construction with
X0 = E(X).
Recall that we provided in section 2 a characterization of Polish metric spaces
X such that E(X) is separable in terms of the collinearity property. In order
to prove theorem 6.3, we need to show that, given any noncompact Polish
metric space X with the collinearity property, there exists an isometric copy
X ′ of X which is contained in U and is such that for some f ∈ E(X ′) there
is no z ∈ U satisfying d(z, x′) = f(x′) for all x′ ∈ X ′.
We �rst need to introduce a new de�nition; to try to motivate it, we con-
sider the case X = N. We wish to build an embedding of N into U such
that there is some f ∈ E(N) which is not realized in U. Turning the ques-
tion on its head, we ask the following question: what kind of condition on
f ∈ E(N) ensures that, for any embedding of N into U, f must be realized
in U? If f happens to be completely determined by its values on some �-
nite subset of N, then it must be realized, because of the �nite injectivity of
U. Say now that f ∈ E(N) is strongly saturated if there exist n < m ∈ N
such that f(n) + f(m) = m − n. Then, for any p ≥ m, we must have
f(p) ≥ p − n − f(n) = p + f(m) − m, and f(p) ≤ f(m) + p − m, so that
f(p) = f(m) + p − m for all p ≥ m; similarly, this holds for all p ≤ n, so
that f is completely determined by its values on [n,m]. Therefore, for any
isometric embedding of N into U and any strongly saturated f ∈ E(N), f
must be realized in U; this also has to be true for any f which is in the
closure of the set of strongly saturated Kat¥tov maps on N. We call such an
f a saturated Kat¥tov map. It turns out that the converse is true, i.e f must
be realized for any embedding of N if and only if it is saturated. Note that
this de�nition may also be expressed in terms of model theory for metric
structures (saturated maps are actually the same thing as d-isolated 1-types
over X).

De�nition 6.4. Let X be a Polish metric space. We say that f ∈ E(X)
is ε-saturated if there exists a compact subset K of X such that, for any
g ∈ E(X), one has g|K = f|K ⇒ d(f, g) ≤ ε .
We say that f is saturated if it is ε-saturated for all ε > 0.

First, let us note the following.

Proposition 6.5. Let X be a Polish metric space. Then the set of saturated
maps on X is closed in E(X).

Proof. First, we need to point out the following fact: let f ∈ E(X), ε > 0,
and pick Y ⊂ X and g ∈ E(Y ) such that sup{|f(y) − g(y)| : y ∈ Y } ≤ ε.
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Then for any x ∈ X \ Y one can extend g to a Kat¥tov map (still denoted
by g) on Y ∪{x} that satis�es |f(x)− g(x)| ≤ ε (just look at the inequalities
g(x) must satisfy). Thus, using trans�nite induction, one sees that actually
g extends to a map g̃ ∈ E(X) such that d(f ,̃g) ≤ ε.
Now, let (fn) be a sequence of saturated maps in E(X) that converges to some
f . Let ε > 0, and pick n such that d(fn, f) ≤ ε. Then pick a compact set K
that witnesses that fn is ε- saturated, and, let g ∈ E(X) be any Kat¥tov map
such that f, g coincide on K. One has sup{|g(x) − fn(x)| : x ∈ K} ≤ ε, so
there exists a map h ∈ E(X) that extends fn|K and is such that d(h, g) ≤ ε.
Since we must have d(h, fn) ≤ ε because of the choice of K, we obtain:

d(f, g) ≤ d(f, fn) + d(fn, h) + d(h, g) ≤ 3ε .

So the compact set K witnesses the fact that f is 3ε-saturated, and (since
ε > 0 was arbitrary) we are done. ♦

Also, it is obvious that if X is compact then all Kat¥tov maps on X are
saturated; the converse is true.

Lemma 6.6. If X is a noncompact Polish metric space, then there exists
f ∈ E(X) which is not saturated.

Proof. We only prove this in the case when X is Heine-Borel, since this is
the only case that we are concerned with while trying to prove Theorem 6.3.
Since X is noncompact, there exists a sequence xn such that d(x0, xn) →∞;
we may assume that d(xn+1, x0) ≥ d(xn, x0)+1. Set then f(x) = 1+d(x0, x).
We claim that f is not saturated. Indeed, given a compact subset K of X,
one may �nd n ∈ N such that d(xn, x0) ≥ d(x0, k) + 1 for all k ∈ K. Let
then f̃ be the map on K ∪ {xn} de�ned by g̃(k) = f(k) for all k ∈ K, and
f̃(xn) = f(xn)− 1. Then f̃ is 1-Lipschitz because of the choice of n, and one
has, for all k ∈ K, that
f̃(xn) + f̃(k) = d(xn, x0) + d(x0, k) + 1 ≥ d(xn, k) + 1. This shows that f̃ is a
Kat¥tov map on K ∪ {xn}, so its Kat¥tov extension to X witnesses the fact
that f is not saturated. ♦

Exercise 20. Prove lemma 6.6 in the case when X is bounded.

In order to help the reader understand better what saturated Kat¥tov maps
are, we regroup a few of their properties in the following exercise; we will use
these properties in the proof of Proposition 6.10.

Lemma 6.7. Let X be a Polish metric space with the collinearity property.
Then the following assertions hold:
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(1) If ε > 0 and f ∈ E(X) is not ε-saturated, then for any compact K ⊆ X
there is some x ∈ X such that f(x) + f(k) > d(x, k) + ε for all k ∈ K.
(2) If f ∈ E(X) is saturated, then for any ε > 0 there exists some compact
K ⊆ X such that

∃M ∀x ∈ X d(x,K) ≥M ⇒ ∃z ∈ K f(z) + f(x) ≤ d(z, x) + ε.

(3) Let fn ∈ E(X) be εn-saturated maps such that :
- For any n there exists a compact Kn which witnesses the fact that fn is
2εn-saturated, and such that m ≥ n⇒ fm|Kn

= fn|Kn
.

- εn → 0.
- ∪Kn = X
Then fn converges uniformly to a saturated Kat¥tov map f .

Exercise 21. Prove Lemma 6.7.

De�nition 6.8. If Y ⊂ X are metric spaces, we let E(X, Y, ω) denote the set
of maps f ∈ E(X) which have a support contained in Y ∪F , where F is some
�nite subset of X. For instance, E(X, ∅, ω) = E(X,ω) and E(X,X, ω) =
E(X). The interest for us is that E(X, Y, ω) is separable if E(Y ) is.

We can now describe our construction: we begin by picking a Polish metric
space with the collinearity property X, then we set X0 = X and de�ne

Xi+1 = {f ∈ E(Xi, X0, ω) : f|X0
is saturated } .

(We identify as usual Xi to a subspace of Xi+1).
For the remainder of this section, the notation Xi will denote one of the
spaces de�ned above; we �rst establish a technical lemma.

Lemma 6.9. Let x1, . . . , xn ∈ Xp, f ∈ E({x1, . . . , xn}).
Let also f ′ ∈ E(Xp, X0, ω) and ε > 0 be such that f ′(xi) = f(xi) for all i,
and f ′|X0

is not ε-saturated.

Then, for any compact K ⊂ X0, there exists g ∈ E(Xp, X0, ω) such that

∀i = 1, . . . , n g(xi) = f(xi), g|K = f ′|K and ∃x ∈ X0\K g(x) ≤ f ′(x)−ε
2
. (∗)

Proof of Lemma 6.9.

Begin by picking some z0 ∈ K (which we may assume to be nonempty).
Since f ′|X0

is not ε-saturated, lemma 6.7(1) shows that we can �nd y1 ∈
X0 \ K such that f ′(y1) + f ′(z) > d(y, z) + ε for all z ∈ K ∩ X0. Letting
K1 = B(z0, 2d(z0, y1)) we can apply the same process and �nd y2, and so on.
One can inde�nitely continue this process, and thus build a sequence (yn) of
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elements of X0 such that d(yn, z0) → +∞, an increasing sequence of compact
sets (Ki) such that K0 = K, ∪Ki = Xp, and

∀i ≥ 1 ∀z ∈ Ki−1 ∩X0 f
′(yi) + f ′(z) > d(yi, z) + ε .

We �rst point out that, if for all I ∈ N there exists i ≥ I such that f ′(yi) +
f ′(xk) ≥ d(xk, yi)+ ε

2
for all k = 1, . . . , n, then we can �nd a map g as in (*).

Indeed, choose I such that d(yI , z0) ≥ max{f ′(z) : z ∈ K0}+ ε
2
, f ′(yi) ≥ f ′(z)

for all z ∈ K0 and i ≥ I, KI ⊇ B(z0, 2diam(K0)], then �nd i ≥ I as above.
De�ne a map g on {xk}k=1,...,n ∪K ∪ {yi} by g(yi) = f ′(yi)− ε

2
, g(x) = f ′(x)

elsewhere.
By choice of i and since f ′(yi) + f ′(z) ≥ d(y, z) + ε

2
for all z ∈ K0, we see

that g is a Kat¥tov map, and that its Kat¥tov extension ĝ to Xp is such that
ĝ(xi) = f(xi), ĝ|K = f ′|K and ĝ(yi) ≤ f ′(yi)− ε

2
.

So, we may as well assume that there exists I ∈ N such that

∀i ≥ I ∃ki f
′(yi) + f(xki

) < d(xki
, yi) +

ε

2
. (∗∗)

We show that this is impossible (which is enough to prove the lemma): up to
some extraction, we may also assume that ki = k for all i ≥ I. By de�nition
of Xp, we know that the restriction to X0 of the map d(xk, .) is saturated, so
lemma 6.7(2) shows that there exists J such that

∀j > J ∃z ∈ KJ ∩X0 d(xk, z) + d(xk, yj) ≤ d(z, yj) +
ε

4
.

This, combined with (∗∗), shows that for all j > max(I, J) there exists
z ∈ KJ∩X0 ⊆ Kj−1∩X0 such that f ′(yj)+f(xk)+d(xk, z) ≤ d(z, yj)+

ε
2
+ ε

4
.

This in turn implies that f ′(yj) + f ′(z) < d(z, yj) + ε, and that contradicts
the de�nition of the sequence (yi). ♦

Proposition 6.10. [Me3] Let X be a Polish metric space with the collinearity
property. Then there exists an isometric copy X ′ ⊆ U of X such that ΦX′

(z)
is saturated for all z ∈ U.

Proof of Proposition 6.10.

It is enough to prove that ∪Xi is �nitely injective (recall that the Xi's are
the spaces that were de�ned before the statement of Lemma 6.9); this will
yield an isometric embedding of X in U with the desired property (notice
that then ΦX′

(z) is saturated for a dense subset of U, and by continuity and
the fact that the set of saturated maps is closed in E(X) we obtain that
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actually ΦX′
(z) is saturated for all z ∈ U).

Pick {x1, . . . , xn} ⊆ Xp (for some p ≥ 0) and f ∈ E({x1, . . . , xn}). We are
looking for g ∈ E(Xp, X0, ω) such that g(xi) = f(xi) for all i, and g|X0

is
saturated. Letting ε0 = inf{ε > 0: k(f)|X0

is ε − saturated }, we only need
to deal with the case ε0 > 0 .
Let L0 ⊂ X0 be a compact set witnessing the fact that k(f)|X0

is 2ε0-
saturated, and choose z0 ∈ L0; Lemma 6.9 shows that there exists f1 ∈
E(Xp, X0, ω) such that f1|L0

= k(f)|L0
, f1(xi) = f(xi) for i = 1, . . . , n and

z1 ∈ X0 \ L0 such that f1(z1) ≤ min{k(f)(z) + d(z, z1) : z ∈ L0} − ε0

2
.

Again, let ε1 = inf{ε > 0: f1|X0
is ε− saturated }: if ε1 = 0 we are �nished,

so assume it is not, let X0 ⊇ L1 ⊇ B(z0, diam(L0)+ d(z0, z1)]∩X0 be a com-
pact set witnessing the fact that f1|X0

is 2ε1-saturated and apply the same

process as above to (f1, L1, ε1).
Then we obtain z2 6∈ L1 and f2 ∈ E(Xp, X0, ω) such that f2(xi) = f(xi) for
i = 1, . . . , n, f2|L1

= f1|L1
and f2(z2) ≤ min{f1(z) + d(z, z2) : z ∈ L1} − ε1

2
.

We may iterate this process, thus producing a (�nite or in�nite) sequence
(fm) ∈ E(Xp, X0, ω) who has (among others) the property that
fm(xi) = f(xi) for all m and i = 1, . . . , n; the process terminates in �nite
time only if some fm|X0

is saturated, in which case we have won.
So we may focus on the case where the sequence is in�nite: then the con-
struction produces a sequence of Kat¥tov maps (fm) whose restriction to
X0 is εm- saturated, an increasing sequence of compact sets (Lm) such that
∪Lm = X0 witnessing that fm|X0

is 2εm-saturated, fm+1 and fm coincide on

Lm for all m, and points zm ∈ Lm \ Lm−1 such that

fm(zm) ≤ min{fm−1(z) + d(z, zm) : z ∈ Lm−1} −
εm−1

2
.

If 0 is a cluster point of (εm), passing to a subsequence if necessary, we may
apply lemma 6.7(3) and thus obtain a map h ∈ E(X0 ∪ {x1, . . . , xn}) such
that h(xi) = f(xi) for all i = 1, . . . , n and h|X0

is saturated; then its Kat¥tov
extension to Xp has the desired properties.
Therefore, we only need to deal with the case when there exists α > 0 such
that εm ≥ 2α for all m; we will show by contradiction that this never hap-
pens. To simplify notation, let A = {x1, . . . , xn} ∪ X0. Since the sequence
(Lm) exhaustsX0, the sequence (fm|A) converges pointwise to some h ∈ E(A)
such that h(zm) = fm(zm) for all m.
Up to some extraction, we may assume, since X has the collinearity property,
that d(z0, zm) + d(zm, zm+1) ≤ d(z0, zm+1) + α

2
for all m.

Also we know that h(zm+1) ≤ h(zm) + d(zm, zm+1)− α.
The two inequalities combined show that h(zm+1) − d(zm+1, z0) ≤ h(zm) −
d(zm, z0) − α

2
. This is clearly absurd, since if it were true the sequence
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(h(zm) − d(zm, z0)) would have to be unbounded, whereas we have neces-
sarily h(zm)− d(zm, z0) ≥ −h(z0).
This is (�nally) enough to conclude the proof. ♦

Proof of Theorem 6.3.

Recall that we only needed to prove that (d) ⇒ (a); for this, we will prove
that ¬(a) ⇒ ¬(d). Assume that X is a noncompact Polish metric space;
then, if X doesn't have the collinearity property we know that X cannot
have property (d) because E(X) is not separable. If X has the collinear-
ity property, then Proposition 6.10 tells us that there is an isometric copy
X ′ ⊂ U of X such that only maps in the closure of the set of saturated maps
on X ′ are realized in U; but since X' is not compact, there is a Kat¥tov map
on X ′ that is not in the closure of the set of saturated maps on X ′, so X ′

witnesses the fact that X does not have property (d). ♦.

Remarks. 1. If one applies the construction above to X0 = (N, |.|), one
obtains a countable set {xn}n∈N ⊆ U such that d(xn, xm) = |n −m| for all
n, m and

∀z ∈ U ∀ε > 0∃n,m ∈ N d(xn, z) + d(z, xm) ≤ |n−m|+ ε.

In particular, {xn} is an isometric copy of N which is not contained in any
isometric copy of R.

2. In general, given a Polish metric space X, one may consider the set of
all closed subsets of U which are isometric to X, and look at the equivalence
relation on that set induced by the left-translation action of X. We proved
that X is compact i� there is only one equivalence class; what is the situation
when X is noncompact? What is the descriptive set-theoretic complexity of
the associated relation? When X = U one can prove that it is Borel bire-
ducible to the universal relation for Borel actions of Polish groups! On the
other hand, is it true that if X is "simple" (say, X has the collinearity prop-
erty, or X is locally compact) then the associated relation is simple too?Also,
one may de�ne a quasi-ordering on the isometric copies of X contained in
U by setting X ≤ X ′ if there exists an isometric map ϕ : U → U such that
ϕ(X) = X ′. Then, if X has the collinearity property, this quasi-ordering
has a minimal element (which we built in the construction above) and a
maximal element (the one obtained by applying Kat¥tov's construction with
X0 = E(X)). What else can be said about this ordering and its descriptive
complexity?
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7 Conjugacy in Iso(U) and �xed points of isome-

tries.

From a descriptive set-theoretic point of view, understanding the relation of
conjugacy in Iso(U) is an interesting problem (mentioned in [GK]); we prove
below that it is the universal relation for Borel actions of Polish groups. For
that, it turns out to be enough to study the nature (up to isometry) of the
sets of �xed points of isometries; the link of this with conjugacy is that if two
isometries are conjugate then their sets of �xed points must be isometric. J.
Clemens had conjectured in 2005 that a set of �xed points, if nonempty, had
to be isometric to U. It this were true, it would tell us nothing about the
conjugacy relation; it turns out that the opposite result is true, even though
Clemens' conjecture does hold for isometries with "small" orbits (see below).

Theorem 7.1. [Me3] Let X be a Polish metric space.
There exists an isometry ϕ ∈ Iso(U) such that its set of �xed points Fix(ϕ)
is isometric to X.

Proof of Theorem 7.1.

The proof is based on ideas similar to those that were used to prove that there
exists an isometry of U without a square root (actually the proof for �xed
points was obtained �rst, and then the ideas were used to show the other
result): we begin with an isometry which is the identity on X, and then build
an embedding of X into U and an extension of that isometry, while trying to
ensure that this extension "moves all points not in X as much as possible".
We propose below a way to formulate this naive idea in proper mathematical
language.

De�nition 7.2. Let X0 ⊂ X be two metric spaces, and ϕ be an isometry;
we say that (X,X0, ϕ) has property (*) if :
• ∀x ∈ X0 ϕ(x) = x.
• ∀x, y ∈ X lim inf |p|→+∞ d(x, ϕp(y)) ≥ d(x,X0) + d(y,X0).

If we manage, given a Polish metric space X, to build an embedding of X
into U and an isometry ϕ of U such that (U, X, ϕ) has property (*) then we
will be done. We again use an inductive construction, based on the following
lemma.

Lemma 7.3. Let X0 ⊂ X be Polish metric spaces and ϕ ∈ Iso(X) be such
that (X,X0, ϕ) has property (*). Then there exists a Polish metric space
X ′ ⊃ X, and an isometry ϕ′ of X ′ which extends ϕ, which are such that any
f ∈ E(X,ω) is realized in X ′ and (X ′, X0, ϕ

′) still has property (*).
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If one admits for the time being that Lemma 7.3 is true, then Theorem 7.1
is very easy to prove: begin with the triple (X,X,ϕ0) with ϕ0 = id|X , then
de�ne inductively X0 = X, Xn+1 = X ′

n, ϕn+1 = ϕ′n. Since any f ∈ E(Xn, ω)
is realized in Xn+1, the completion of ∪Xi is isometric to U; letting ϕ denote
the isometry of U obtained at the end of the construction, the lemma also
ensures that (U, X, ϕ) has property (*), so we are done.

Proof of Lemma 7.3. Let (X,X0, ϕ) be as in the statement of the lemma.
Consider now a set of disjoint isometric copies Yn of E(X,ω) (n ∈ Z), and
let Y denote the amalgamation of those over X. If y ∈ Y is such that y ∈ Yn

and d(y, x) = f(x) for all x ∈ X, we denote y by f (n). Notice that if x ∈ X
then our notation gives x = d(x, .)(n) for all n ∈ Z, which we simply write
x = x(n) for all n ∈ Z.
Explicitly, the distance on Y is de�ned by d(f (n), g(n)) = d(f, g) (where d
is the distance on E(X)), and d(f (n), g(m)) = inf{f(x) + g(x) : x ∈ X} for
n 6= m and f, g 6∈ X.
Now, recall that each isometry ϕ of X extends to a unique isometry of
E(X,ω), denoted by ϕ∗; let ϕ′ denote the isometry of Y de�ned by setting

ϕ′(f (n)) = (ϕ∗(f))(n+1) .

Then ϕ′ is an extension of ϕ. Let also X ′ denote the completion of Y ,
and denote again by ϕ′ the unique extension of ϕ′ to X ′. We claim that
(X ′, X0, ϕ

′) has property (*). To prove it, it is enough to show that (Y,X0, ϕ
′)

has this property. The �rst part is an obvious consequence of the de�nition
of X ′, ϕ′ and our assumption that (X,X0, ϕ) has property (*).
Let now x, y ∈ Y ; we let x = f (n) and y = g(m), and assume that g 6∈ X (if
both f and g are in X then our assumption that (X,X0, ϕ) has property (*)
is enough to obtain what we wish).
By de�nition, f is supported by some �nite set {x1, . . . , xr} and g by another
�nite set {y1, . . . , ys}. For |p| big enough, (ϕ′)p(g(m)) and f (n) do not belong
to the same Yn, so that one has

d(x, (ϕ′)p(y)) = d(f (n), (ϕp(g))m+p) = inf{f(z) + ϕp(g)(z) : z ∈ X} .

The triangle inequality and the de�nition of f, g imply that there exists
some ip ≤ r, jp ≤ s such that d(x, (ϕ′)p(y)) = f(xip) + g(yjp) + d(xip , ϕ

p(yjp).
For p big enough, our assumption on (X,X0, ϕ) implies that d(xi, ϕ

p(yj)) ≥
d(xi, X0) + d(yj, X0) for all i ≤ r, j ≤ s. Therefore, there exists some P such
that p ≥ P implies

d(x, (ϕ′)p(y)) ≥ f(xiP )+d(xip , X0)+g(yjp)+d(yjp , X0) ≥ d(x,X0)+d(y,X0).
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This ends the proof of the fact that (X ′, X0, ϕ
′) has property (*). ♦

In the construction above, we associate to each Polish metric space X an
isometry ϕX of U such that X is isometric to Fix(ϕX). The construction
also has the property that, if X and X ′ are isometric, then ϕX and ϕX′

are conjugate: any isometry ρ : X → X ′ extends to an isometry of U such
that ρ ◦ ϕX = ϕX′ ◦ ρ (identifying X, X ′ with their images in U under the
embedding we de�ned above). The construction may be done uniformly,
meaning that the map X 7→ ϕX may be assumed to be Borel (we do not go
into detail here, see [Me2] for a sketch of proof). Admitting this, we see that
X 7→ ϕX is a reduction of the relation of isometry between Polish metric
spaces to the relation of conjugacy in Iso(U). Since Gao and Kechris proved
that the former is universal for relations induced by a Borel action of a Polish
group, and the latter is induced by a continuous action of a Polish group,
this completely determines the Borel complexity of conjugacy in Iso(U).

Corollary 7.4. (Of the construction) [Me3] The relation of conjugacy in
Iso(U) is Borel bi-reducible to the universal relation for actions of Polish
groups.

Surprisingly, the situation turns out to be very di�erent when it comes to
studying isometries of �nite order or, more generally, isometries with totally
bounded orbits.

Theorem 7.5. [Me3] If ϕ : U → U is an isometry whose orbits are totally
bounded, and Fix(ϕ) is nonempty, then Fix(ϕ) is isometric to U.

To prove this theorem, we have to prove that Fix(ϕ), if nonempty, has
the approximate extension property. We need two lemmas, from which we
deduce Theorem 7.5; so we don't begin the proof of that theorem yet. Still, it
seemed interesting to state it as soon as possible, since it contrasts strongly
from what we saw above and is the reason why we are interested in the two
lemmas below.
We manipulate points x such that the diameter of their orbit under the
action of ϕ, which we denote by ρϕ(x), is smaller than a given ε > 0. The
�rst question is then: assuming that Fix(ϕ) is nonempty and that ρϕ(x) is
small, does x have to be close to Fix(ϕ)? The answer is a consequence of
the following lemma.

Lemma 7.6. Let ϕ ∈ Iso(U) have totally bounded orbits; assume that Fix(ϕ)
is nonempty, and that x ∈ U is such that ρϕ(x) ≤ 2ε. Then, for any δ > 0,
there exists y ∈ U such that :
- ∀n ∈ Z d(y, ϕn(x)) = d(y, x) ≤ ε+ δ;
- ρϕ(y) ≤ ε.
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A direct consequence of this lemma is that, if Fix(ϕ) is nonempty and
ρϕ(x) ≤ ε for some ε > 0, then there exists a �xed point x′ of ϕ such
that d(x, x′) ≤ 2ε.

Remark. Actually, using model theory for metric structures, one can prove
(under the additional assumption that there is a uniform bound on the en-
tropy of the orbits of ϕ) that for any x ∈ U there must exist a �xed point x′

of ϕ such that d(x, x′) = 1
2
ρϕ(x).

Proof of Lemma 7.6.

Let x, ϕ be as above; let also

E = {y ∈ U : ∀n ∈ Z d(y, ϕn(x)) = d(y, x) and ρϕ(y) ≤ ε}

Notice that E is nonempty, since any �xed point of ϕ belongs to E. We
want to prove that α = d(x,E) ≤ ε. We proceed by contradiction, so assume
α > ε. For technical reasons, we need to split the proof in two cases here.
(1) For all p ∈ N∗ there exists a �xed point yp such that α ≤ d(yp, x) < α+ 1

p
.

If so, let p be such that 1
p
< ε

2
and α− 1

p
> ε, then consider the map g de�ned

by the following equations:
- g(yp) = 1

p

- ∀n ∈ Z g(ϕn(x)) = d(yp, x)− 1
p
.

Then g belongs to E({ϕn(x)} ∪ {yp}), therefore there is z ∈ U with the
desired distances; to conclude, notice that z ∈ E and d(z, x) < α, which is
absurd.
(2) Assume we are not in case (1); we may pick a point y ∈ E such that no
�xed point is as close as y to x. Let now ρϕ(y) = ρ ≤ ε; a direct veri�cation
shows that the map g de�ned below belongs to E({ϕn(x)} ∪ {ϕn(y)}):
- ∀n ∈ Z g(ϕn(x)) = max(ε, d(y, x)− ρ

2
).

- ∀n ∈ Z g(ϕn(y)) = ρ
2
.

Since the orbits of ϕ are totally bounded, there exists z ∈ U with the pre-
scribed distances; consequently z ∈ E. Indeed, one has, for all n ∈ Z, that

d(z, ϕm(z)) ≤ d(z, y) + d(y, ϕm(z)) = ρ .

We may iterate this construction, which yields a sequence of points yi ∈ E
such that ρϕ(yi+1) ≤ ρϕ(yi), and d(yi+1, yi) = ρϕ(yi)

2
. If

∑
ρϕ(yi) converges,

then the sequence yi converges to a �xed point which is closer to x than y,
and this is impossible by de�nition of y. Since d(x, yi+1) > ε⇒ d(x, yi+1) =

d(x, yi)− ρϕ(yi)

2
, we see that then there must be some i such that d(x, yi) = ε.

This concludes the proof of Lemma 7.6. ♦
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Before we can move on to the next lemma, we need to establish a Claim
(which mostly consists in checking some inequalities).

Claim.

Let ϕ ∈ Iso(U), x1, . . . , xm ∈ Fix(ϕ), f ∈ E({x1, . . . , xm}), and z ∈ U.
Assume that min{f(xi)} ≥ ρϕ(z) > 0. Partition {1, . . .m} in three subsets

A,B,C by setting i ∈ A i� d(z, xi) < f(xi) − ρϕ(z)

2
, i ∈ B i� d(z, xi) >

f(xi) + ρϕ(z)

2
, and i ∈ C i� |d(z, xi)− f(xi)| ≤ ρϕ(z)

2
.

Then the following equations de�ne a Kat¥tov map on {ϕn(z)}n∈Z∪{xi}1≤i≤m:

- ∀n ∈ Z g(ϕn(z)) = ρϕ(z)

2
,

- ∀i ∈ A g(xi) = d(z, xi) + ρϕ(z)

2
,

- ∀i ∈ B g(xi) = d(z, xi)− ρϕ(z)

2
,

- ∀i ∈ C g(xi) = f(xi).

Proof of the Claim.
To simplify notation, we let ρ = ρϕ(z). We begin by checking that g is 1-
Lipschitz:
First, we have that |g(xi)− g(ϕn(z))| = |d(z, xi) + α− ρ

2
|, where |α| ≤ ρ

2
. If

α = ρ
2
there is nothing to prove, otherwise it means that d(z, xi) ≥ f(xi)− ρ

2
,

so that d(z, xi) ≥ ρ
2
, which is enough to show that |d(z, xi) + α − ρ

2
| ≤

d(z, xi) = d(ϕn(z), xi).
We now let 1 ≤ i, j ≤ m and assume w.l.o.g that |g(xi) − g(xj)| = g(xi) −
g(xj); there are three nontrivial cases.
(a) g(xi) = d(z, xi) + α, g(xj) = d(z, xj) + β, with α > β ≥ 0.
Then one must have g(xj) = f(xj), and also g(xi) ≤ f(xi), so that g(xi) −
g(xj) ≤ f(xi)− f(xj) ≤ d(xi, xj).
(b) g(xi) = d(z, xi) + α, g(xj) = d(z, xj) − β, 0 ≤ α, β ≤ ρ

2
. Then

the de�nition of g ensures that g(xi) ≤ f(xi) and g(xj) ≥ f(xj), so that
g(xi)− g(xj) ≤ f(xi)− f(xj) ≤ d(xi, xj).
(c)g(xi) = d(z, xi)− α, g(xj) = d(z, xj)− β, 0 ≤ α < β.
Then we have g(xi) = f(xi), and g(xj) ≥ f(xj), so g(xi) − g(xj) ≤ f(xi) −
f(xj).
We proceed to check the remaining inequalities necessary for g to be a Kat¥-
tov map:
- g(ϕn(z)) + g(ϕp(z)) = ρ ≥ d(ϕn(z), ϕp(z)) by de�nition of ρ;
- g(ϕn(z)) + g(xi) = ρ

2
+ d(z, xi) + α, where |α| ≤ ρ

2
, so g(ϕn(z)) + g(xi) ≥

d(z, xi) = d(ϕn(z), xi).
The last remaining inequalities to examine are that involving xi, xj; we again
break the proof in subcases, of which only two are not trivial:
(a) g(xi) = d(z, xi) + α and g(xj) = d(z, xj) − β, where 0 ≤ α < β. Then
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g(xi) = f(xi), and g(xj) ≥ f(xj), so that g(xi) + g(xj) ≥ d(xi, xj).
(b) g(xi) = d(z, xi) − α, g(xj) = d(z, xj) − β: then we have that both
g(xi) ≥ f(xi) and g(xj) ≥ f(xj), so again g(xi) + g(xj) ≥ d(xi, xj)..
This concludes the proof of the Claim. ♦

Lemma 7.7. Let ϕ be an isometry of U with totally bounded orbits, x1, . . . , xm ∈
Fix(ϕ), f ∈ E({x1, . . . , xm}), and ε > 0. Then one (or both) of the following
assertions is true:
- There exists z ∈ U such that ρϕ(z) ≤ ε and d(z, xi) = f(xi) for all i.
- There is z ∈ Fix(ϕ) such that |f(xi)− d(z, xi)| ≤ ε for all i.

Proof of Lemma 7.7.

Once again, this proof is an inductive construction based on the compact
injectivity of U; the claim above provides us with the tool necessary to make
that construction work.
We may assume that

γ = inf
{ m∑

i=1

|f(xi)− d(x, xi)| : x ∈ Fix(ϕ)
}
> 0 .

Then, pick x ∈ Fix(ϕ) such that
∑m

i=1 |f(xi)− d(x, xi)| ≤ γ + ε
4
.

With a proof similar to that of the Claim above, one can show that there
exists z ∈ U such that
- d(z, x) = ε

2
;

- ∀i = 1, . . . ,m |d(x, xi)− f(xi)| ≤ ε
2
⇒ d(z, xi) = f(xi) ;

- ∀i = 1, . . . ,m d(x, xi) > f(xi) + ε
2
⇒ d(z, xi) = d(x, xi)− ε

2
;

- ∀i = 1, . . . ,m d(x, xi) < f(xi)− ε
2
⇒ d(z, xi) = d(x, xi) + ε

2
.

If this point is �xed, then either for all i one had |d(z, xi)− f(xi)| ≤
ε

2
and

thus γ = 0, which is against our initial assumption; or z is a �xed point such

that
m∑

i=1

|f(zi)− d(x, xi)| ≤ γ − ε

4
, and this again contradicts the de�nition

of γ. Thus, z cannot be �xed.
Using the Claim, we may then build a sequence (zn) of elements of U such
that z0 = z and

(1) 0 < ρ(zn) ≤ ε;

(2) ∀p ∈ Z d(zn+1, ϕ
p(zn)) = ρϕ(zn)

2
;

(3) ∀i d(zn, xi) < f(xi)− ρϕ(zn)

2
⇒ d(zn+1, xi) = d(zn, xi) + ρϕ(zn)

2
;

(4) ∀i d(zn, xi) > f(xi) + ρϕ(zn)

2
⇒ d(zn+1, xi) = d(zn, xi)− ρϕ(zn)

2
;

(5) ∀i |d(zn, xi)− f(xi)| ≤ ρϕ(zn)

2
⇒ d(zn+1, xi) = f(xi).

41



(In (3), (4) and (5),"∀i" means "for any integer i between 1 and m)

To see that such a sequence can be constructed, assume that its terms have
been de�ned up to rank n. Then, the Claim above ensures that there exists
z = zn+1 ∈ U which satis�es conditions (2) through (6). Condition (2) im-
plies that ρϕ(zn+1) ≤ ρϕ(zn) ≤ ε; as above, zn+1 cannot be �xed because it
would contradict the de�nition of γ.
If some zn is such that d(zn, xi) = f(xi) for all i = 1, . . . ,m, then we are
done. If it's not the case, then either An or Bn is nonempty for all n, thus
conditions (4) and (5) ensure that

∑
ρϕ(zn) converges, and then condition

(2) tells us that zn converges to some z∞, which must then be a �xed point
of ϕ because of condition (2). But by construction

∑m
i=1 |f(xi)−d(z∞, xi)| ≤∑m

i=1 |f(xi)− d(z0, xi)| < γ, which again contradicts the de�nition of γ. ♦

We are now ready to �nish the proof of Theorem 7.5.

Proof of Theorem 7.5.

Let ϕ be an isometry of the Urysohn space with totally bounded orbits,
and assume that Fix(ϕ) is nonempty. We need to prove that Fix(ϕ) has
the approximate extension property; for that, pick x1, . . . , xn ∈ Fix(ϕ) and
ε > 0. Then Lemma 7.7 tells us that there exists a �xed point z of ϕ such that
|d(z, xi)−f(xi)| ≤ ε for all i = 1, . . . , n, or there exists z with d(z, xi) = f(xi)
for all i = 1, . . . n and ρϕ(z) ≤ ε. In the �rst case we are done; in the second
case, Lemma 7.6 ensures that there is a �xed point z′ such that d(z′, z) ≤ 2ε;
and by the triangle inequality one must have |d(z′, xi)− d(z, xi)| ≤ 2ε for all
i = 1, . . . , n, so that |d(z′, xi)− f(xi)| ≤ 2ε and we are done. ♦

Looking at the proof, one sees that Theorem 7.5 may be generalized: in-
deed, the same arguments work to prove that if G is any group acting on
U by isometries in such a way that all the orbits for this action are totally
bounded (in particular, if G is a compact group acting continuously on U
by isometries), then the set of global �xed points of G is either empty or
isometric to U.

Exercise 22. Prove this result.

Theorem 7.5 shows that there is a big di�erence between general isometries
and isometries with totally bounded orbits. It may be worth mentioning
quickly another di�erence: using similar methods to those used to prove The-
orem 7.1 one can build an isometry of U such that inf{ρϕ(x) : x ∈ U} = 0,
yet Fix(ϕ) = ∅. However, using model theory for metric structures (see
[BBHU]), one may prove that, if ϕ has totally bounded orbits (with uniformly
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bounded entropy) and inf{ρϕ(x) : x ∈ U} = 0, then Fix(ϕ) is nonempty (and
thus isometric to U). To prove this, one can use Lemma 7.6 to show that
the set of �xed points of ϕ is a so-called "de�nable set" and then use some
model theory (going to a monster model; this is the step that requires the
uniform bound on the entropy of the orbits).
This leads to a question: do all the "natural geometric invariants" for an
isometry with totally bounded orbits satisfy the dichotomy of Theorem 7.5?
Examples of such invariants are {x ∈ U : d(x, ϕ(x)) = 1} or (in the case where
ϕn = 1 for some n) {x ∈ U : d(x, ϕ(x)) = a1, d(x, ϕ

2(x)) = a2, d(x, ϕ
n−1(x)) =

an−1}.
This is also the occasion to point out that model theory for metric structures
seems to provide a natural setting to study (and solve) some questions about
the geometry of U; C.W. Henson established the equivalence of (a), (b) and
(c) of Theorem 6.3 using this particular machinery.

8 Linear Rigidity of U.
In [Hol1], M.R Holmes, following earlier work of Sierpinski [Si] on isometric
embeddings of U in Banach spaces, proved a very surprising result, which we
state below. Before this, we have to introduce some notation: if (X, 0) is a
pointed metric space, then (X, 0)′ denotes the set of 1-Lipschitz maps f on
X such that f(0) = 0.

Theorem 8.1. (Holmes [Hol1]) If U is isometrically embedded in a Banach
space B, and 0 ∈ U, then one has, for all x1, . . . , xn ∈ U and λ1, . . . , λn ∈ R:

||
n∑

i=1

λixi|| = sup
{∣∣ n∑

i=1

λif(xi)
∣∣ : f ∈ {0, x1, . . . , xn}′} .

Proof. The proof below is a simpli�ed rendering of the proof in Holmes'
article [Hol1], which is quite long and intricate (Holmes was not directly
interested in this result; he answered a question of Sierpinski about the em-
beddings of the Urysohn space in C([0, 1], and the theorem above is a corollary
of his proof); It is based on two simple lemmas.

Remark. After writing this article I was made aware of [Hol2], in which
Holmes gives his own simpli�ed version of his proof; it still seems worthwile
to write down the proof here, since it can be generalized rather easily, which
is not the case of Holmes's proof (because of the rather cumbersome use of
C([0, 1])); all the ideas are already present in Holmes's paper.
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Lemma 8.2. Let U be embedded in a Banach space B in such a way that 0 ∈
U, and let x1, . . . , xn ∈ U. Then there exists a continuous linear functional
ϕ such that ||ϕ|| = 1 and ϕ(xi) = ϕ(x1) + d(x1, xi) for all i = 1, . . . , n.

To prove this, let x1, . . . , xn be as above, set D = diam{x1, . . . , xn} and set
f(xi) = 2D−d(x1, xi). Then f ∈ E({x1, . . . , xn}), so there exists z ∈ U such
that d(z, xi) = f(xi) for all i = 1, . . . , n.
By the Hahn-Banach theorem, there exists a continuous linear map ϕ such
that ||ϕ|| = 1 and ϕ(z) = ϕ(x1)+d(x1, z). Then one has, for all i = 1, . . . , n,
that ϕ(x1)+d(x1, xi) ≥ ϕ(xi), and ϕ(xi) ≥ ϕ(z)−d(z, xi) = ϕ(x1)+d(x1, z)−
d(z, xi) = ϕ(x1) + d(x1, xi) . ♦

This ends the proof of Lemma 8.2; using it, one may prove the lemma below,
which is enough to conclude the proof of Holmes's theorem.

Lemma 8.3. Let U be embedded in B as above, let x1, . . . , xn ∈ U, and let
f ∈ {0, x1, . . . , xn}′. Then there exists a continuous linear functional ϕ such
that ||ϕ|| = 1 and ϕ(xi) = f(xi) for all i = 1, . . . , n.

Before proving Lemma 8.3, notice that it is su�cient to conclude the proof;
indeed we have, for all x1, . . . , xn ∈ U, and all a1, . . . , an ∈ R, that ||

∑
aixi|| =

sup{|
∑
aiϕ(xi)| : ϕ is linear and ||ϕ|| = 1}, so

||
∑

aixi|| ≥ sup
{∣∣ n∑

i=1

λif(xi)
∣∣ : f ∈ {0, x1, . . . , xn}′

}
.

It is clear (again because of the Hahn-Banach theorem) that the converse
inequality is always true, so we get that the equality holds. Thus, we only
need to prove Lemma 8.3.

Proof of Lemma 8.3. Pick f ∈ {0, x1, . . . , xn}′, denote this time D =
diam({0, x1, . . . , xn}) and set g(0) = 2D, g(xi) = 2D + f(xi). One checks
easily that g ∈ E({0, x1, . . . , xn}), so that there exists some z ∈ U such
that d(z, 0) = 2D, and d(z, xi) = 2D + f(xi) for all i = 1, . . . , n. Applying
Lemma 8.2 to z, 0, x1, . . . , xn (in that order), we obtain a linear functional ϕ
such that ||ϕ|| = 1, ϕ(0) = ϕ(z)+d(z, 0) = ϕ(z)+2D (so that ϕ(z) = −2D),
and ϕ(xi) = ϕ(z) + d(z, xi) = −2D + 2D + f(xi) = f(xi) for all i. ♦

This concludes the proof of Holmes's theorem, which has a remarkable con-
sequence: assume that X,X ′ are isometric to U, and that 0 ∈ X ⊂ B,
0 ∈ X ′ ⊂ B′, where B and B′ are Banach spaces. Then any isometry
ϕ : X → X ′ mapping 0 to 0 extends to a linear isometry ϕ̃ which maps the
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closed linear span of X (in B) onto the closed linear span of X ′ (in B′): to see
that, one simply has to check that the mapping ϕ̃ :

∑n
i=1 λixi 7→

∑n
i=1 λiϕ(xi)

is an isometry from the linear span of X to that of X ′, and this is a direct
consequence of the formula we obtained for the norm of a linear combination
of elements of U.
Also, if P ⊂ U is a Polish metric space containing 0, then Holmes' result
shows that the closed linear span of P (in B) is isometric to the Lipschitz-
free space over P (see [We] for information on these spaces).
In particular, if 0 ∈ U ⊂ B for some Banach space B, then the closed linear
span of U is isometric to the Lipschitz-free Banach space of U; this might be
stated as "the Urysohn space generates a unique Banach space". This leads
to the introduction of a new property of metric spaces.

De�nition 8.4. Let X be a metric space. We say that X is linearly rigid if,
for any embedding of X in a Banach space B satisfying 0 ∈ X, one has, for
all x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R, that

||
n∑

i=1

λixi|| = sup
{∣∣ n∑

i=1

λif(xi)
∣∣ : f ∈ {0, x1, . . . , xn}′} .

In other words, a space X is linearly rigid if and only there is a unique norm
compatible with the metric on X.

We saw the Urysohn space is linearly rigid; in [MPV], it is established that
linear rigidity is a "Urysohn-type" property, meaning that a space is linearly
rigid if, and only if, some Kat¥tov maps over �nite subsets are (approxi-
mately) realized in the space.

Hints for the exercises.

(1) If f̂ , ĝ denote the extensions of f and g from Y to X, and x ∈ X, then
one has f̂(x) = f(y) + d(x, y) for some y ∈ Y ; since ĝ(y) ≥ g(y) + d(y, x),
one gets f(x)− g(x) ≤ f(y)− g(y) ≤ d(f, g).
(2) Look at the proof of Proposition 2.2.
(3) This is proved by induction: saying that X has the extension property is
exactly the statement "for any �nite metric spaces A ⊂ A′ = A ∪ {z}, any
isometric embedding of A into X extends to an isometric embedding of A′

into X".
(4) Let X, Y be two �nitely injective metric spaces; pick two countable sets
{xn} and {yn} that are dense in X and Y respectively. Then use the back-
and-forth method to build an isometry between two countable sets X ′ and
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Y ′ such that {xn} ⊂ X ′ and {yn} ⊂ Y ′.
(5) Use the characterization of the random graph as being the unique univer-
sal countable graph G such that any isomorphism between �nite subgraphs
extends to an isomorphism of G (see [Bol]).
(6) Use the triangle inequality and the extension property of U.
(7) Look at geodesics going through x and hitting the sphere in two points,
one being as close to x as possible and the other being as far from x as
possible. The second formula is

∀x ∈ B d(x, 0) =
1

2
(sup

x∈S
d(x, z)− inf

x∈S
d(x, z))

(8) Prove that the intersection, if nonempty, has the extension property for
spaces of diameter d (where d is the smallest of the diameters of the spheres);
use the extension property of U to prove this.
(9) Use the extension property to show that, if x 6= y, then there exists k ∈ K
such that d(x, k) 6= d(x, y) (assume that d(x, xi) = d(x, yi) for all i, and use
an argument similar to the one used in the preceding exercise).
(10) For the beginning, use the same method as in Exercise 9. To prove
that Med({x1, x2}) ∪ {x1} is a set of uniqueness, pick x, x′ ∈ U such that
d(x, x1) = d(x′, x1). If d(x, x2) 6= d(x′, x2), prove that there exists z such
that d(z, x1) = d(z, x2) but d(z, x) 6= d(z, x) (think of z as being very far
from x, x′, x1, x2). Conclude.
(11) Let X denote the amalgam of two copies of U over B = B(0, 1]; consider
an isometry ψ0 of X which is the identity on B but has no other �xed points
(draw a picture). Then embed X in U, and pick any isometry ϕ which maps
U to one of the two copies of U that were used to de�ne X (sending B to
the set the two copies of U are amalgamated on). Then ϕ and ϕ′ = ψ0 ◦ ϕ
provide the example we're looking for.
(12) Show �rst that, if any isometry of B extends to an isometric map de�ned
on U, then any isometry of B actually has to extend to an isometry of U.
Also, if all isometries of B extend, then it de�nes a morphism from Iso(B)
into Iso(U). Since this morphism has an inverse (the restriction to B), it
is actually an isomorphism. The restriction morphism is clearly continuous,
so the extension morphism has to be continuous too. Picking some z ∈ U
such that d(z, 0) ≥ 10 (for instance), build a sequence of isometries (ϕn) of
U such that ϕn(x) → x for all x ∈ B, but d(z, ϕn(z)) = 1 for all n. You may
for instance ensure that ϕn �xes the �rst n points of a given dense subset of
B, including its center, and d(ϕn(z), z) = 1 . This shows that the extension
morphism is not continuous, which is a contradiction.
(13) Use the back-and-forth method as in the proof of Theorem 3.2.
(14) Saying that τ commutes with σ is saying that τ(n+ 1) = τ(n) + 1. But
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then τ(n) = τ(0) + n for all n ∈ Z.
(15) It would be too long to detail the construction here; use the Gram-
Schmidt orthonormalization process to build paths (you may even use �nite-
dimensional subspaces instead of compact subspaces).
(16) Notice that, for instance, the set of permutations on N, endowed with
the discrete distance, isometrically embeds in Iso(U) when it is equipped with
the uniform metric. (There exists a copy of N, with the discrete distance,
which isometrically embeds in U).
(17) Let f ∈ E(A) be the map that corresponds to ϕ∗(a) in E(A); show that
d(a, f) ≤ λ (where the distance is computed in E(A)). Use this to obtain a
point z ∈ U such that setting z = ϕ(a) is a suitable extension of ϕ.
(18) This proof is similar to the one that says that isometries of X extend
uniquely to isometries of E(X) (the idea is that a point in Xi+1 is uniquely
characterized (among points in Xi+1) by its distances to the points in Xi).
(19) Pick any number strictly larger than 4ei and call it ei+1. Then there
exists ji such that dji

≥ 2ei+1; the de�nition of Xji+1 ensures that setting
ai(x) = ei+1 + d(x,Xki−1) de�nes an element ai ∈ Xji+1; this element has to
be such that g∗(ai) = ai for all g ∈ G. Indeed, d(g∗(ai), x) = ei+1+d(x,Xki−1)
for all x ∈ Xji

(because Xji
is �xed by g∗), and elements of Xji+1 are uniquely

characterized by their distances to elements of Xji
.

(20) Prove that if (c) is satis�ed then all copies of X are g-embedded in U.
To prove the implication, use this fact, and the fact that for any f ∈ E(X)
there exists an isometric copy of X ∪ {f} contained in U.
(21) There exists m,M > 0 and a sequence (xi) such that m < d(xi, xj) < M
for all i 6= j. Then check that the map de�ned by f(x) = 2M + inf(d(x, xi))
is a Kat¥tov map and is not saturated.
(22) See [Me3], Lemma 4.8.
(23) The same proof works, replacing everywhere {ϕn(x) : n ∈ Z} by the
orbit of x under the action of G (for instance, replace ρϕ(x) by the diameter
of that orbit).
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