

Gale-Stewart games and Blackwell games

Daisuke Ikegami (University of California, Berkeley)

1st of May, 2012

Perfect & imperfect information for games

Perfect information: Players know about the previous moves of opponents.

E.g., Gale-Stewart games.

Imperfect information: Players do not know about what opponents did previously.

E.g., Blackwell games.

From now on...

Work in $\text{ZF} + \text{DC}_{\mathbb{R}}$.

For a set X ,

DC_X : For any relation $R \subseteq X \times X$ such that

$(\forall x \in X) (\exists y \in X) (x, y) \in R$, there is a function $f: \omega \rightarrow X$
such that $(f(n), f(n + 1)) \in R$ for any natural number n .

From now on...

Work in $\text{ZF} + \text{DC}_{\mathbb{R}}$.

For a set X ,

DC_X : For any relation $R \subseteq X \times X$ such that

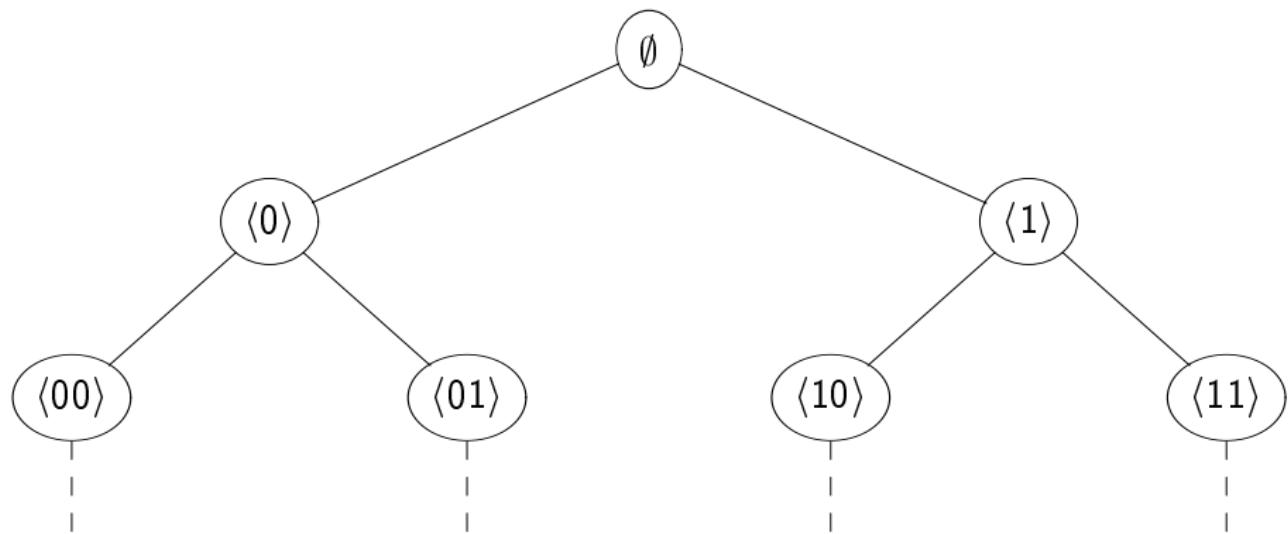
$(\forall x \in X) (\exists y \in X) (x, y) \in R$, there is a function $f: \omega \rightarrow X$ such that $(f(n), f(n + 1)) \in R$ for any natural number n .

DC : DC_X holds for any set X .

Gale-Stewart games

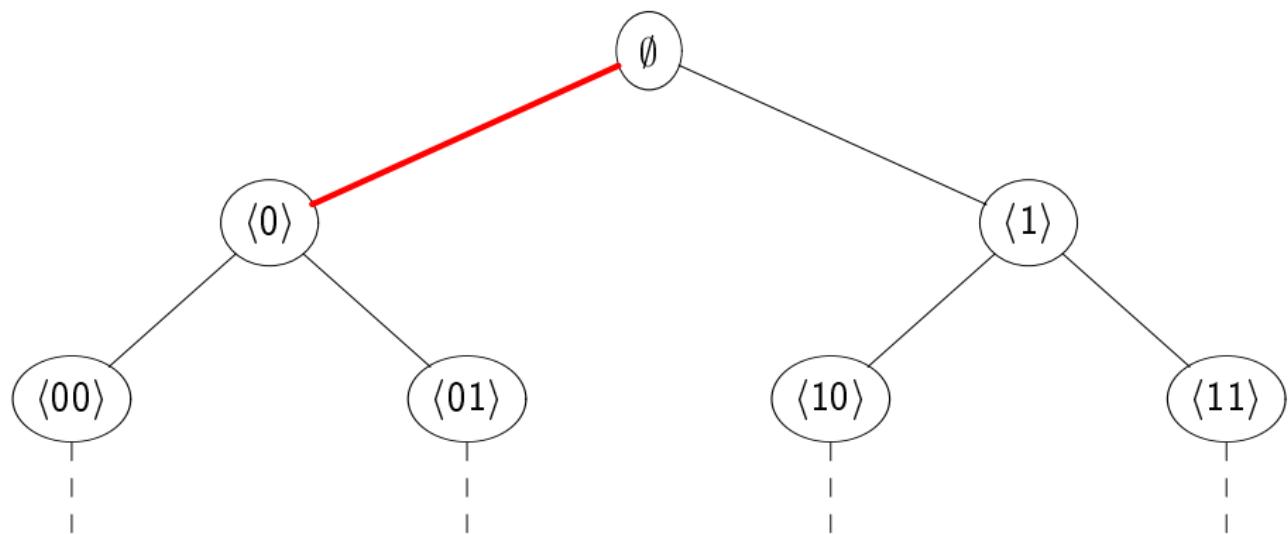
Fix a payoff set $A \subseteq 2^\omega$.

It's turn.



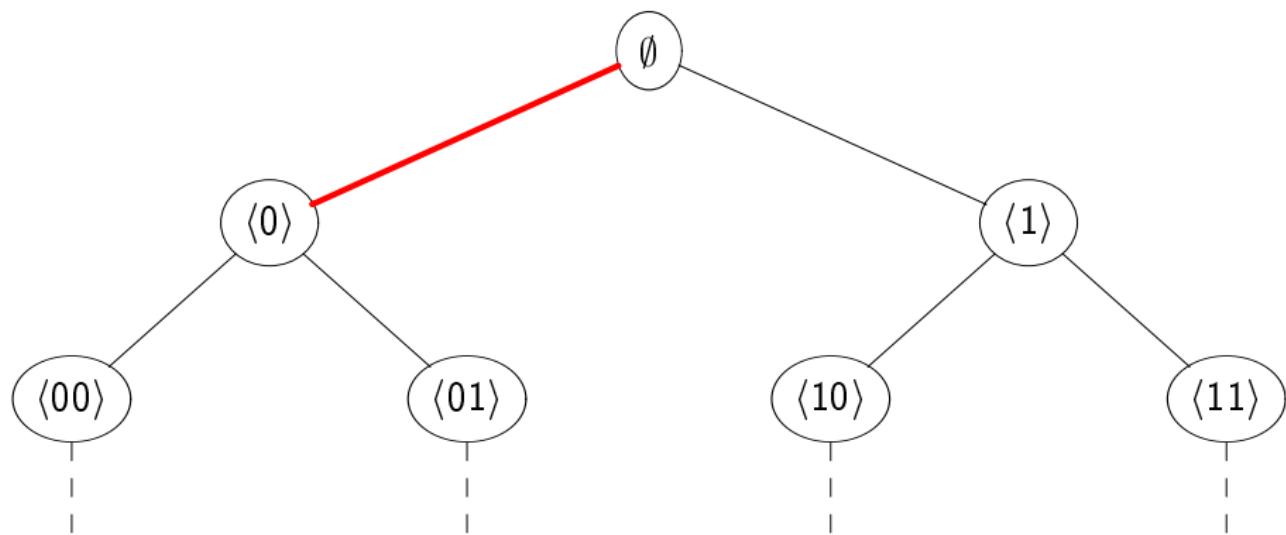
Gale-Stewart games ctd.

I has played.



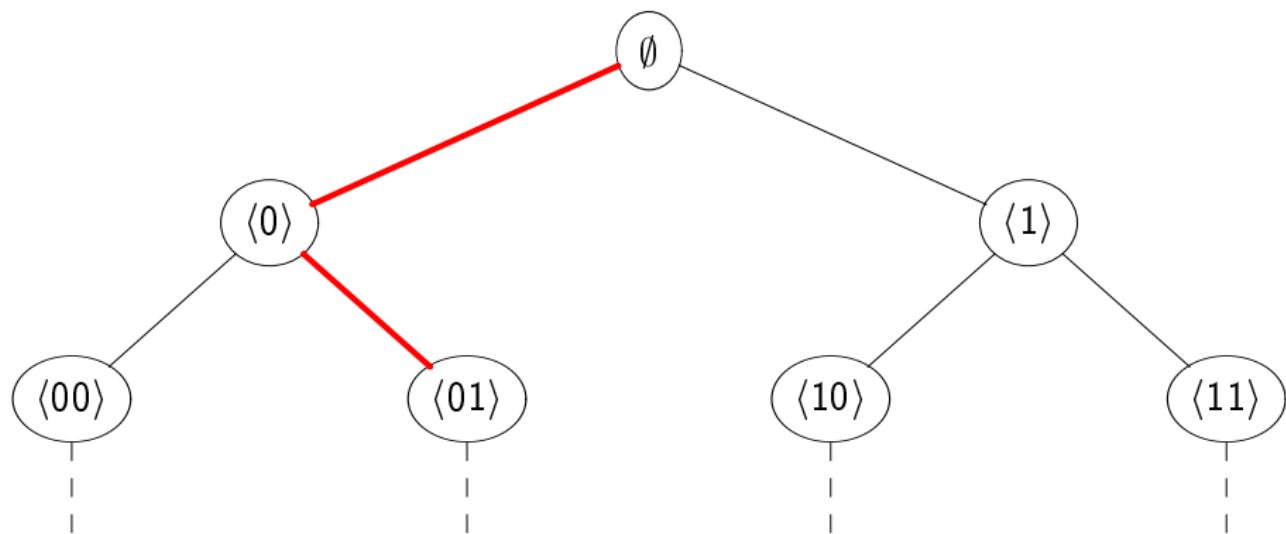
Gale-Stewart games ctd..

II's turn.



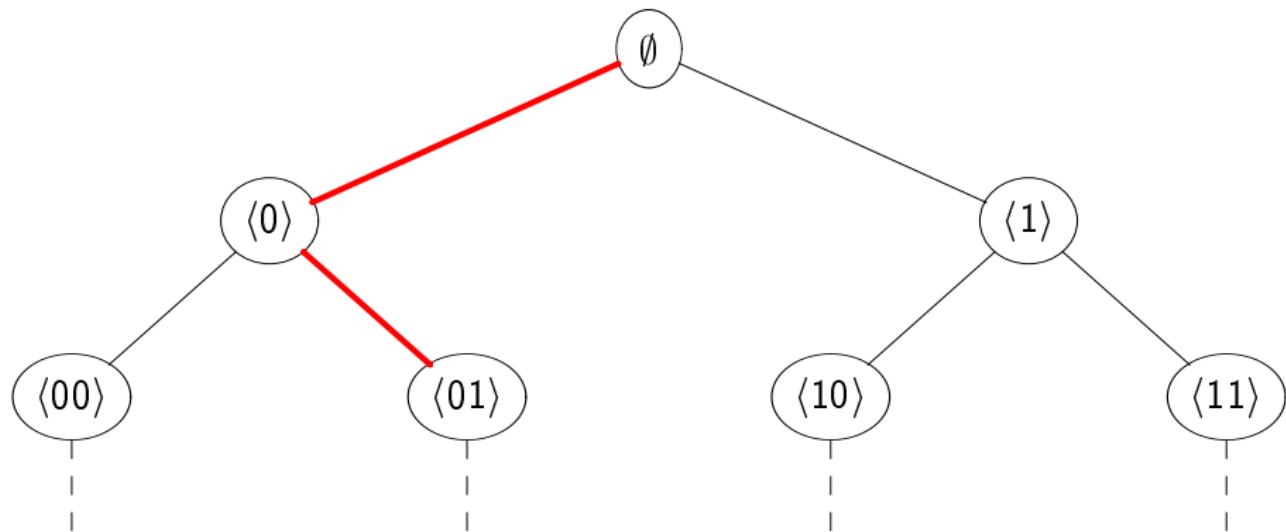
Gale-Stewart games ctd...

II has played.



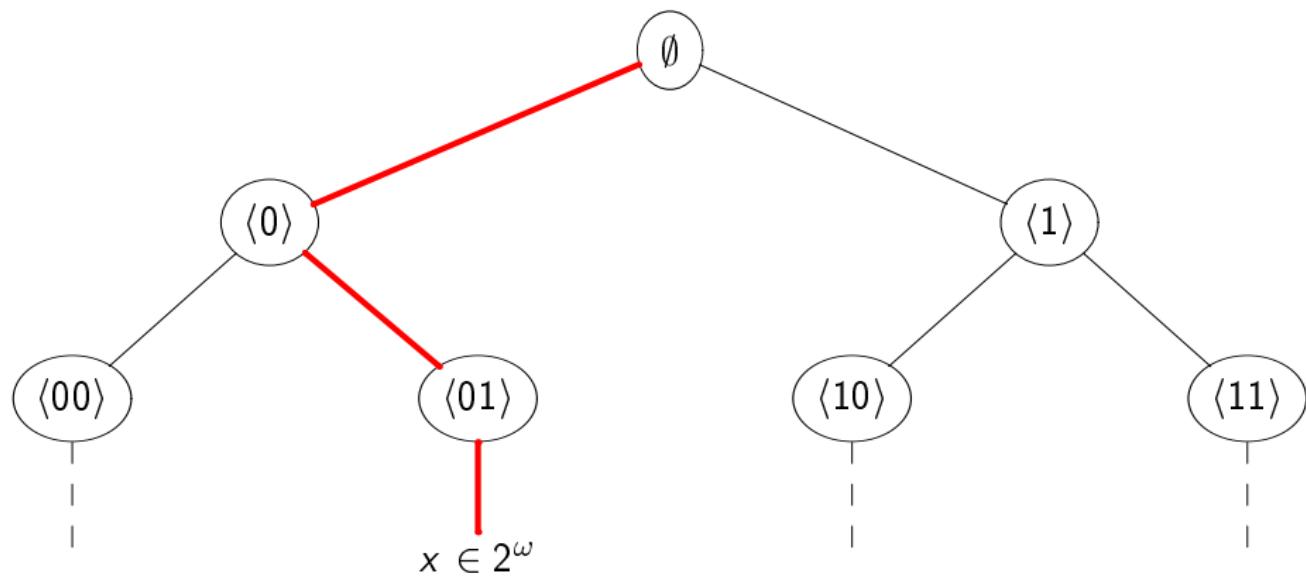
Gale-Stewart games ctd....

It's turn again.



Gale-Stewart games ctd.....

After infinitely many times...



Player I wins if x is in the payoff set A and otherwise Player II wins.

The Axiom of Determinacy

A subset A of 2^ω is *determined* if one of the players has a winning strategy in the Gale-Stewart game with the payoff set A .

Definition (Mycielski-Steinhaus)

The Axiom of Determinacy (AD) asserts the following:

Every subset A of 2^ω is determined.

The Axiom of Determinacy

A subset A of 2^ω is *determined* if one of the players has a winning strategy in the Gale-Stewart game with the payoff set A .

Definition (Mycielski-Steinhaus)

The Axiom of Determinacy (AD) asserts the following:
Every subset A of 2^ω is determined.

Remark

- ① AD contradicts the Axiom of Choice (AC).
- ② AD has many beautiful consequences, e.g., every set of reals is Lebesgue measurable.
- ③ Models of AD (or AD^+) are closely connected to models with Woodin cardinals.

Extensions of AD

One can define AD_X for any nonempty set X . (Note: $\text{AD} = \text{AD}_2$).

Definition

AD_X : Every $A \subseteq X^\omega$ is determined.

Extensions of AD

One can define AD_X for any nonempty set X . (Note: $\text{AD} = \text{AD}_2$).

Definition

AD_X : Every $A \subseteq X^\omega$ is determined.

Remark

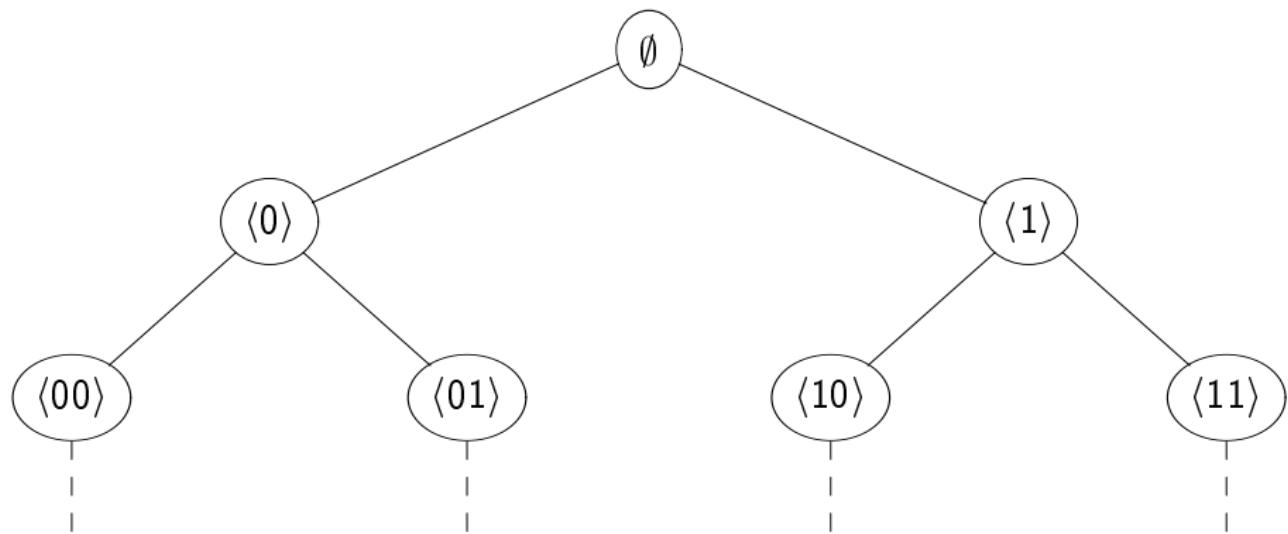
AD_X is inconsistent if there is an injection from ω_1 to X .

Out interest: AD and $\text{AD}_{\mathbb{R}}$.

Blackwell games

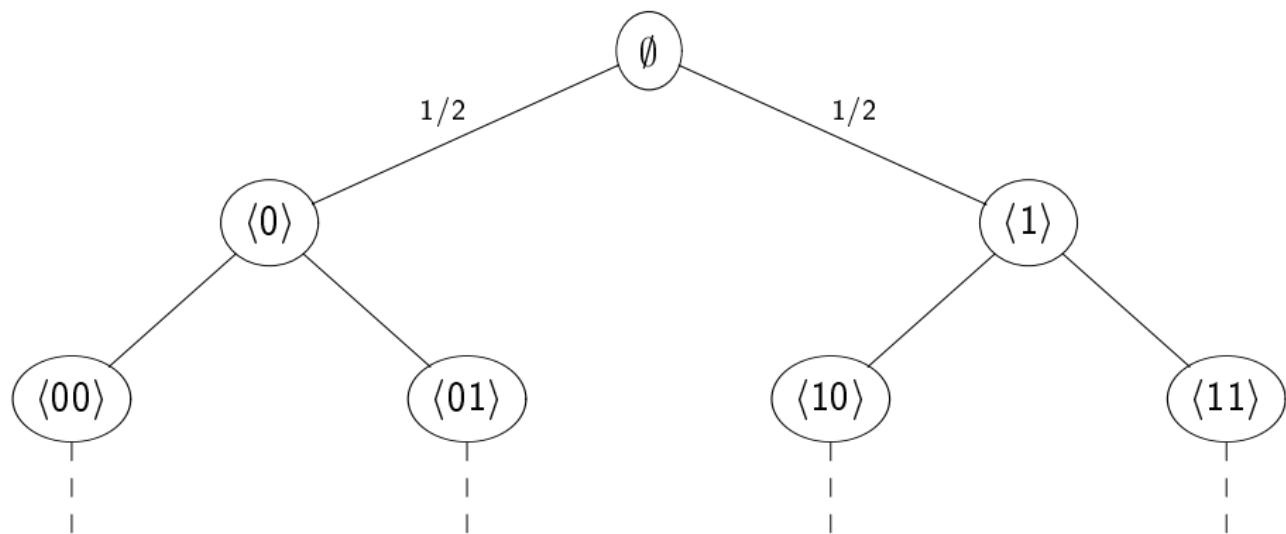
Fix a payoff set $A \subseteq 2^\omega$.

It's turn.



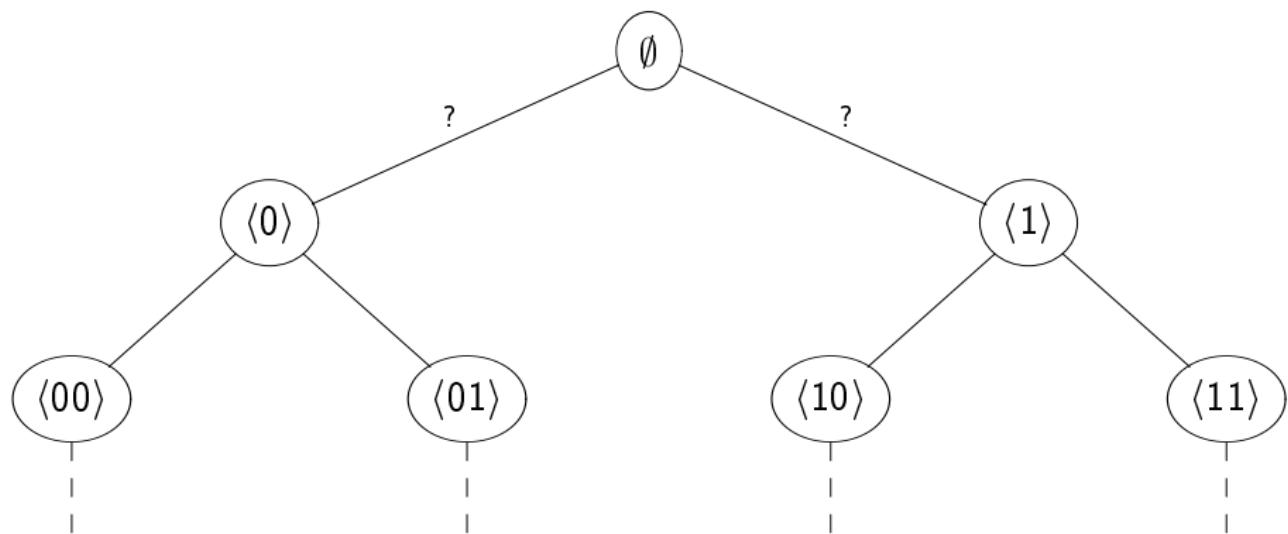
Blackwell games ctd.

I has played.



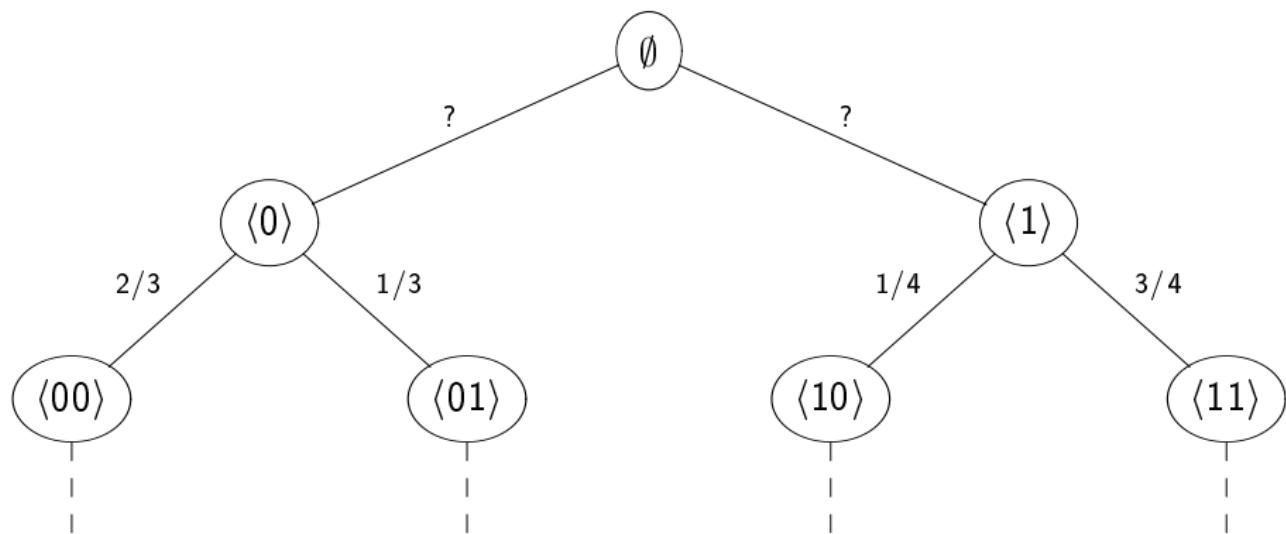
Blackwell games ctd..

II's turn.



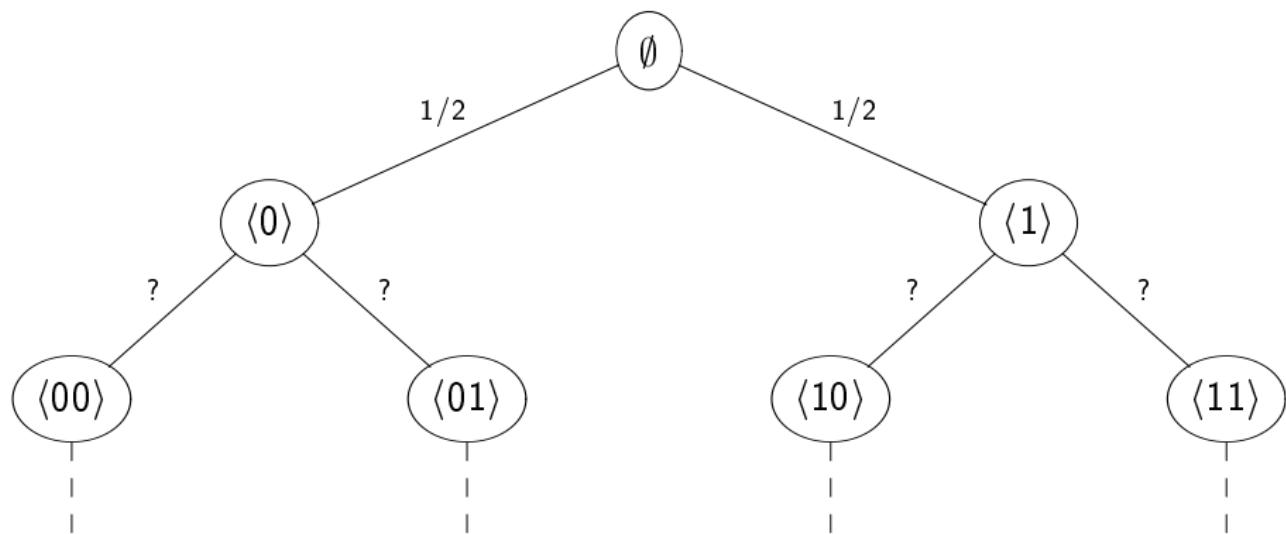
Blackwell games ctd...

II has played.



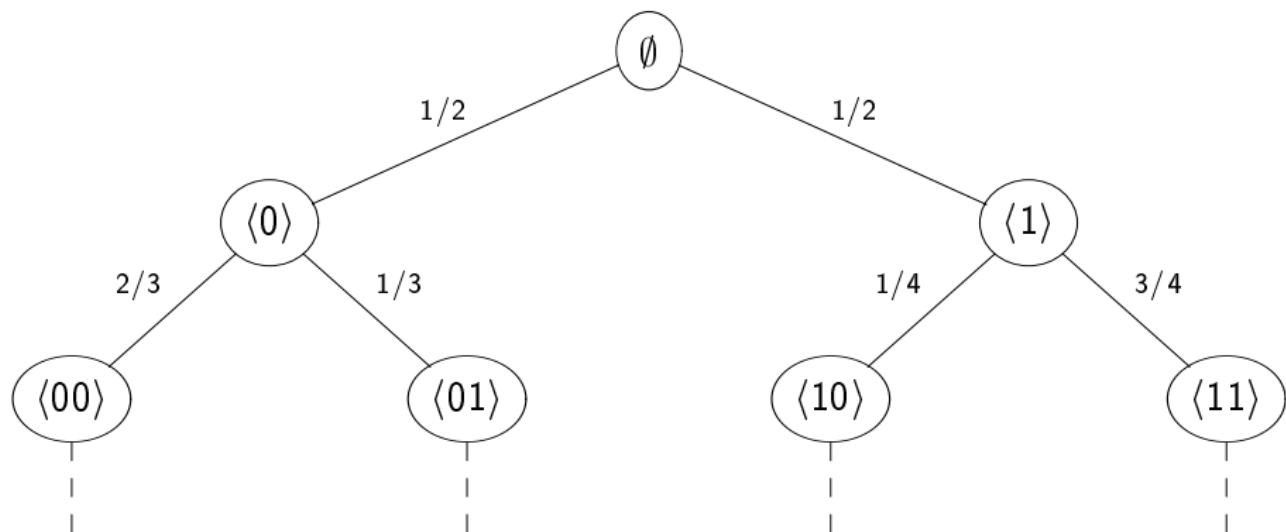
Blackwell games ctd....

It's turn again.



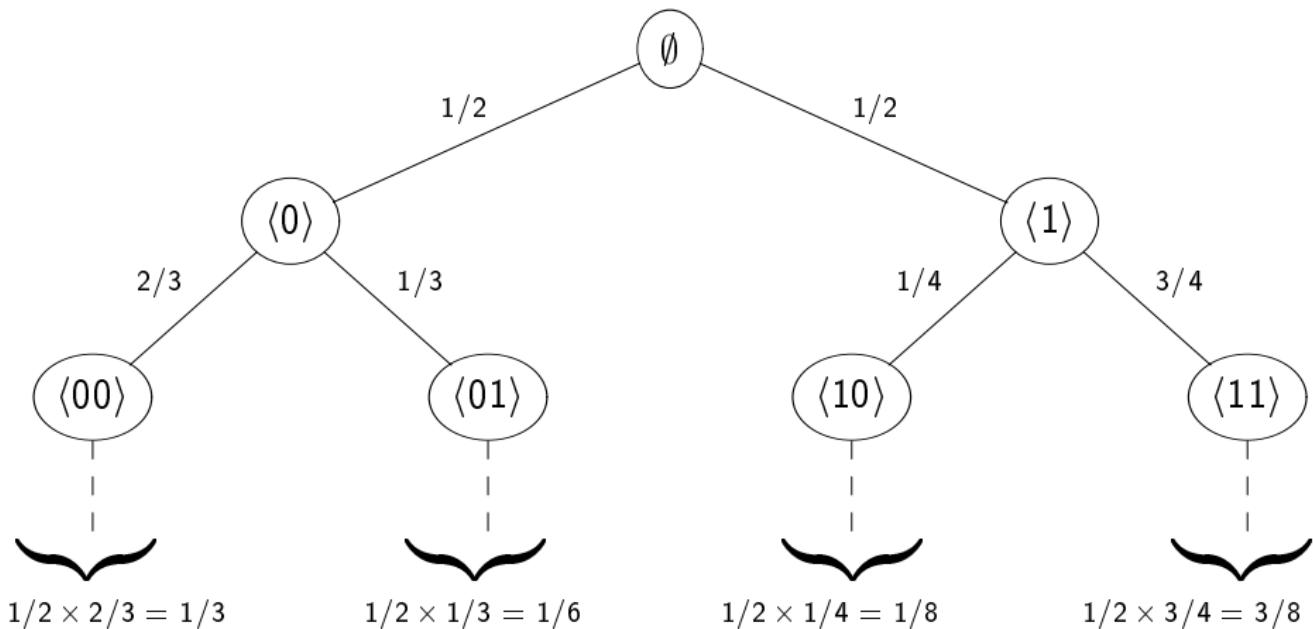
Blackwell games ctd.....

After infinitely many times. . .



Blackwell games ctd.....

Calculate the probability as below.



Blackwell games ctd.....

Player I wins if the probability of the payoff set is 1.
Player II wins if the probability of the payoff set is 0.

Formal definitions; Blackwell games

- σ is a *mixed strategy for I* if $\sigma: 2^{\text{Even}} \rightarrow \text{Prob}(2)$.
- τ is a *mixed strategy for II* if $\tau: 2^{\text{Odd}} \rightarrow \text{Prob}(2)$.

Formal definitions; Blackwell games

- σ is a *mixed strategy for I* if $\sigma: 2^{\text{Even}} \rightarrow \text{Prob}(2)$.
- τ is a *mixed strategy for II* if $\tau: 2^{\text{Odd}} \rightarrow \text{Prob}(2)$.
- For a mixed strategy σ for I and a mixed strategy τ for II, define $\sigma * \tau: 2^{<\omega} \rightarrow \text{Prob}(2)$ as follows:

$$\sigma * \tau(s) = \begin{cases} \sigma(s) & \text{if } \text{lh}(s) \text{ is even,} \\ \tau(s) & \text{if } \text{lh}(s) \text{ is odd.} \end{cases}$$

Formal definitions; Blackwell games

- σ is a *mixed strategy for I* if $\sigma: 2^{\text{Even}} \rightarrow \text{Prob}(2)$.
- τ is a *mixed strategy for II* if $\tau: 2^{\text{Odd}} \rightarrow \text{Prob}(2)$.
- For a mixed strategy σ for I and a mixed strategy τ for II, define $\sigma * \tau: 2^{<\omega} \rightarrow \text{Prob}(2)$ as follows:

$$\sigma * \tau(s) = \begin{cases} \sigma(s) & \text{if } \text{lh}(s) \text{ is even,} \\ \tau(s) & \text{if } \text{lh}(s) \text{ is odd.} \end{cases}$$

Then define $\mu_{\sigma, \tau}: 2^{<\omega} \rightarrow [0, 1]$ as follows:

$$\mu_{\sigma, \tau}(s) = \prod_{i < \text{lh}(s)} \sigma * \tau(s \upharpoonright i)(s(i)).$$

With the help of $\text{DC}_{\mathbb{R}}$, one can uniquely extend $\mu_{\sigma, \tau}$ to a Borel probability measure on the Cantor space.

Formal definitions; Blackwell games ctd.

Let $A \subseteq 2^\omega$.

- A mixed strategy σ for I is *optimal in A* if for any mixed strategy τ for II, $\mu_{\sigma,\tau}(A) = 1$.
- A mixed strategy τ for II is *optimal in A* if for any mixed strategy σ for I, $\mu_{\sigma,\tau}(A) = 0$.

Formal definitions; Blackwell games ctd.

Let $A \subseteq 2^\omega$.

- A mixed strategy σ for I is *optimal in A* if for any mixed strategy τ for II, $\mu_{\sigma,\tau}(A) = 1$.
- A mixed strategy τ for II is *optimal in A* if for any mixed strategy σ for I, $\mu_{\sigma,\tau}(A) = 0$.
- A is *Blackwell determined* if either I or II has an optimal strategy in A .
- BI-AD: Every $A \subseteq 2^\omega$ is Blackwell determined.

Note: There is another formulation of Blackwell games coming from game theory.

Formal definitions; Blackwell games ctd..

Let X be a non-empty set.

- σ is a *mixed strategy for I* if $\sigma: X^{\text{Even}} \rightarrow \text{Prob}_\omega(X)$.
- τ is a *mixed strategy for II* if $\tau: X^{\text{Odd}} \rightarrow \text{Prob}_\omega(X)$.
- For a mixed strategy σ for I and a mixed strategy τ for II, define $\sigma * \tau: X^{<\omega} \rightarrow \text{Prob}(X)$ as follows:

$$\sigma * \tau(s) = \begin{cases} \sigma(s) & \text{if } \text{lh}(s) \text{ is even,} \\ \tau(s) & \text{if } \text{lh}(s) \text{ is odd.} \end{cases}$$

Then define $\mu_{\sigma, \tau}: X^{<\omega} \rightarrow [0, 1]$ as follows:

$$\mu_{\sigma, \tau}(s) = \prod_{i < \text{lh}(s)} \sigma * \tau(s \upharpoonright i)(s(i)).$$

If we have $\text{DC}_{(\mathbb{R} \times X^\omega)}$, we can uniquely extend $\mu_{\sigma, \tau}$ to a Borel probability measure on X^ω .

Note: $\text{DC}_{(\mathbb{R} \times \mathbb{R}^\omega)}$ follows from $\text{DC}_{\mathbb{R}}$

Formal definitions; Blackwell games ctd...

Let X be a non-empty set and $A \subseteq X^\omega$.

Assume we have $DC_{(\mathbb{R} \times X^\omega)}$.

- A mixed strategy σ for I is *optimal in A* if for any mixed strategy τ for II, $\mu_{\sigma, \tau}(A) = 1$.
- A mixed strategy τ for II is *optimal in A* if for any mixed strategy σ for I, $\mu_{\sigma, \tau}(A) = 0$.
- A is *Blackwell determined* if either I or II has an optimal strategy in A .
- BI-AD X : every $A \subseteq X^\omega$ is Blackwell determined.

Formal definitions; Blackwell games ctd...

Let X be a non-empty set and $A \subseteq X^\omega$.

Assume we have $\text{DC}_{(\mathbb{R} \times X^\omega)}$.

- A mixed strategy σ for I is *optimal in A* if for any mixed strategy τ for II, $\mu_{\sigma, \tau}(A) = 1$.
- A mixed strategy τ for II is *optimal in A* if for any mixed strategy σ for I, $\mu_{\sigma, \tau}(A) = 0$.
- A is *Blackwell determined* if either I or II has an optimal strategy in A .
- BI-AD X : every $A \subseteq X^\omega$ is Blackwell determined.

Remark

BI-AD X is inconsistent if there is an injection from ω_1 to X

Our interest: BI-AD and BI-AD \mathbb{R} .

Observation 1

Observation

Let X be a nonempty set and A be a subset of X^ω . If A is determined, then A is Blackwell determined.

Observation 1

Observation

Let X be a nonempty set and A be a subset of X^ω . If A is determined, then A is Blackwell determined.

Point: Given a strategy σ , one can naturally transform it to a mixed strategy $\hat{\sigma}$. If σ is winning, then $\hat{\sigma}$ is optimal.

Observation 1

Observation

Let X be a nonempty set and A be a subset of X^ω . If A is determined, then A is Blackwell determined.

Point: Given a strategy σ , one can naturally transform it to a mixed strategy $\hat{\sigma}$. If σ is winning, then $\hat{\sigma}$ is optimal.

Corollary (Martin)

AD implies BI-AD. $AD_{\mathbb{R}}$ implies $BI-AD_{\mathbb{R}}$.

Observation 1

Observation

Let X be a nonempty set and A be a subset of X^ω . If A is determined, then A is Blackwell determined.

Point: Given a strategy σ , one can naturally transform it to a mixed strategy $\hat{\sigma}$. If σ is winning, then $\hat{\sigma}$ is optimal.

Corollary (Martin)

AD implies BI-AD. $AD_{\mathbb{R}}$ implies BI-AD $_{\mathbb{R}}$.

Conjecture (Martin)

BI-AD implies AD.

Observation 2

Observation

If a finite game is Blackwell determined, then it is determined when X is totally ordered.

Finite games = games ending at some fixed round $n < \omega$.

Sketch of proof.

In blackboards.

Observation 2

Observation

If a finite game is Blackwell determined, then it is determined when X is totally ordered.

Finite games = games ending at some fixed round $n < \omega$.

Sketch of proof.

In blackboards.

Corollary (Löwe)

Assume BI-AD $_{\mathbb{R}}$. Then Uniformization holds, i.e., every relation on the reals can be uniformized by a function.

Observation 2 ctd.

By the same argument...

Proposition

If a clopen set is Blackwell determined, then it is determined.

Observation 2 ctd.

By the same argument...

Proposition

If a clopen set is Blackwell determined, then it is determined.

Theorem (Neeman)

Assume BI-AD. Then every Suslin & co-Suslin subset of the Cantor space is determined.

Definition

- 1 A subset A of the Cantor space is *Suslin* if there is an ordinal γ and a tree T on $2 \times \gamma$ such that $A = p[T]$.
- 2 A subset A of the Cantor space is *co-Suslin* if the complement of A is Suslin.

Observation 2 ctd..

Theorem (Kechris & Woodin)

If every Suslin & co-Suslin set is determined, then $\text{AD}^{L(\mathbb{R})}$ holds.

Observation 2 ctd..

Theorem (Kechris & Woodin)

If every Suslin & co-Suslin set is determined, then $AD^{L(\mathbb{R})}$ holds.

Corollary (Martin, Neeman & Vervoort)

$L(\mathbb{R}) \models "AD \iff BI-AD"$. In particular, AD and BI-AD are equiconsistent.

Observation 3

Observation

Assume BI-AD $_{\mathbb{R}}$. Let $A \subseteq \mathbb{R}^{\omega}$. If A is range-invariant, then A is determined.

Definition

A set $A \subseteq \mathbb{R}^{\omega}$ is *range-invariant* if for any $\vec{x}, \vec{y} \in \mathbb{R}^{\omega}$ with the same range, $\vec{x} \in A \iff \vec{y} \in A$.

Observation 3 ctd.

Theorem (de Kloet, Löwe, I.)

Assume BI-AD $_{\mathbb{R}}$. Then there is a fine, normal, σ -complete ultrafilter on $\mathcal{P}_{\omega_1}(\mathbb{R})$.

Definition

Let U be a filter on $\mathcal{P}_{\omega_1}(\mathbb{R})$.

- ① U is **fine** if for any $x \in \mathbb{R}$, $\{a \in \mathcal{P}_{\omega_1}(\mathbb{R}) \mid x \in a\} \in U$.
- ② U is **normal** if for any family $\{A_x \in U \mid x \in \mathbb{R}\}$,
 $\Delta_{x \in \mathbb{R}} A_x = \{a \in \mathcal{P}_{\omega_1}(\mathbb{R}) \mid (\forall x \in a) a \in A_x\} \in U$.

Observation 3 ctd..

Theorem (Solovay)

If there is a fine, normal σ -complete ultrafilter on $\mathcal{P}_{\omega_1}(\mathbb{R})$, then $\mathbb{R}^\#$ exists.

Points:

- ① By assumption, ω_1 is measurable and hence $a^\#$ exists for all $a \in \mathcal{P}_{\omega_1}(\mathbb{R})$.
- ② Letting U be a fine normal measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$,

$$\phi \in \mathbb{R}^\# \iff \{a \in \mathcal{P}_{\omega_1}(\mathbb{R}) \mid \phi \in a^\#\} \in U.$$

Observation 3 ctd..

Theorem (Solovay)

If there is a fine, normal σ -complete ultrafilter on $\mathcal{P}_{\omega_1}(\mathbb{R})$, then $\mathbb{R}^\#$ exists.

Points:

- ① By assumption, ω_1 is measurable and hence $a^\#$ exists for all $a \in \mathcal{P}_{\omega_1}(\mathbb{R})$.
- ② Letting U be a fine normal measure on $\mathcal{P}_{\omega_1}(\mathbb{R})$,

$$\phi \in \mathbb{R}^\# \iff \{a \in \mathcal{P}_{\omega_1}(\mathbb{R}) \mid \phi \in a^\#\} \in U.$$

Corollary (de Kloet, Löwe & I.)

Assume BI-AD $_{\mathbb{R}}$. Then $\mathbb{R}^\#$ exists. Hence BI-AD $_{\mathbb{R}}$ \vdash Con(AD).

$\text{AD}_{\mathbb{R}}$ vs $\text{Bi-AD}_{\mathbb{R}}$

Question

Does $\text{Bi-AD}_{\mathbb{R}}$ imply $\text{AD}_{\mathbb{R}}$?

$\text{AD}_{\mathbb{R}}$ vs $\text{Bi-AD}_{\mathbb{R}}$

Question

Does $\text{Bi-AD}_{\mathbb{R}}$ imply $\text{AD}_{\mathbb{R}}$?

Theorem (Woodin & I.)

Under ZF+DC , $\text{AD}_{\mathbb{R}}$ and $\text{Bi-AD}_{\mathbb{R}}$ are equivalent.

$\text{AD}_{\mathbb{R}}$ vs $\text{Bi-AD}_{\mathbb{R}}$

Question

Does $\text{Bi-AD}_{\mathbb{R}}$ imply $\text{AD}_{\mathbb{R}}$?

Theorem (Woodin & I.)

Under $\text{ZF} + \text{DC}$, $\text{AD}_{\mathbb{R}}$ and $\text{Bi-AD}_{\mathbb{R}}$ are equivalent.

But!

Remark (Solovay)

$\text{AD}_{\mathbb{R}} + \text{DC}$ implies the consistency of $\text{AD}_{\mathbb{R}}$.

So assuming DC is not optimal for the above theorem.

$\text{AD}_{\mathbb{R}}$ vs. $\text{Bl-AD}_{\mathbb{R}}$ ctd.

Question

Are $\text{AD}_{\mathbb{R}}$ and $\text{Bl-AD}_{\mathbb{R}}$ equiconsistent?

$\text{AD}_{\mathbb{R}}$ vs. $\text{Bl-AD}_{\mathbb{R}}$ ctd.

Question

Are $\text{AD}_{\mathbb{R}}$ and $\text{Bl-AD}_{\mathbb{R}}$ equiconsistent?

Conjecture (Woodin)

$\text{AD}_{\mathbb{R}}$ and $\text{Bl-AD}_{\mathbb{R}}$ are equiconsistent.

Bl-AD_R and generic embeddings

Theorem (Sargsyan)

Assume CH and that there is a generic embedding $j: V \rightarrow M$ such that

- ① M is transitive and $M^\omega \cap V[G] \subseteq M$,
- ② G is a generic filter of a homogeneous forcing, and
- ③ $j \upharpoonright \text{Ord}$ is definable in V .

Then there is a model of $\text{ZF} + \text{AD}_R + \text{"}\Theta\text{ is regular"}$.

The method: **Core Model Induction**

Bl-AD_ℝ and generic embeddings

Theorem (Sargsyan)

Assume CH and that there is a generic embedding $j: V \rightarrow M$ such that

- ① M is transitive and $M^\omega \cap V[G] \subseteq M$,
- ② G is a generic filter of a homogeneous forcing, and
- ③ $j \upharpoonright \text{Ord}$ is definable in V .

Then there is a model of $\text{ZF} + \text{AD}_{\mathbb{R}} + \text{"}\Theta\text{ is regular"}$.

The method: **Core Model Induction**

Theorem

Assume Bl-AD_ℝ. Then for any $\alpha < \Theta$ and $A \subseteq \mathbb{R}$, there is a generic embedding $j: L(A, \mathbb{R}) \rightarrow M$ such that

- ① M is transitive, $\mathbb{R}^{V[G]} \subseteq M$, and α is countable in M ,
- ② G is a generic filter of a homogeneous forcing, and
- ③ $j \upharpoonright \text{Ord}$ is definable in V .

Gratitude

Thank you very much for your attention!