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Exercice 1. On s’attend à une somme de Riemann, et on écrit donc
n∑
k=1

n+ k

n2 + k2
=

1

n

n∑
k=1

1 + k
n

1 + k2

n2

. On reconnaît

une somme de Riemann associée à la fonction continue x 7→ 1 + x

1 + x2
, pour une subdivision pointée de l’intervalle

[0, 1], dont le pas vaut 1
n
, qui tend vers 0.

On peut donc conclure que
n∑
k=1

n+ k

n2 + k2
tend vers

∫ 1

0

1 + x

1 + x2
dx. Il nous reste à calculer cette intégrale :

∫ 1

0

1 + x

1 + x2
dx =

∫ 1

0

1

1 + x2
dx+

∫ 1

0

x

1 + x2
dx =

[
arctan(x)

]1
0

+

[
ln(1 + x2)

2

]1
0

.

On obtient finalement lim
n→+∞

n∑
k=1

n+ k

n2 + k2
=
π

4
+

ln(2)

2
.

Exercice 2. 1. Sur ] − π, π[ on a cos(x) > −1, donc pour x ∈] − π, π[ 1 + cos(u) > 0 pour tout u entre 0

et x ; par conséquent u 7→ cos(u)

1 + cos(u)
est une fonction continue sur ce segment en tant que quotient de

deux fonctions continues dont le dénominateur ne s’annule pas. Ceci montre que f(x) est bien définie, en
tant qu’intégrale d’une fonction continue sur un segment, pour tout x ∈] − π, π[. Le même raisonnement
s’applique pour g : pour tout x ∈]− π, π[ g(x) est aussi l’intégrale d’une fonction continue sur un segment
(dans les deux cas on pourrait appliquer le théorème fondamental de l’analyse pour calculer f ′ et g′, mais
l’énoncé ne nous le demande pas).

2. Pour x ∈] − π, π[, les fonctions u 7→ cos(u) et u 7→ 1
1+cos(u)

sont de classe C∞ sur le segment [0, x] ; en
particulier on peut leur appliquer la formule d’intégration par parties (en intégrant la première fonction et
dérivant la deuxième), et on obtient, pour tout x ∈]− π, π[ :

f(x) =

[
sin(u)

1 + cos(u)

]x
0

−
∫ x

0

sin2(u)

(1 + cos(u))2
du .

On obtient donc
∀x ∈]− π, π[ f(x) =

sin(x)

1 + cos(x)
− g(x) .

3. En écrivant que sin2(u) = 1− cos2(u) = (1 + cos(u))(1− cos(u)), on obtient pour x ∈]− π, π[ que

g(x) =

∫ x

0

1− cos(u)

1 + cos(u)
du =

∫ x

0

1 + cos(u)− 2 cos(u)

1 + cos(u)
du =

∫ x

0

(
1− 2

cos(u)

1 + cos(u)

)
= x− 2f(x) .

4. On a donc, pour tout x ∈]− π, π[, que f(x) = sin(x)

1 + cos(x)
− g(x) et g(x) = x− 2f(x).

On en déduit que

∀x ∈]− π, π[ f(x) = x− sin(x)

1 + cos(x)
et g(x) =

2 sin(x)

1 + cos(x)
− x .

Exercice 3.

1. La fonction intégrée est à valeurs positives, continue sur ]0,+∞[ ; en 0 on a 1
tα(1+t)β

∼ 1
tα
, qui diverge si

α ≥ 1 et converge si α < 1.
En +∞ on a (1+ t)β ∼ tβ (notons que ceci est valable même si β = 0) et donc 1

tα(1+t)β
∼ 1

tα+β ; l’intégrale
de cette dernière fonction converge en +∞ si et seulement si α+ β > 1.
On obtient finalement que l’intégrale considérée converge si, et seulement si, on a à la fois α < 1 et
α + β > 1 (rappelons qu’on a pu utiliser des équivalents parce que la fonction intégrée ne change pas de
signe au voisinage des bornes de l’intégrale).



2. La fonction intégrée est continue, positive puisque | sin(t)| ≤ t pour tout t ∈ [0,+∞[. En 0 on a sin(t) =

t− t3

6
+ o(t3), ce dont on déduit que t− sin(t) = t3

6
+ o(t3) ∼0

t3

6
(remarquons au passage qu’on retrouve

le fait que la fonction garde un signe constant en 0+, ce qui est tout ce qui nous intéresse pour pouvoir
utiliser des équivalents).

On en déduit donc que la fonction intégrée est équivalente en 0 à
t3−α

6
, dont l’intégrale converge en 0 si,

et seulement si, 3− α > −1, c’est-à-dire α < 4.

En +∞ on a t − sin(t) ∼ t, et la fonction intégrée est donc équivalente en +∞ à
1

tα−1
, dont l’intégrale

converge en +∞ si et seulement si α− 1 > 1, c’est-à-dire α > 2.
Finalement, l’intégrale considérée est convergente si et seulement si 2 < α < 4.

Exercice 4.

1. Pour x ∈]0, π
2
[, la fonction u 7→ tan(u) réalise une bijection de classe C∞ de l’intervalle [0, x] sur l’intervalle

[0, tan(x)]. On peut donc utiliser ce changement de variables, et on obtient en utilisant les formules tan′(u) =
1 + tan2(u) et cos2(u) = 1

1+tan2(u)
, valides pour tout u ∈ [0, π

2
[, que

∫ x

0

cos2(u)

1 + cos2(u)
du =

∫ tan(x)

0

(
1

1 + t2

)(
1

1 + 1
1+t2

)
dt

1 + t2

=

∫ tan(x)

0

dt

(1 + t2)(2 + t2)

On reconnaît une intégrale de fraction rationnelle ; pour la calculer on a besoin de décomposer en éléments

simples la fraction rationnelle
1

(1 +X2)(2 +X2)
. La décomposition de cette fraction (sur R) sera de la

forme
1

(1 +X2)(2 +X2)
=
aX + b

1 +X2
+
cX + d

1 +X2
.

On utilise les nombres complexes pour la calculer : en multipliant par 1+X2 et en faisant X = i, on obtient

ai+ b =
1

2 + i2
= 1 .

Donc a = 0 et b = 1. En multipliant par 2+X2 et en posant X = i
√
2, on obtient de même c = 0, d = −1.

Finalement on obtient que
1

(1 +X2)(2 +X2)
=

1

1 +X2
− 2

1 +X2
.

On aurait pu aussi obtenir ce résultat en écrivant simplement 1 = (2 +X2)− (1 +X2) et en simplifiant la
fraction.
Finalement, on obtient ∫ x

0

cos2(u)

1 + cos2(u)
du =

∫ tan(x)

0

dt

1 + t2
−
∫ tan(x)

0

1

2 + t2
dt

= arctan(tan(x))− 1√
2
arctan(

tan(x)√
2

)

= x− 1√
2
arctan(

tan(x)√
2

)

2. La fonction x 7→
∫ x

0

cos(u)2

(1 + cos(u)2)
du est continue (et même dérivable) sur R puisque la fonction intégrée

est continue ; on peut donc passer à la limite dans l’égalité ci-dessus et obtenir, en utilisant le fait que
tan(v) tend vers +∞ quand v tend vers π

2
et que arctan(v) tend vers π

2
quand v tend vers +∞, que∫ π

2

0

cos(u)2

(1 + cos(u)2)
du =

π

2
(1− 1√

2
) =

π(
√
2− 1)

2
√
2


