
A NOTE ON HJORTH’S OSCILLATION THEOREM.

JULIEN MELLERAY

Abstract. We reformulate, in the context of continuous logic, an oscillation
theorem proved by G. Hjorth and give a proof of the theorem in that setting
which is similar to, but simpler than, Hjorth’s original one. The point of view
presented here clarifies the relation between Hjorth’s theorem and first-order
logic.

1. Introduction and definitions.

Recently, G. Hjorth obtained a nice "oscillation theorem" for actions of Polish
groups by isometries (see [3]). In [4], V. Pestov points out the importance of this
result, before noting that the original proof is rather intricate: "The proof of Hjorth
at this stage looks highly technical, as they say, hard. As it is being slowly digested
by the mathematical community, there is no doubt that it will lead to new concepts
and insights into the theory of topological groups and eventually will come to be
fully understood and made into a "soft" proof". This short note may be thought
of as an attempt at "digesting" the proof of Hjorth’s oscillation theorem.

Hjorth himself pointed out that his result is related to a first-order logic result,
which he also proved in [3]; below we try to understand this connection, by proving
an equivalent version of the oscillation theorem in the framework of continuous
logic. This leads to a statement mirroring the first-order one; proving the theorem
in this setting also enables one to simplify the original proof a bit. The underlying
idea is that continous logic enables one to extend the techniques and combinatorics
of first-order logic to the context of metric spaces. Intuitively, the equality symbol
is replaced by the distance function.

We refer to [2] for background on Polish groups, and to [1] for information about
continuous logic.

Definition 1. A Polish metric space is a separable metric space whose distance is
complete. A Polish group is a separable topological group, the topology of which
admits a compatible complete distance.

These spaces and groups are ubiquitous in analysis and geometry; Polish groups
in particular have been an important point of interest for descriptive set theory over
the past few decades. The following example is of particular importance: whenever
(X, d) is a Polish metric space, its isometry group Isom(X, d), endowed with the
pointwise convergence topology, is a Polish group.

Convention. Whenever (X, d) is a metric space and n ∈ N, we endow Xn with
the sup-metric, which we still denote by d. Explicitly,

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
= sup{d(xi, yi) : 1 ≤ i ≤ n} .
1
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Below we will only deal with relational metric structures, which we define now,
along with some concepts that will be needed later on.

Definition 2. A relational metric structure M is a complete metric space (M,d)
with d bounded by 1, along with a family (Pi)i∈I of predicates, i.e uniformly contin-
uous maps from Mki to [0, 1] (where ki ∈ N). We always assume that the distance
function d : M2 → [0, 1] is included in our list of predicates.
The structure is said to be Polish if the underlying metric space is, that is, if M is
separable.

Once we have this definition, we need to be able to say when two tuples look
similar.

Definition 3. Let M be a relational metric structure. We say that two tuples
(a1, . . . , an) and (b1, . . . , bn) in Mn have the same quantifier-free type if for all
{j1, . . . , jk} ⊆ {1, . . . , n} and all i ∈ I with ki = k one has

Pi(aj1 , . . . , ajk) = Pi(bj1 , . . . , bjk) .

The natural mappings to consider in this setting are of course those who preserve
the structure we put on the set M .

Definition 4. A morphism from a relational metric structure M into itself is a
mapping from M to M that also preserves all the predicates. It is important to
bear in mind that a morphism is always distance-preserving. A morphism is an
automorphism if it is onto.

We endow the automorphism group Aut(M) of a relational metric structureM
with the pointwise convergence topology. Note that Aut(M) is a closed subgroup
of the isometry group of (M,d) and so is a Polish group. Indeed, preserving a
given predicate is a closed condition for the pointwise convergence topology since
predicates are continuous.

Our next definition introduces a concept that extends the usual notion of ultra-
homogeneous structure from first-order logic.

Definition 5. We say that a relational metric structure M is approximately ul-
trahomogeneous if for any n-tuples (a1, . . . , an) and (b1, . . . , bn) with the same
quantifier-free type and any ε > 0 there exists g ∈ Aut(M) such that d(g(ai), bi) ≤ ε
for all i = 1, . . . , n.

Note that ifM is separable and approximately ultrahomogeneous then any mor-
phism is a pointwise limit of automorphisms. This is due to the fact that morphisms
preserve quantifier-free type.

Whenever d is the discrete distance on X, the definitions above coincide with
the usual concepts of classical first-order logic. But there are of course many nat-
ural examples where the distance is not discrete; in some sense continuous logic
complements classical combinatorics with analysis.

Now that we have dealt with the basic definitions of continuous logic, we come
to Hjorth’s theorem. To state it, we need to introduce yet another notion, which is
important when one works with metrizable topological groups.

Definition 6. Let G be a metrizable topological group with a compatible left-
invariant distance δ. The left-completion of G, denoted by Ĝ, is simply the metric
completion of (G, δ).
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Note that G naturally acts on Ĝ by isometries; however Ĝ is not in general a
group but only a semigroup. An important feature of this definition, which is well
explained in Hjorth’s paper [3] and Gao’s book [2], is that Ĝ does not depend on
the choice of left-invariant metric δ, in the sense that any two left-invariant metrics
on G (compatible with its topology, of course) will produce isomorphic Ĝ. This
happens because Cauchy sequences are the same for all left-invariant distances.

We will consider the left-completion of groups acting by isometries on Polish
metric spaces; recall that if (X, d) is such a space, its isometry group Isom(X, d),
endowed with the pointwise convergence topology, is a Polish group. A compatible
left-invariant metric δ can be obtained as follows: fix a countable dense set {xi}i∈N
and then define, for two isometries ϕ,ψ of X,

δ(ϕ,ψ) =
+∞∑
i=0

2−i min
(
1, d(ϕ(xi), ψ(xi))

)
.

Beware, the metric δ above is in general not complete! If G ≤ Isom(X, d),
we identify Ĝ with the left-completion of (G, δ), which one can naturally see as a
semigroup of isometric embeddings of (X, d) into itself.

We are now ready to state Hjorth’s oscillation theorem:

Theorem 1. (Hjorth)
Let (X, d) be a complete separable metric space, and G ≤ Isom(X, d) a group of
cardinality bigger than one. Then there exists x0, x1 ∈ X and uniformly continuous

f : {(π.x0, π.x1) : π ∈ G} → [0, 1]

such that for any ρ ∈ Ĝ there exist

(y0, y1), (z0, z1) ∈ {
(
ρ(π(x0)), ρ(π(x1))

)
: π ∈ Ĝ}

with f(y0, y1) = 0 and f(z0, z1) = 1.

The goal of this note is to establish the following version of Hjorth’s theorem:

Theorem 2.
Let M be an approximately ultrahomogeneous relational Polish metric structure
such that |Aut(M)| > 1. Then there exist a uniformly continuous f : M2 → [0, 1]
and (a0, a1) ∈ M2 such that for any morphism ρ : M → M one can find (b0, b1)
and (c0, c1) in the image of ρ2, with the same quantifier-free type as (a0, a1) and
such that f(b0, b1) = 1, f(c0, c1) = 0.

This statement mirrors the first-order result proved by Hjorth in [3], correspond-
ing to the case when d only takes the values 0 and 1, and extends it to the context of
metric structures. It is not immediately clear why theorems 1 and 2 are equivalent;
we will first give a proof of Theorem 2 and then explain why both theorems are
really saying the same thing, albeit in somewhat different languages.

Before we move on to the proof of Theorem 2 let us, for the sake of completeness,
state Hjorth’s first-order result that is mentioned above. In this theorem all notions
should be understood in the usual first-order theoretic sense; it should be obvious
that our Theorem 2 is just an extension of this theorem to the setting of continuous
logic.

Theorem 3. (Hjorth)
Let M be a ultrahomogeneous relational countable first-order structure such that
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|Aut(M)| > 1. Then there exist a function f : M2 → {0, 1} and (a0, a1) ∈M2 such
that for any morphism ρ : M→M one can find (b0, b1) and (c0, c1) in the image of
ρ2, with the same quantifier-free type as (a0, a1) and such that f(b0, b1) = 1 while
f(c0, c1) = 0.

2. Proof of theorem 2.

Most ideas in the proof below are already present in Hjorth’s paper; however the
point of view adopted here limits the use of what he calls "messy approximations".
We divide the proof in three subcases.

In the following we let G = Aut(M). Recall that, because of the approximate
ultrahomogeneity ofM, any morphism ofM is a pointwise limit of elements of G.

Case I. Any a ∈ M has a precompact orbit under G. Since any morphism
induces an isometry of G.a into itself, and self-isometries of compact metric spaces
are necessarily onto, we see that in this case any morphism is onto. Thus there is
essentially nothing to prove in this case.

In what follows, we fix some a such that G.a is not precompact, and pick ε > 0
such that G.a contains an infinite set B satisfying d(b, b′) > 100ε whenever b 6= b′ ∈
B. For any δ > 0, we let Stabδ(a) = {g ∈ G : d(g.a, a) < δ}, and
aclδ(a) = {y ∈ G.a : Stabδ(a).y is covered by finitely many balls of radius ε} .

Case II. There exists δ > 0 such that aclδ(a) contains an infinite set Z with
d(z, z′) > 10ε whenever z, z′ are two distinct elements of Z.
From now on we fix such a δ and some countable dense set {ai}i∈N in G.a.

Lemma 4. We can find sequences (di), (ei) such that di, ei ∈ aclδ(ai) for all i ∈ N
and

d(Stabδ/2(ai).di, Stabδ/2(aj).ej) ≥ ε for any i, j ∈ N .

Proof. Assume that we have been able to define di, ei up to some n. One can find
an infinite set {zj : j ∈ N} contained in aclδ(an+1) and such that d(zi, zj) > 10ε
whenever i 6= j. What we want is to find some j such that Stabδ/2(an+1).zj is at
distance larger than ε from the set

A =
n⋃
i=0

Stabδ/2(ai).ei .

Since each ei is in aclδ(ai), the set A is covered by a finite number N of balls
B1, . . . , BN of radius ε. If we cannot find a satisfactory j, there is i0 ∈ {1, . . . , N}
and an infinite J ⊂ N such that, for all j ∈ J , zj is mapped by some gj ∈
Stabδ/2(an+1) at distance strictly less than ε from Bi0 ; so for j, k ∈ J we get

d(gj(zj), gk(zk)) < 4ε .

Fix some j ∈ J ; we have d(g−1
k gj(zj), zk) < 4ε for all k ∈ J . Using the fact that

d(zk, zl) > 10ε whenever l 6= k, the triangle inequality yields, for any l 6= k ∈ J ,
that

d(g−1
k gj(zj), g−1

l gj(zj)) > 2ε .
Since each g−1

k gj belongs to Stabδ(an+1), this contradicts the fact that zj ∈ aclδ(an+1).
Hence one can find some suitable zj , and set dn+1 = zj ; the same line of reasoning
works to obtain en+1. This concludes the proof of the lemma . �
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Now we are ready to conclude the proof of case II: set D =
⋃
Stabδ/2(ai).di,

E =
⋃
Stabδ/2(ai).ei. From the lemma we get d(D,E) ≥ ε, and so one can

find a uniformly continuous map f : M → [0, 1] such that f(x) = 1 whenever
d(x,D) < ε/10 and f(x) = 0 whenever d(x,E) < ε/10.
Then for any morphism ρ ofM we may assume (up to multiplying ρ on the right
by some automorphism, which does not change the image of ρ) that there is some
i such that d(ai, ρ(ai)) < δ/2. Since any morphism is a pointwise limit of auto-
morphisms, this shows that ρ(di) ∈ D while ρ(ei) ∈ E, and so f(ρ(di)) = 1 while
f(ρ(ei)) = 0.
Note that in case II, as in case I, we obtain a function of one variable which oscil-
lates on the image of any morphism ofM.

Case III. For any δ > 0, aclδ(a) is covered by finitely many closed balls of radius
10ε.
We pick (ai) dense in G.a, and find a uniformly continuous f : M2 → [0, 1] such
that, for all n, f equals 1 on Cn1 = B(an, ε/10) × (X \

⋃
m≤nB(am, ε/4)) while f

equals 0 on Cn0 = (X \
⋃
m<nB(am, ε/4))×B(an, ε/10).

To see that this is indeed possible, let C0 (resp. C1) denote the union of all the
Cn0 (resp. Cn1 ). Then pick c0 ∈ C0, c1 ∈ C1; one has c0 ∈ Cn0 and c1 ∈ Cm1 for
some n,m. If m ≥ n, the second coordinates of c0, c1 ensure that d(c0, c1) ≥ ε/10.
If m < n, then the first coordinates of c0, c1 again ensure that d(c0, c1) ≥ ε/10.
Hence one has d(c0, c1) ≥ ε/10 for any c0 ∈ C0, c1 ∈ C1 and so one can find f as
above.

Lemma 5. For any δ > 0 there exist x0, x1 ∈ G.a such that x0 6∈ aclδ(x1) and
x1 6∈ aclδ(x0).

Proof of Lemma 5. Fix δ > 0. There is someN such that, for any b ∈ G.a, aclδ(b) is
covered by N closed balls of radius 10ε. By choice of ε, we can find b0, . . . , bN ∈ G.a
such that d(bi, bj) > 100ε and then pick some c ∈ G.a with d(c,

⋃
aclδ(bi)) > 10ε.

In particular, c 6∈ aclδ(bi) for all i. Since aclδ(c) is covered by N balls of radius 10ε,
there has to be some io such that bi0 6∈ aclδ(c).
Setting x0 = bi0 , x1 = c, we are done. �

Now pick x0, x1 as above for δ = ε/20. We claim that (f, x0, x1) satisfy the
conclusion of the theorem. Pick a morphism ρ of M ; we can find am0 , am1

such that d(ρ(x0), am0) < δ and d(ρ(x1), am1) < δ. Let k = m0 + m1 + 1.
Since x1 does not belong to aclδ(x0) and x0 does not belong to aclδ(x1), we
can find (πi)i=1,...,k ∈ Stabδ(x0) and (π′i)i=1,...,k ∈ Stabδ(x1) such that the balls
B(πi(x1), ε/2) are disjoint, and similarly for B(π′i(x0), ε/2).
But then we obtain that d(ρ ◦ πi(x0), am0) < ε/10 for all i = 1, . . . , k while
d(ρ◦πi(x1), ρ◦πj(x1)) ≥ ε/2 for any i 6= j. Hence any aj , j ≤ k, can only belong to
one ball B(ρ ◦ πi(x1), ε/4), so there is some i0 < k such that no aj , j ≤ k, belongs
to B(ρ ◦ πi0(x1), ε/4). Looking at the definition of f , we obtain f(ρ ◦ πi0(x0), ρ ◦
πi0(x1)) = 1. Similarly one finds some j0 such that f(ρ ◦ π′j0(x0), ρ ◦ π′j0(x1)) = 0,
which concludes the proof of Theorem 2.

3. A few comments.

Let us begin this final section with a short comparison of the proof above with
Hjorth’s original proof. Both proofs are divided in subcases; case I is the same
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in both, but case II and case III above are different from the cases considered by
Hjorth. The reason is fairly simple: we allow δ and ε to vary independently, while
Hjorth considers δ as a function of ε. Because of this he needs more complicated
combinatorics to make the proof work. The ideas of the proof of case III (the defi-
nition of f and the clever combinatorial argument) are taken from Hjorth’s paper,
while case II is much simpler since the only bit of combinatorics that it requires is
the pigeon-hole principle. Here the point of view of continuous logic makes clear
what the right notion of algrebraic closure is in our context, and this makes the
proof flow more smoothly.

Now, we should explain precisely why Theorem 2 and Hjorth’s oscillation the-
orem are indeed equivalent. It should be clear that Theorem 2 is a direct conse-
quence of Hjorth’s theorem, since whenM is approximately ultrahomogeneous the
left-completion of Aut(M) coincides with the set of morphisms fromM into itself,
and morphisms preserve quantifier-free type. To see why the converse is true, we
will prove the following result, which is of some independent interest.

Theorem 6. Let (X, d) be a Polish metric space with diameter less than 1 and
G ≤ Isom(X, d) be a Polish group. Then there exists a family (Ri)i∈I of predicates
such thatM = (X, d, (Ri)i∈I) is an approximately ultrahomogeneous Polish metric
structure with automorphism group G.
In particular, any Polish group is the automorphism group of some approximately
ultrahomogeneous Polish metric structure.

Theorem 6 is the continuous logic version of the well-known theorem that states
that any closed subgroup of S∞ is isomorphic (as a topological group) to the auto-
morphism group of some countable first-order structure. Some variants of theorem
6 were already known (see for example theorem 2.4.5 in [2]). It is not clear, at
least to the author, who this theorem should be attributed to. It may be folklore.
Anyway, it provides the tool that enables one to deduce Hjorth’s theorem from
Theorem 2: note first that replacing the distance d by the distance d/(1 + d) does
not change either the isometry group of X or the uniformly continuous maps from
X2 to [0, 1], so one may assume in Hjorth’s theorem that d is bounded by 1. It
is also clear that one may assume that G is closed in Isom(X, d). Then it is not
too hard to see that the combination of Theorem 6 and Theorem 2 yields Hjorth’s
theorem.

Proof of Theorem 6. Consider for any n the closed equivalence relation ∼n coming
from the diagonal action of G on Xn:

x = (x1, . . . , xn) ∼n y = (y1, . . . , yn)⇔ x ∈ G.y .
This is an equivalence relation because G acts on Xn by isometries. For any ∼n-
class C, add a predicate RC : Mn → [0, 1] defined by

RC(x1, . . . , xn) = d
(
(x1, . . . , xn), C

)
.

We claim that the metric structure M obtained by adding all those predicates
to X is approximately ultrahomogeneous and has G as its automorphism group.
It is immediate that any element of G preserves all our predicates, and hence is
an automorphism of M; given the predicates we chose, we then see that M is
approximately ultrahomogeneous.
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To show that G = Aut(M), let π be an automorphism of M. Then, for any
x1, . . . , xn ∈ X, (x1, . . . , xn) and (π(x1), . . . , π(xn)) have the same quantifier-free
type, and so for all ε > 0 there is g ∈ G such that d(g(xi), π(xi)) < ε. This shows
that π is a pointwise limit of elements of G and so belongs to G, for since G is
Polish it must be closed in Isom(X, d).

Note that one could easily make the family of predicates above countable, by
fixing some countable dense set A = {ai}i∈N and then only considering ∼n classes
of tuples belonging to An. �
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