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Examen partiel, 11 mars 2014 : Correction.
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Exercice 1. On s’attend & une somme de Riemann, et on écrit donc Z ntk 1 Z 0
k71n2+k2 e

. On reconnait

. o . . 1+z . o e
une somme de Riemann associée a la fonction continue x — ————, pour une subdivision pointée de I'intervalle

1+
[0, 1], dont le pas vaut %, qui tend vers 0.

= k !
On peut donc conclure que E % tend vers / . :’ 552 dz. Il nous reste a calculer cette intégrale :
n 0 x
k=1

Y142 1 1 1 z 1 1n(1—|—x2) 1
/o 1+x2dx—/o md”/o mdm—[arctanm}ﬁ[#h,
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On obtient finalement ngrfw ; PR =7 + 5

Exercice 2. 1. Sur | — m,7[ on a cos(xz) > —1, donc pour €] — m,w[ 1 4 cos(u) > 0 pour tout u entre 0
cos(u)
1+ cos(u)
deux fonctions continues dont le dénominateur ne s’annule pas. Ceci montre que f(z) est bien définie, en
tant qu’intégrale d’une fonction continue sur un segment, pour tout = €] — 7, w[. Le méme raisonnement
s’applique pour g : pour tout z €] — m, 71| g(x) est aussi I'intégrale d’une fonction continue sur un segment
(dans les deux cas on pourrait appliquer le théoréme fondamental de I’analyse pour calculer f’ et g’, mais

I’énoncé ne nous le demande pas).

et x; par conséquent u — est une fonction continue sur ce segment en tant que quotient de

2. Pour z €] — m, [, les fonctions u — cos(u) et u — sont de classe C*° sur le segment [0, z]; en

1
1+cos(u)
particulier on peut leur appliquer la formule d’intégration par parties (en intégrant la premiére fonction et
dérivant la deuxiéme), et on obtient, pour tout = €] — w, x| :

o) = sin(u) 1° B T sin®(u) N
f(z) {1+cos(u)]o /0 (1 + cos(u))? du .
On obtient donc

Ve €] —m 7| f(z) sin(z) ) —g(z) .

T 1+ cos(x

3. En écrivant que sin?(u) = 1 — cos?(u) = (1 + cos(u))(1 — cos(u)), on obtient pour x €] — 7, 7[ que

o) = [ L g [ L) o) g, [ o) Y

1 + cos(u) 1+ cos(u) 1+ cos(u)

4. On a donc, pour tout z €] [, que f(z) sin(@) (z) et g(z) =2 — 2f(x)

. -7, =7 =z — .

y P y T 9 1+ cos(z) g g
On en déduit que
sin(x) 2sin(z)
V€] -, =p— ) g L -
vel-mal fl@)== 1+ cos(z) et 9(@) 1+ cos(z) ¢
Exercice 3.

1. La fonction intégrée est a valeurs positives, continue sur |0,4o00[; en 0 on a W ~ =, qui diverge si

a > 1 et converge si a < 1.

En +oco ona (14+t)? ~ t* (notons que ceci est valable méme si 8 = 0) et donc m

~ ﬁ 5 l’intégrale
de cette derniére fonction converge en +oo si et seulement si a4+ 3 > 1.

On obtient finalement que l'intégrale considérée converge si, et seulement si, on a & la fois o < 1 et
a+ B > 1 (rappelons qu’on a pu utiliser des équivalents parce que la fonction intégrée ne change pas de

signe au voisinage des bornes de l'intégrale).



2. La fonction intégrée est continue, positive puisque |sin(t)| < ¢t pour tout ¢t € [0, +oo[. En 0 on a sin(t) =
t— % + o(t?), ce dont on déduit que t — sin(t) = % +o(t?) ~o % (remarquons au passage qu’on retrouve
le fait que la fonction garde un signe constant en 07, ce qui est tout ce qui nous intéresse pour pouvoir

utiliser des équivalents).
3—a
On en déduit donc que la fonction intégrée est équivalente en 0 & % dont l'intégrale converge en 0 si,

et seulement si, 3 — a > —1, c’est-a-dire o < 4.

1
En +oo on a t —sin(t) ~ t, et la fonction intégrée est donc équivalente en +oo a pray dont l'intégrale
converge en 400 si et seulement si  — 1 > 1, c’est-a-dire a > 2.
Finalement, I'intégrale considérée est convergente si et seulement si 2 < o < 4.

Exercice 4.

1. Pour z €]0, 5[, la fonction u +— tan(u) réalise une bijection de classe C*° de l'intervalle [0, ] sur Iintervalle
[0, tan(z)]. On peut donc utiliser ce changement de variables, et on obtient en utilisant les formules tan’(u) =

1+ tan?(u) et cos®(u) = m, valides pour tout u € [0, 5[, que

/I cos?(u) du_/“an(z)( 1 ) 1 dt
o l4cos2(u) ~ J, 1+ t2 1—|—H% 1+ 2

_/tan(ac) di
~Jo (1+22)(2+ %)

On reconnait une intégrale de fraction rationnelle ; pour la calculer on a besoin de décomposer en éléments

simples la fraction rationnelle . La décomposition de cette fraction (sur R) sera de la

1+ X2)(2+ X7
1 aX+b cX+d

14+ X2)(2+X2)  1+X2 1+X2°

On utilise les nombres complexes pour la calculer : en multipliant par 1+ X? et en faisant X = ¢, on obtient

forme

1
i +b=—==1
at + 21 2
Donc a = 0 et b = 1. En multipliant par 24 X? et en posant X = i1/2, on obtient de méme ¢ =0, d = —1.

Finalement on obtient que
1 1 2

(I+X2)2+X?%) 1+X2 1+X2°

On aurait pu aussi obtenir ce résultat en écrivant simplement 1 = (2 + X?) — (1 + X?) et en simplifiant la
fraction.

Finalement, on obtient

z 2 tan(zx) tan(x)
/ cos (1;) du:/ dt2 7/ 1 i
o 1+ cos?(u) 0 1+1¢ 0 24t

tan(zx)

1
= arctan(tan(z)) — — arctan

V2
tan(x)

V2

)

1
=z — — arctan(

V2

T 2

. cos . . . L

2. La fonction z — / ( (w) du est continue (et méme dérivable) sur R puisque la fonction intégrée
0

1+ cos(u)?)
est continue; on peut donc passer & la limite dans ’égalité ci-dessus et obtenir, en utilisant le fait que

tan(v) tend vers 4+-0o quand v tend vers % et que arctan(v) tend vers 7 quand v tend vers 400, que

3 cos(u)? . 1o 7(v2 - 1)
/0 (1 + cos(u?) ™= 2 NG



