Examen partiel du 21 octobre 2024 (durée: 2h30)

L'emploi de documents, calculatrices, etc. n'est pas autorisé. Le sujet comporte 3 exercices indépendants.

Exercice 1. Dans cet exercice, on note c l'espace des suites réelles convergentes, et c_0 l'espace des suites réelles qui tendent vers 0 en $+\infty$. On les munit de $\|\cdot\|_{\infty}$, définie par $\|x\|_{\infty} = \sup\{|x(n)| : n \in \mathbb{N}\}$.

- 1. Montrer que $(c, \|\cdot\|_{\infty})$ est un espace de Banach.
- 2. Montrer que l'application $L: x \mapsto \lim_{n \to +\infty} x(n)$ est continue sur c, puis que $(c_0, \|\cdot\|_{\infty})$ est un espace de Banach.
- 3. Soit *E* l'espace des suites réelles ne prenant qu'un nombre fini de valeurs non nulles. Montrer que *E* est dense dans $(c_0, \|\cdot\|_{\infty})$.
- 4. Soit $u \in \ell^1(\mathbf{N}, \mathbf{R})$. Pour $x \in c_0$ on pose

$$T_u(x) = \sum_{n=0}^{+\infty} x(n)u(n)$$

- (a) Montrer que T_u est bien définie, continue, et que $||T_u|| = ||u||_1$.
- (b) Soit φ une forme linéaire continue sur c_0 . On note e_n l'élément de c_0 tel que $e_n(n)=1$ et $e_n(i)=0$ si $i\neq n$; on pose $u(n)=\varphi(e_n)$.

Montrer que $u \in \ell^1(\mathbf{N}, \mathbf{R})$ et que $T_u = \varphi$.

(c) Montrer que le dual topologique de c_0 est linéairement isométrique à $\ell^1(\mathbf{N}, \mathbf{R})$.

Remarque : le dual topologique de c est aussi linéairement isométrique à ℓ^1 . Les espaces c et c_0 sont linéairement isomorphes mais ne sont pas linéairement isométriques.

Exercice 2. Soit H un espace de Hilbert, $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de H et $(f_n)_{n\in\mathbb{N}}$ une famille orthonormée. On suppose que $\sum_{n=0}^{+\infty}\|e_n-f_n\|^2$ converge et on fixe $N\in\mathbb{N}$ tel que $\sum_{n=N+1}^{+\infty}\|e_n-f_n\|^2<1$. On note E l'espace vectoriel engendré par $\{e_0,\ldots,e_N\}\cup\{f_n\colon n\geq N+1\}$.

- 1. Soit $x \in E^{\perp}$.
 - (a) Justifier que $||x||^2 = \sum_{n=N+1}^{+\infty} |\langle x, e_n \rangle|^2 = \sum_{n=N+1}^{+\infty} |\langle x, e_n f_n \rangle|^2$.
 - (b) Montrer que x = 0.
- 2. Montrer que *E* est dense dans *H*.

Soit $F = \text{Vect}\{f_n : n \ge N + 1\}.$

- 3. Montrer que F^{\perp} est de dimension finie majorée par N+1.
- 4. Montrer que $(f_n)_{n \in \mathbb{N}}$ est une base hilbertienne de H.

Exercice 3. Soit $d \in \mathbb{N}^*$. On munit \mathbb{R}^d de la norme euclidienne usuelle, notée $\|\cdot\|$.

On dit qu'une partie $C \subset \mathbf{R}^d$ est un *arc rectifiable* s'il existe $f: [0,1] \to \mathbf{R}^d$ lipschitzienne et telle que f([0,1]) = C. Dans cet exercice on fixe un arc rectifiable C.

- 1. Montrer que *C* est compact.
- 2. On suppose que $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions continues de [0,1] dans \mathbb{R}^d telle que pour tout $n\in\mathbb{N}$ on ait $f_n([0,1])=C$, et que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers $f\colon [0,1]\to\mathbb{R}^d$. Montrer que f([0,1])=C (on pourra procéder par double inclusion).
- 3. On définit la *longueur d'arc* $\ell(C)$ par

$$\ell(C) = \inf \{ K \ge 0 \colon \text{ il existe } f \colon [0,1] \to \mathbf{R}^d \text{ K-lipschitzienne et telle que } f([0,1]) = C \}$$

Montrer qu'il existe une surjection lipschitzienne de [0,1] sur C dont la constante de Lipschitz est égale à $\ell(C)$.