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From isolated subgroups to generic permutation representations

Y. Glasner, D. Kitroser and J. Melleray

Abstract

Let G be a countable group, Sub(G) be the (compact, metric) space of all subgroups of G with
the Chabauty topology and Is(G) ⊆ Sub(G) be the collection of isolated points. We denote by
X! the (Polish) group of all permutations of a countable set X. Then the following properties
are equivalent: (i) Is(G) is dense in Sub(G); (ii) G admits a ‘generic permutation representation’.
Namely, there exists some τ∗ ∈ Hom(G, X!) such that the collection of permutation representa-
tions {ϕ ∈ Hom(G, X!) |ϕ is permutation isomorphic to τ∗} is co-meager in Hom(G, X!). We call
groups satisfying these properties solitary . Examples of solitary groups include finitely generated
locally extended residually finite groups and groups with countably many subgroups.

1. Introduction

Let G be a countable group and Sub(G) be the space of all subgroups of G endowed with the
Chabauty topology, which makes it into a compact metrizable totally disconnected space. The
easiest way to define this topology is to embed Sub(G) ⊆ {0, 1}G as a closed subset and induce
the Tychonoff topology on {0, 1}G. The group G acts on Sub(G) continuously by conjugation
g · Δ = gΔg−1. One is naturally led to the question of how the structure of the topological
space Sub(G), or more generally the topological dynamical system (G,Sub(G)), is reflected in
the algebraic structure of G.

The Cantor–Bendixson structure theory of compact spaces leads us to consider the
decomposition Sub(G) = Is(G) � Sub(G)′. Here Is(G) is the collection of isolated points, or
isolated subgroups as we shall refer to them, and Sub(G)′ is its complement. Isolated subgroups
are special from the algebraic point of view! Clearly, there are only countably many of them.
One can think of isolated subgroups in algorithmic terms as subgroups that are detectable or
recognizable via a finite algorithmic procedure. A subgroup Δ ∈ Sub(G) is isolated if and only
if it can be identified by making a finite number of membership and non-membership tests for
specific elements. It is sometimes convenient to think of this in terms of Schreier graphs. Let S
be a symmetric generating set for G. A subgroup Δ ∈ Sub(G) is isolated if one can find a finite
algorithm that would recognize the Schreier graph Sch(G,Δ, S) out of all Schreier graphs of
the group G. Note that S might very well be infinite, and consequently the Schreier graphs in
question may fail to be locally finite. Still the algorithm is allowed to look only at finitely many
edges. From these characterizations, it is easy to see that isolated groups are always finitely
generated. In the special case where G itself is finitely generated, every finite index subgroup is
isolated and we obtain inclusions Subfi(G) ⊆ Is(G) ⊆ Subfg(G), where Subfi(G) and Subfg(G)
stand for finite index and finitely generated subgroups, respectively. It is clear that Is(G) is
always a discrete countable open subset of Sub(G). Our main new definition is the following.
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Definition 1. A group G is called solitary if the isolated points Is(G) are dense in Sub(G).

Let X be a countable set and X! be the group of all permutations of X. The topology of
pointwise convergence makes X! into a Polish group: separable, metrizable and complete. The
space Hom(G,X!) is the space of all permutation representations of G and is clearly also a
Polish space. There is a natural action

X! × Hom(G,X!) −→ Hom(G,X!),

(α,ϕ) �−→ α · ϕ : g �−→ αϕ(g)α−1. (1.1)

Two permutation representations that are in the same orbit are said to be isomorphic as
permutation representations. We will be interested in Baire generic properties of permutation
representations, and in particular in the existence of a generic permutation representation in
the sense of the following.

Definition 2. The group G is said to have a generic permutation representation if there
is a permutation representation τ∗ ∈ Hom(G,X!) whose orbit

X!(τ∗) = {α · τ∗ |α ∈ X!}
= {ϕ ∈ Hom(G,X!) |ϕ is a permutation isomorphic to τ∗}

is co-meager in Hom(G,X!).

It turns out that the existence of a generic permutation representation is captured by the
structure of the topological space Sub(G).

Theorem 1.1 (Main theorem). A countable group G admits a generic permutation
representation if and only if it is solitary.

When it exists, one can give a precise description of the generic permutation representation;
in particular, the stabilizers of elements of X for this representation are exactly the isolated
subgroups.

Definition 3. A group G is called subgroup separable or locally extended residually finite
(LERF for short) if every finitely generated subgroup of G is the intersection of finite index
subgroups. Or equivalently if any finitely generated subgroup is closed in the profinite topology
on G.

Examples of LERF groups include finitely generated abelian groups, free groups [10], surface
groups [21, 22] and, more generally, limit groups [23], the Grigorchuk group [9] and many
lamplighter groups [8]. Recently, the LERF property attracted a lot of attention, as Agol’s
proof of the LERF property for the fundamental group of a closed hyperbolic 3-manifold [1]
was a central ingredient in his solution to Thruston’s virtual Haken conjecture.

The following theorem is analogous to our main theorem above. It shows in particular that
finitely generated LERF groups are solitary.
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Theorem 1.2. Let G be a finitely generated group; then the following conditions are
equivalent:

(i) G is LERF;
(ii) the collection Subfi(G) of finite index subgroups is dense in Sub(G);
(iii) G has a generic permutation representation, all of whose orbits are finite.

Remark 1. The fact that the first and third condition above are equivalent also follows
from earlier work of Rosendal: Proposition 8(B) in [19] proves that G is LERF if and only if
a generic permutation representation has only finite orbits, while Theorem 11 of [20] shows
that a finitely generated LERF group admits a generic permutation representation. Note that
Theorem 11 of [20] is only formulated for groups acting by isometries on the rational Urysohn
space, but see the remark in the last paragraph of [20], where it is pointed out that the proofs
adapt to other metric spaces, notably the Urysohn space with distances {0, 1}, that is, an
infinite countable set.

In the paper, we state and prove a more detailed version of this theorem that holds also
for countable groups. Once we leave the realm of finitely generated groups, isolated subgroups
and solitary groups no longer generalize finite index subgroups and LERF groups, respectively.
Each of these theories goes in its own way. Our impression is that in some settings the choice
of isolated subgroups and solitary groups is the more natural one. The following theorem
summarizes some examples and structural results we have about solitary groups.

Theorem 1.3. The following are some properties of solitary groups.

(i) Finitely generated LERF groups are solitary.
(ii) If Sub(G) is countable, then G is solitary.
(iii) Let 1 → N → H → G→ 1 be a short exact sequence of countable groups such that N

is finitely generated, as an abstract group. If H is solitary, then so is G.
(iv) The free product of two countable groups G ∗H is solitary if and only if one of the

following two options hold:
(1) both G and H are LERF and finitely generated;
(2) G is solitary and H is trivial, or vice versa.

The situation considered in condition (iii) above is identical to the one appearing in the
famous Rips construction. This naturally leads to the following.

Question 1. Is it true that every finitely generated solitary group G can be placed in
a short exact sequence 1 → N → H → G→ 1, where H is solitary and hyperbolic and N is
finitely generated as an abstract group.

Theorem 1.1 is tightly connected to the notion of ample generics in Polish groups. We follow
the notation of the papers [16, 20] who were the first paper to express this property in terms
of generic orbits on ‘presentation varieties’.

Definition 4. We say that a Polish group P has ample generics if Hom(Fn, P ) admits a
generic P orbit for every n ∈ N.

The notion of ample generics was first introduced in [11] in order to study the small index
property in Polish groups, namely, that every subgroup of index less than 2ℵ0 is open. Indeed,
this and additional consequences such as automatic continuity of abstract homomorphisms into
any separable group were subsequently established for all groups with ample generics in [12].



Page 4 of 21 Y. GLASNER, D. KITROSER AND J. MELLERAY

We refer the readers to all of the above-mentioned papers (see also the survey [7]) and the
references therein. With this terminology in place, Theorem 1.2 shows that the following two
well-known facts:

(1) X! has ample generics,
(2) finitely generated free groups Fn are LERF,

are in fact two different realizations of the same phenomenon. In both cases one seeks a generic
P -orbit in Hom(G,P ). But in the study of groups with ample generics, one fixes G (or more
precisely lets G range over all finitely generated free groups) and lets the Polish group P vary;
whereas, in the study of solitary groups, we fix the Polish group P = X! and consider the class
of all the countable groups G that give rise to a generic orbit. In view of the very natural
characterization that arises from Theorem 1.2 the following question seems natural.

Question 2. Given a Polish group P , describe the class of all finitely generated groups G
for which Hom(G,P ) has a generic P -orbit.

In particular, the answer should contain all finitely generated free groups whenever P has
ample generics. The group X! is probably the simplest example of a Polish group with ample
generics, but there are many others.

We now turn to generalizing Theorem 1.2, and the notion of LERF groups, in a different
direction. A subgroup H � G is called co-amenable if there is a G-invariant mean on G/H (see
also Definitions 8 and 9). Co-amenable subgroups generalize finite index subgroups in much the
same way that amenable groups generalize finite groups. In view of that and of Theorems 1.2
and 1.1, we can generalize the notion of LERF groups as follows.

Definition 5. A group G is amenably separable, or A-separable for short, if the set of
co-amenable subgroups of G is dense in Sub(G).

In view of the Theorem 1.2, every LERF group is A-separable. Another obvious source, for
example, is the class of all amenable groups. These are A-separable since all of their subgroups
are co-amenable. In Section 6 of this work, we initiate the study of A-separable groups. Our
hope is that the notion of A-separability will prove to be a useful generalization of the a priori
very different, properties of LERF and amenability. This situation is perhaps reminiscent of
the way in which sofic groups simultaneously generalize the notions of residual finiteness and
amenability. In these terms the analogue of Theorem 1.1 is the following theorem.

Theorem 1.4. A countable group G is A-separable if and only if, for a generic action of G
on a countable set, the action on every orbit is amenable.

Here are some properties of A-separable groups.

Theorem 1.5. The following properties hold for the class of A-separable groups.

(1) LERF groups and amenable groups are A-separable.
(2) The class of A-separable groups is closed under free products.
(3) There exist A-separable groups that are neither LERF nor amenable.
(4) A group with property (T) is A-separable if and only if it is LERF.
(5) Higher-rank lattices in non-compact simple Lie groups that satisfy the congruence

subgroup property are never A-separable.

The paper is arranged as follows. Section 2 is dedicated to a systematic investi-
gation of the topological spaces Sub(G), Hom(G,X!) and the standard stabilizer map
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Hom(G,X!) → Sub(G) between them. In Section 3, we prove Theorem 1.2. Section 4 is
dedicated to solitary groups and there we prove Theorems 1.1 and 1.3. Finally, in Section 6 we
prove Theorems 1.4 and 1.5 and give examples of non-amenable, non-LERF groups that are
A-separable. The results in this work are also to appear as part of the Ph.D. dissertation of
the second author [13].

2. Dense and generic properties of actions and subgroups

2.1. The space of permutation representations Hom(G,X!)

Let X be a countable set and X! be the full symmetric group of all bijections of X onto
itself. We endow X! with the topology of pointwise convergence which makes it into a Polish
topological group. In other words a topological group that is separable, and admits a complete
metric. The latter fact is important for us because it shows that X! is a Baire space; though
we will never consider any specific metric. An explicit basis for the topology can be given by
the sets

U(α,A) := {β ∈ X! | β|A = α|A} (α ∈ X!, A ⊆ X finite).

On X!n we will always put the product topology, which is still Polish for every n ∈ N ∪ {∞}.
Let G be a countable group with a given presentation G = 〈S | R〉, where S = {s1, s2, . . .}.

Then, we can identify Hom(G,X!) with a closed subset of X!S via the following embedding:

Hom(G,X!) −→ {α ∈ X!S | ∀w ∈ R : w(α) = 1X} ⊆ X!S ,
ρ �−→ {ρ(si)}si∈S .

Thus Hom(G,X!) is a closed subspace of X!S and the induced topology makes it into a Polish
space (note that this topology does not depend on the choice of presentation). A basis for the
topology on Hom(G,X!) is given by

O(ρ, T,A) := {σ ∈ Hom(G,X!) | ∀t ∈ T : σ(t)|A = ρ(t)|A},
(ρ ∈ Hom(G,X!), T ⊆ G and A ⊆ X both finite).

If S itself happens to be finite, then the sets O(ρ, S,A) form a basis for Hom(G,X!).
As mentioned in the introduction (see equation (1.1)), the group X! acts, from the left,

on Hom(G,X!), and the orbits of this action are exactly the standard isomorphism classes
of permutation representations. It is well known that two permutation representations are
isomorphic if and only if they contain the same transitive components, appearing with the same
multiplicity. The transitive components, in turn, are isomorphic to quasi-regular actions of the
form G � G/H for some H ∈ Sub(G). If {Hi} ⊆ Sub(G) is a countable or finite collection of
subgroups and if di ∈ N ∪ {∞}, then we will denote the (isomorphism class of) the permutation
representation that has exactly di transitive components isomorphic to G

ηi
� G/Hi by⊔

i

di · (G/Hi) =
⊔
i

di · ηi.

Some care is due with this notation. It is not always possible to identify such an action with
an element of Hom(G,X!) because, if the sum is finite and Hi are all of finite index, then
the underlying set is finite. When this is not the case, we can identify such an action with an
element of Hom(G,X!) via an arbitrary bijection between �iG/Hi

∼= X. Different choices of
this bijection will yield all the different points in the corresponding X! orbit.
We will make frequent use of the following definition.
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Definition 6. Let G � X,x ∈ X, g1, . . . , gn ∈ G and let w = wkwk−1 · · ·w1 be a word
over {g±1

1 , . . . , g±1
n }. The trace of x under w is the set

tracew(x) = {x,w1x, . . . , wk−1 · · ·w1x,wx}.

2.2. The space of subgroups

Let G be a countable group and consider the space {0, 1}G of subsets of G, equipped with
the product topology. This is a compact, metrizable space. Let Sub(G) denote the set of all
subgroups of G. It is easy to verify that Sub(G) is closed in {0, 1}G and so it is a compact,
metrizable space. The induced topology on Sub(G) is called the Chabauty topology, and a
basis for this topology can be given by the sets

W(H,Ω) = {K ∈ Sub(G) | K ∩ Ω = H ∩ Ω} (H ∈ Sub(G), Ω ⊆ G finite).

If H ∈ Sub(G), then we denote by

Env(H) = {K ∈ Sub(G) | K � H}
the envelope of H. Both subsets Sub(H) and Env(H) are closed in Sub(G). If H is finitely
generated, then Env(H) is also open. Denoting by Subfg(G) ⊆ Sub(G) the collection of finitely
generated subgroups, it is easy to check that the collection

{Env(H) ∩ (Sub(G) � Env(H ′)) | H,H ′ ∈ Subfg(G)}
forms a basis for the topology of Sub(G).

2.3. Isolated subgroups

Let Is(G) and Occ(G) denote the isolated points of Sub(G) and the subgroups of G with open
conjugacy classes, respectively. Note that a subgroup H is in Occ(G) if and only if there is
an open neighborhood of H, consisting of only conjugates of H. Both subsets are open and
conjugation-invariant.

Proposition 2.1. Here are some basic properties of these subgroups.

(i) Isolated subgroups are the same as these with open conjugacy classes (in a countable
group). Namely Is(G) = OCC(G).

(ii) Every H ∈ Is(G) is finitely generated.
(iii) If H ∈ Subfg(G), then Env(H) is an open neighborhood of H.
(iv) When G itself is finitely generated, then every finite index subgroup is isolated.
(v) If H ∈ Subfg(G) and |Env(H)| <∞, then H is isolated. In particular, every finitely

generated maximal subgroup is isolated.

Proof. It is clear that Is(G) ⊆ Occ(G) and that both sets are open. The opposite inclusion
follows from Baire’s theorem: Let K ∈ Occ(G) and let [K] = {gKg−1 | g ∈ G} be its conjugacy
class, which is open by definition. Since G is countable, [K] is a countable (or finite) union of
closed points and hence, by Baire’s theorem, one of them has to be open. Since G is transitive on
[K], all of these points are open and in particular K ∈ Is(G). This proves (i). If H is not finitely
generated, then we can find a sequence of finitely generated subgroups H1 < H2 < H3 < · · ·
with ∪iHi = H. Clearly, Hi → H in the topology of Sub(G), but none of these subgroups is
equal to H because H is not finitely generated. (iii) is clear and (v) follows directly from (iii).
Finally, if G itself is finitely generated, then so is every finite index subgroup, and (iv) follows
directly from (v).
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Thus, for a finitely generated group G, isolated subgroups form a class of subgroups that
sits between the finitely generated subgroups and the subgroups of finite index, namely:

Subfg(G) ⊆ Is(G) ⊆ Subfg(G).

We find it very useful to think of isolated subgroups as generalizations of finite index subgroups.

2.4. Generic properties

A subset A ⊆ Y in a Polish space is called generic (or alternatively residual or co-meager) if it
contains a countable intersection of dense open sets. By Baire’s category theorem generic sets
are always dense. We say that the property (P) is generic in Y , or that a generic element of Y
has the property (P) if the set {y ∈ Y | y has the property (P)} is generic in Y .

In this paper, we will be interested in generic properties of permutation representations
Hom(G,X!). The simplest example is Hom(Z,X!) ∼= X!. The following, well-known proposition
summarizes the generic properties of this space. Its proof is an exercise in Baire’s category
theorem, which we leave to the readers. We chose to mention it here because our main theorem,
and its proof, are basically far-reaching generalizations of this fact.

Proposition 2.2. The Polish Symmetric group X! has a residual conjugacy class. This
conjugacy class can be described explicitly:

τ∗ =
⊔
n∈N

∞ · (Z/nZ).

In terms of the definition below, the above proposition just says that G = Z admits a generic
permutation representation.

Definition 7. We say that G admits a generic permutation representation if there exists a
permutation representation τ∗ ∈ Hom(G,X!) whose orbit under the action X! � Hom(G,X!)
is residual in Hom(G,X!).

2.5. Properties of the stabilizer map

Given a permutation representation σ ∈ Hom(G,X!) and a point x ∈ X, we denote by Gx(σ) =
{g ∈ G |σ(g)x = x} the stabilizer of this point. Fixing x, this gives rise to a stabilizer map

Gx : Hom(G,X!) −→ Sub(G),
σ �−→ Gx(σ). (2.1)

Lemma 2.3 (Main lemma). For every x ∈ X, the stabilizer map Gx : Hom(G,X!) →
Sub(G) is continuous, surjective and open.

Proof. It is clear that this map is surjective. Let ϕ ∈ Hom(G,X!) and let Ω ⊆ G be finite.
If σ ∈ O(ϕ,Ω, {x}), then

∀g ∈ Ω : g ∈ Gx(σ) ⇔ x = σ(g)x = ϕ(g)x⇔ g ∈ Gx(ϕ),

that is, Gx(σ) ∈ W(Gx(ϕ),Ω). This proves that the map Gx is continuous.
To prove that this map is open, let τ ∈ O = O(ϕ, S,A) ⊆ Hom(G,X!) be a basic open

neighborhood in Hom(G,X!) and a point therein. By extending S, we may assume that this
set contains the identity and is symmetric, that is, that S = S−1. We have to exhibit an open
neighborhood W ⊆ Sub(G) such that Gx(τ) ∈ W ⊆ Gx(O(ϕ, S,A)).

Let Y = τ(G)x ⊆ X be the orbit of x under τ and L = Gx(τ) be the stabilizer. We can
identify Y = G/L under the orbit map gL �→ τ(g)x. Set AY := A ∩ Y . Let Ω ⊆ G be a finite



Page 8 of 21 Y. GLASNER, D. KITROSER AND J. MELLERAY

symmetric set such that ⋃
s∈S

τ(s)AY ⊆ τ(Ω)x = {τ(ω)x | ω ∈ Ω}.

We claim that the basic open set W = W(L,ΩSΩ) satisfies all our requirements, where
ΩSΩ= {ω1sω2 |ωi ∈ Ω, s ∈ S} is the set product. Fixing a group K ∈ W, we will complete
our proof by finding η ∈ O such that K = Gx(η).

Consider the finite subset ΩK = {ωK ∈ G/K |ω ∈ Ω} and define a partial map:

f : ΩK −→ Y ,

ωK �−→ τ(ω)x ∀ω ∈ Ω.

This map is well defined and injective on its domain, since by the definition of the open set
W we have ω1K = ω2K ⇐⇒ ω1L1 = ω2L1 ⇐⇒ ω1L = ω2L ⇐⇒ τ(ω1)x = τ(ω2)x for every
ω1, ω2 ∈ Ω. For a similar reason this map partially respects the G-action on both sides in the
sense that

sf(ωK) = f(sωK) ∀ω ∈ Ω, s ∈ S.

Define a bijection f̃ : G/K �X → X satisfying the following conditions:

(1) f̃ extends f , namely, f̃(ωK) = f(ωK), ∀ω ∈ Ω;
(2) f̃ is the identity on ∪s∈Sτ(s)(A) \ Y .

Now let us define an action σ1 of G on G/K �X, where G acts on G/K by the quasi-regular
action on X by τ and let σ =∈ Hom(G,X!) be defined by σ(g)x = f̃σ1(g)f̃−1(x). It is easy
to verify that K = Gx(σ). Also, for every s ∈ S and y ∈ A we have σ(s)y = τ(s)y. Indeed, if
y ∈ AY , then by our choice of Ω, we have y = τωx for some ω ∈ Ω, and hence

σ(s)y =

{
f̃σ1(s)f̃−1y = fsf−1τ(ω)x = fsωK = τ(sω)x = τ(s)y, y ∈ AY ,

f̃σ1(s)f̃−1y = f̃ τ(s)f̃−1y = τ(s)y y �∈ AY .

This concludes the proof that Gx is open.

Corollary 2.4. For a subset D ⊆ Sub(G) define

D̃ := {ϕ ∈ Hom(G,X!) | Gx(ϕ) ∈ D ∀x} =
⋂
x∈X

(Gx)−1(D).

Then the following conditions are satisfied.

(i) If D is conjugation-invariant and dense in Sub(G), then D̃ is dense in Hom(G,X!).
(ii) If D is Gδ in Sub(G), then D̃ is Gδ in Hom(G,X!).

In particular, D̃ is generic whenever D is.

Proof. Suppose that D is conjugation-invariant and dense in Sub(G), let ρ ∈ Hom(G,X!)
and let S ⊆ G, A ⊆ X be finite. Let x ∈ A. By Lemma 2.3, the set G−1

x (D) is dense in
Hom(G,X!) and so there exists ϕ1 ∈ Hom(G,X!) such that ϕ1 ∈ O(ρ, S,A) and Gx(ϕ1) ∈ D.
Define Y1 = ϕ1(G)x and note that since D is conjugation-invariant, we have Gy(ϕ1) ∈ D for
all y ∈ Y1. Now, if z ∈ A� Y1, then we can apply the same argument and get a permutation
representation ϕ2 of G on X � Y1, such that ϕ2(s) agrees with ϕ1(s) on A ∩ (X � Y1) for all
s ∈ S and such that all the stabilizers of points belonging to Y2 = ϕ2(G)z are in D. We get
that the action ϕ ∈ Hom(G,X!), defined by

∀g ∈ G, x ∈ X : ϕ(g)x =

{
ϕ1(g)x, x ∈ Y1,

ϕ2(g)x, x ∈ X � Y1,
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belongs to O(ρ, S,A) and every stabilizer of a point belonging to the ϕ-invariant set Y1 ∪ Y2

is in D. By repeating the process described above, we get after finitely many steps an action
ψ ∈ O(ρ, S,A) and a ψ-invariant set Y ⊆ X, such that A ⊆ Y and such that Gy(ψ) ∈ D for

every y ∈ Y . Finally, extend the action G
ψ
� Y to an action ψ̃ ∈ Hom(G,X!) in such a way

that all stabilizers of points in X � Y belong to D. Thus, ψ̃ ∈ D̃ and since A ⊆ Y, we have
ψ̃(s)|A = ψ(s)|A = ρ(s)|A for all s ∈ S, that is, ψ̃ ∈ O(ρ, S,A). This proves part 1.

Now, assume that D is Gδ, so we can write D =
⋂
nDn, where Dn is open for every

n∈N. Then, for every x ∈ X we have G−1
x (D) =

⋂
nG

−1
x (Dn). Since Dn is open, we get from

Lemma 2.3 that G−1
x (Dn) is open for every x ∈ X and n ∈ N, and so G−1

x (D) is Gδ. Since X
is countable, this means that D̃ =

⋂
x∈X(Gx)−1(D) is also Gδ and part 2 is proved.

Lemma 2.5. Let U ⊆ Sub(G) be open and non-empty. Then, for a generic permutation
representation ϕ ∈ Hom(G,X!) we have

|{x ∈ X | Gx(ϕ) ∈ U}| = ∞.

Proof. Let

Λm = {ϕ ∈ Hom(G,X!) | |{x ∈ X | Gx(ϕ) ∈ U}| > m},
Λ =

⋂
m∈N

Λm.

We claim that Λ is generic, and by Baire’s theorem it would be enough to show that Λm is
open and dense for each m ∈ N. The fact that Λm is open follows directly from the continuity
of the map Gx. To prove density, we just add m new orbits with a stabilizer from U far away.
This is made explicit in the following way. Given a basic open set O(ϕ, S,A) ⊆ Hom(G,X!),
we want to find an element η ∈ O(ϕ, S,A) ∩ Λm. Fix any subgroup H ∈ U and consider
the set Y = X � (G/H)m endowed with the diagonal G-action η′ ∈ Hom(G,Y !) given by
η′(g)(x, g1H, . . . , gmH) = (ϕ(g)x, gg1H, . . . , ggmH). Now, let ι : X → Y be the identity map
from X to the copy of X contained in Y , ι|A : A→ Y be its restriction to the finite set
A = A ∪ (

⋃
s∈S∪S−1 ϕ(s)A), and let I : X → Y be an extension of ι|A to a bijection between X

and Y . One easily checks that

η = I−1 ◦ η′ ◦ I ∈ O(ϕ, S,A) ∩ Λm

is as required.

Lemma 2.6. To any given ρ ∈ Hom(G,X!) there is an arbitrarily close action, with
infinitely many fixed points.

Proof. Given finite sets S ⊆ G,A ⊆ X, we seek an action ρ′ ∈ O(ρ, S,A) with infinitely

many fixed points. Consider the action G
(ρ,1)
� X � N, obtained from ρ by adding countably

many fixed points. The desired action ρ′ = ϕ−1(ρ, 1)ϕ is obtained by intertwining this action
via any bijection ϕ : X → X � N with the property that ϕ is the identity when restricted to
A ∪ (

⋃
s∈S ρ(s)A).

3. The LERF property

In this section, we prove Theorem 1.2. In fact, as promised in the introduction, we will prove
the following slightly more general version of the theorem for arbitrary countable groups (not
necessarily finitely generated).
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Theorem 3.1. Let G be a finitely generated group; then the following conditions are
equivalent:

(i) G is LERF;
(ii) the collection of finite index subgroups of G is dense in Sub(G);
(iii) the collection of permutation representations, all of whose orbits are finite is dense in

Hom(G,X!);
(iv) the collection of permutation representations, all of whose orbits are finite is generic in

Hom(G,X!);
(v) G has a generic permutation representation, all of whose orbits are finite.

When G is countable, but not necessarily finitely generated, then only the first three conditions
are equivalent.

The apparent complications when G fails to be finitely generated, and lack thereof in the
proof of Theorem 1.1, emphasize one of our main points: Isolated subgroups are more natural
than finite index subgroups in this setting. We mention again that the equivalence of the first,
third and fourth conditions is already present in Rosendal’s works [19, 20] (see the discussion
in the introduction).

Proof of Theorem 3.1. In a countable group G, every subgroup is an ascending union of
finitely generated subgroups. Hence Subfg is dense in Sub(G). The LERF property implies
that Subfg ⊆ Subfi, as every finitely generated subgroup, is a descending intersection of finite
index subgroups. This shows (1) =⇒ (2). Now (2) =⇒ (3) follows directly from Corollary
(2.4). To prove (3) =⇒ (1), assume that we are given an infinite index subgroup L generated
by a finite set S, and g ∈ G� L. Let ϕ ∈ Hom(G,X!) be any permutation representation
that is isomorphic to the quasi-regular action G � (G/L) in such a way that x ∈ X is
identified with the trivial coset eL. If ψ ∈ O(ϕ, S ∪ {g}, {x}) is an action with finite orbits, then
[L : Gx(ψ)] <∞, L < Gx(ψ) but g �∈ Gx(ψ), proving the LERF property.

Assume now that G is finitely generated. The implications (5) =⇒ (4) =⇒ (3) are obvious,
so it is enough to prove the implication (2) =⇒ (5). We start by describing the generic
permutation representation τ∗ ∈ Hom(G,X!). Let Subfg(G) = {H1,H2, . . .} be an enumeration
of the finite index subgroups of G, let ϕn be the quasi-regular representation of G on G/Hn

and define

τ∗ = �∞ · ϕn.
Namely, take countably many copies of each representation in the list and let G act
naturally on the disjoint union of the corresponding sets. It follows from Corollary 2.4,
applied to the open dense set D = Subfi(G) ⊆ Sub(G), that the collection of permutation
representations, all of whose orbits are finite is generic. It follows from Lemma 2.5 applied
to the open set {Hi} ⊆ Sub(G) that the collection of permutation representations in which ρi
appears countably many times as a transitive component is also generic. By Baire’s category
theorem a generic permutation representation has only finite orbits, and each ρi appears
in it countably many times. But such a permutation representation must be permutation
isomorphic to τ∗.

Remark 2. As the examples below demonstrate, if G is an infinitely generated LERF
group, it is no longer true that a generic permutation representation has only finite orbits. It is
still true, however, that the restriction of such a generic action to every finitely generated
subgroup H < G has only finite orbits. It is even true that the restriction of a generic
permutation to H admits a well-defined isomorphism type (up to isomorphism of permutation



GENERIC PERMUTATION REPRESENTATIONS Page 11 of 21

representations of H). The details of the proof are quite similar to our proof above and we
leave them to the reader.

In order to demonstrate the use of Theorem 1.2 and give some basic examples, we analyze
the situation in free groups, providing a short proof to Hall’s theorem that free groups are
LERF.

Proposition 3.2. Let Fn, 1 � n � ∞ be a free group. The following conditions are
satisfied:

(i) Fn is LERF;
(ii) a generic permutation representation ϕ ∈ Hom(F∞,X!) is transitive;
(iii) if Γ is a countable LERF group that is not finitely generated, then Sub(Γ) is perfect.

Proof. First note that Hom(Fn,X!) = X!n. LetX!(f) < X! be the dense subgroup of finitely
supported permutations. Clearly, Hom(Fn,X!(f)) = (X!(f))n ⊆ X!n = Hom(Fn,X!) is a dense
set of permutation representations all of whose orbits are finite. This proves (i) by establishing
Theorem 1.2(iii).

To prove (ii) it is enough, by Baire’s theorem, to show that the set Θ(x, y) = {ϕ ∈
Hom(F∞,X!) | y ∈ ϕ(F∞)x} is open and dense. Openness is obvious. For the density, fix
a free generating set F∞ = 〈x1, x2, . . .〉. Given a basic open set O(ϕ, S,A) ⊆ Hom(F∞,X!),
the finite set S ⊆ F∞ contains words that involve only finitely many of the generators, say
S ⊆ 〈x1, x2, . . . , xr〉. We can find σ ∈ O(ϕ, S,A) ∩ Θ(x, y) by setting σ(xi) = ϕ(xi) for every
1 � i � r and then defining σ(xr+1) in such a way that σ(xr+1)x = y.

Finally, if Γ fails to be finitely generated, then so do its finite index subgroups. So by
Proposition 2.1(ii), none of these are isolated. If Γ is also LERF, then the finite index subgroups
are dense, and in particular there can be no isolated subgroups at all. This proves (iii).

4. Solitary groups

This section is dedicated to the proof of Theorem 1.1.

Proof. Assume that Is(G) is dense in Sub(G). Let Is(G) = {Δ1,Δ2,Δ3, . . . ,Σ1,Σ2, . . .} be
representatives for the conjugacy classes of these isolated subgroups of G; where we made a
distinction between the groups Δi that are of finite index in their normalizer and the groups
Σi that are not. We denote by G

δi� G/Δi, G
σi� G/Σi the corresponding quasi-regular actions.

It is important to note that, in G/Δi, there are finitely many points whose stabilizer is Δi

under the δi-action. In G/Σi there are infinitely many similar points. With this terminology
in place, we can describe the generic permutation representation. It will have countably many
orbits isomorphic to each δi and one orbit isomorphic to each σi:

τ∗ =

(⊔
i

ℵ0δi

)
�
⎛⎝⊔

j

σj

⎞⎠ .

Applying Corollary 2.4 to the open dense subset Is(G) ⊆ Sub(G), we conclude that a
generic permutation representation has all of its stabilizers in Is(G). In other words, a generic
representation is isomorphic to (�idiδi) � (�isiσi) for some di, si ∈ N ∪ {∞}. By Lemma 2.5,
applied to the open set {Δi}, we know that a generic representation has infinitely many points
whose stabilizer is Δi, which immediately implies that di = ∞, ∀i. Note that an identical
argument tells us that a generic representation has countably many points whose stabilizer is
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Σi, but even one orbit isomorphic to σi is enough to ensure that, so this does not add any
information about the coefficients si.

All that is left to prove is that a generic representation has only one orbit isomorphic to σi
for every i. In order to simplify the notation, we will hence fix the index i and define σ = σi,
Σ = Σi. Let us denote by [Σ] = {gΣg−1 | g ∈ G} ⊆ Sub(G) the conjugacy class of Σ. The bad
event is the existence of two different orbits with stabilizers in [Σ]:

Θ =
⋃

x,y∈X
Θx,y,

Θx,y = {ϕ ∈ Hom(G,X!) |Gx(ϕ) = Gy(ϕ) = Σ; but ϕ(G)x �= ϕ(G)y}.
By continuity of the stabilizer map (Lemma 2.3), the sets G−1

x ({Σ}), G−1
y ({Σ}), and hence also

Θx,y are closed. So, by Baire’s theorem, it suffices to prove that Θx,y is nowhere dense. Assume
to the contrary that O = O(ϕ, S,A) ⊆ Θx,y for some basic open set. Replacing if necessary O
by a smaller basic open set, we may assume that S = S−1 and that O ⊆ G−1

x ({Σ}) ∩G−1
y ({Σ}).

Let Ax = ϕ(G)x ∩A and Ωx =
⋃
s∈S ϕ(s)Ax. We define Ay,Ωy similarly.

Consider the quasi-regular action σ : G � G/Σ; if g ∈ NG(Σ), then there is a unique G
invariant isomorphism

ηgΣ : ϕ(G)x −→ G/Σ,
ϕ(h)x �−→ hgΣ.

Since [NG(Σ) : Σ] = ∞, by assumption, there are infinitely many possible choices of points gΣ
that would work for x and similarly for y. Let gxΣ, gyΣ be two such choices satisfying the
additional property

ηgx
(Ωx) ∩ ηgy

(Ωy) = ∅.
Let α : ϕ(G)x � ϕ(G)y → G/Σ be any bijection such that α(z) = ηgx

(z), ∀z ∈ Ωx and
α(z)= ηgy

(z), ∀z ∈ Ωy. We define a new action ψ ∈ O by the following formula:

ψ(g)(x) =

{
α−1(gα(x)) if x ∈ ϕ(G)x � ϕ(G)y,

ϕ(g)x otherwise.

It is easy to verify that ψ ∈ O, that Gx(ψ), Gy(ψ) = Σ and that x, y are in the same ψ(G)-
orbit, contradicting the assumption that O ⊆ Θ(x, y), which completes the proof of the first
implication.

Assume now that there exists a generic permutation representation τ∗ ∈ Hom(G,X!); by
assumption its isomorphism class Φ = {aτ∗a−1 | a ∈ X!} is co-meager in Hom(G,X!). The
collection of subgroups appearing as point stabilizers of τ∗ are given by O = {Gx(τ∗) |x ∈
X} = Gx0(Φ) ⊆ Sub(G), where x0 is an arbitrary basepoint. Since, by Lemma 2.3, the map
Gx0 is surjective and continuous, O is dense in Sub(G). In particular, O ⊃ Is(G).

We will show that O ⊆ Is(G), thus showing that the latter is dense and completing the
proof. Let Σ ∈ O and [Σ] = {gΣg−1 | g ∈ G} be its conjugacy class. By Proposition 2.1(1), it is
enough to show that [Σ] is open. If [Σ] fails to be open, then it must have an empty interior,
because G acts transitively on [Σ]. Since [Σ] is countable, it follows from Baire’s theorem that
Sub(G) \ [Σ] is a dense Gδ set. By Corollary 2.4

˜Sub(G) \ [Σ] = {σ ∈ Hom(G,X!) |Gx(σ) �∈ [Σ], ∀x ∈ X}
is also a dense Gδ set. But this contradicts the fact that Φ is dense Gδ as the intersection of
these two sets is empty.

We turn to the proof of Theorem 1.3.
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Proof of Theorem 1.3. In view of the fact that, in a finitely generated group G, finite
index subgroups are isolated, (i) follows directly from the comparison of Theorems 1.1 and 1.2.
Density of isolated points (statement ii) is a general fact about countable Baire spaces. Indeed,
the set Sub(G) \ Is(G) is nowhere dense since it is a countable union of closed, nowhere dense
points. Consider a short exact sequence as in statement (iii). Since N is finitely generated,
Env(N) is clopen. It is easy to verify that the correspondence principle, between subgroups of
G and subgroups of H containing N , gives rise to a homeomorphism

Env(N) −→ Sub(G),
Θ �−→ ϕ(Θ).

Claim (iii) follows immediately.
It is well known that the free product of two LERF groups is LERF [3, 18]. If one of

the groups, say H, is trivial, then G ∗ 〈e〉 ∼= G and the situation is clear. Thus to establish
(iv), we have to show that if neither group is trivial and G fails to be LERF, then G ∗H
cannot be solitary. Let Σ ∈ Subfg(G) \ Subfi be some finitely generated subgroup that cannot
be approximated by finite index subgroups. Let η : G ∗H → G be the map that is the identity
on G and trivial on H. We will show that Ξ := η−1(Σ) = Σker(η) ∈ Sub(G ∗H) is a subgroup
that cannot be approximated by isolated subgroups. Indeed, let Ω ⊆ G be some finite set such
that the neighborhood WSub(G)(Σ,Ω) does not contain any finite index subgroup. We can use
the same Ω to define an open neighborhood in G ∗H and it is clear that [G : Δ ∩G] = ∞
for every Δ ∈ SubSub(G∗H)(Ξ,Ω). Thus our theorem is proved in view of the following lemma,
which seems very useful in its own right.

Lemma 4.1. Let G,H be two countable groups with G infinite and H non-trivial. If
Δ ∈ Is(G ∗H), then [G : G ∩ Δ] <∞.

Proof. It will be more convenient to argue at the level of actions and Schreier graphs.
Note that Hom(G ∗H,X!) ∼= Hom(G,X!) × Hom(H,X!). We will denote this isomorphism by
ϕ ∗ ψ �→ (ϕ,ψ); namely, ϕ ∗ ψ is the unique action of G ∗H whose restriction to G is ϕ and to
H is ψ.

Let Δ ∈ Sub(G ∗H) and assume that [G : G ∩ Δ] = ∞. Let ϕ ∗ ψ ∈ Hom(G ∗H,X!) be any
action that is isomorphic to the quasi-regular action G ∗H � (G ∗H)/Δ with x ∈ X identified
with the trivial coset eΔ. Note that, while the action of G ∗H is transitive, ϕ,ψ themselves
need not be transitive. Still, by our assumption we know that the orbit Y := ϕ(G)x ⊆ X is
infinite. The argument now is simple enough: we obtain approximating actions of the form
ϕ ∗ ψn n→ ϕ ∗ ψ by carrying out small perturbations on the action of H. Since the orbit Y is
infinite, we can do arbitrarily small such perturbations on the action while still affecting the
stabilizer of the point x. We elaborate below, but this is basically a complete proof.

Let x ∈ A0 ⊆ A1 ⊆ A2 · · · be finite sets ascending to the whole of X and Tn ⊆ H be finite
sets ascending to a generating set of H. We can assume 1 ∈ Tn = T−1

n . Of course, if H is finitely
generated, then we can just take Tn = T, ∀n ∈ N to be some fixed symmetric set of generators.
Set Bn = ∪t∈Tn

ψ(t)(An) and ξn ∈ Y \Bn. Since X is infinite, we can find bijections fn : X →
X × {0, 1}, with the additional properties that fn(x) = (x, 0), ∀x ∈ An and fn(ξn) = (ξn, 1).
Let η ∈ hom(H,X!) be any fixed action of H on X. Using all these data, we construct a
sequence of actions ψη ∈ Hom(H, (X × {0, 1})!) as follows:

ψη(h)(x, i) =

{
(ψ(h)x, 0), i = 0,

(η(h)x, 1), i = 1,

and let ψηn(h) = (fn)−1 ◦ ψη ◦ fn. It is clear from the definitions that ψηn ∈ O(ψ, Tn, An), and
in particular ψηn → ψ as n→ ∞. Consequently, of course ϕ ∗ Ψη

n → ϕ ∗ ψ in Hom(G ∗H,X!).
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Let 1, λ ∈ Hom(H,X!) be the trivial and the regular left action of H on X. The latter is
defined via an arbitrarily chosen identification of X with H which will not play a role in the
discussion. If H is finite, then we replace the regular left action by countably many copies of
the same action, just to make sure that λ is an action on an infinite set. We use these to obtain
two convergent sequences of actions, and hence two convergent sequences of subgroups

ϕ ∗ ψ1
n −→ ϕ ∗ ψ ϕ ∗ ψλn −→ ϕ ∗ ψ,

(G ∗H)x(ϕ ∗ ψ1
n) −→ Δ (G ∗H)x(ϕ ∗ ψλn) −→ Δ.

These sequences are different because if gn ∈ Gn is any element such that ϕ(gn)x = ξn, then,
for any 1 �= h ∈ H, we have

g−1
n hgn ∈ (G ∗H)x(ϕ ∗ ψ1

n) \ (G ∗H)x(ϕ ∗ ψλn).

Thus, at least one of these sequences is not eventually constant, proving that the limit point
Δ is not isolated.

A direct product of two solitary groups does not need to be solitary; the following example
was explained to us by Y. Cornulier, and we are grateful to him for allowing us to include it
here.

Proposition 4.2 (Cornulier). Let F be a finitely generated non-abelian free group. Then
isolated subgroups are not dense in Sub(F × F ).

Proof. Note that the space of subgroups of F × F which contain the diagonal ΔF is clopen
in Sub(F × F ); this space is homeomorphic with the space of normal subgroups of F , via
the homeomorphism H �→ H ∩ (F × {1}) (whose inverse is given by K �→ 〈K × {1},ΔF 〉). It
is proved in [4] (see Corollary 3.7) that isolated points are not dense in the space of normal
subgroups of F , which gives us a clopen subset of Sub(F × F ) where isolated points are not
dense, proving that F × F is not solitary.

The previous proposition gives, in particular, an alternative proof of the well-known fact that
F × F is not LERF. We conclude this section by pointing out that a detailed study of isolated
points in the space of subgroups of countable abelian groups was carried out by de Cornulier
et al. [5]; in particular, they provide a characterization for when there exists isolated subgroups
(see Corollary 2.1.2 of [5]: the ambient group has to be minimax) and show (Proposition 3.3.4
and the discussion immediately following it) that if isolated subgroups exist, then they form a
dense subset.

5. Sketch of another proof of Theorem 1.1

We briefly sketch another proof of Theorem 1.1, which is more along the lines of the arguments
in [12]. First, we note that, for any countable group G, the action of X! on Hom(G,X!) is
topologically transitive, that is, given any two non-empty open subsets U, V of Hom(G,X!),
there always exists α ∈ X! such that α · U ∩ V �= ∅ (equivalently, there exist elements in
Hom(G,X!) that have a dense conjugacy class). This is true simply because any two actions
π1, π2 of G on an infinite countable set embed in a third one π3 (for instance, obtained by
considering a disjoint union of two infinite countable sets, with G acting as π1 on the first
copy, and π2 on the second copy). Then the closure of the conjugacy class of π3 contains both
π1 and π2, proving the desired result.

This brings us to the setting of the following lemma; the equivalence between (i) and (iii)
below is the criterion we will be using, and is due to C. Rosendal. The equivalence of these
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conditions with (ii) appears to be new, and seems potentially useful, so we are including it here
even though it will not be needed.

Lemma 5.1. Assume that P is a Polish group acting continuously and topologically
transitively on a Polish space Z. Then the following conditions are equivalent.

(i) There exists a co-meager orbit.
(ii) For any open identity neighborhood 1 ∈ V ⊆ P , the collection of points

{z ∈ Z |V (z) is somewhere dense} = {z ∈ Z | Int(V (z)) �= ∅}
is dense in Z.

(iii) For any open identity neighborhood 1 ∈ V ⊆ P and any non-empty open subset U of
Z, there exists a non-empty open U ′ ⊆ U such that, for any non-empty open W1,W2 ⊆ U ′, one
has VW1 ∩W2 �= ∅.

Proof. Fix an open identity neighborhood V and a sequence of group elements such that
∪nαnV = P . If there exists a co-meager orbit, then, by Baire’s category theorem, for every z
in this orbit there exists an n such that αnV (z) is somewhere dense. Translating by αn, we
deduce that V (z) itself is somewhere dense. This proves that (i) implies (ii).

Assume that (ii) holds; fix an open identity neighborhood 1 ∈ V ⊆ P and a non-empty open
subset U of Z. Using our assumption, and continuity of the action, we may find a symmetric
open identity neighborhood V ′ such that V ′V ′ ⊆ V , an open U ′ ⊆ U and x ∈ U such that the
closure of V ′(x) contains U ′. Then, for any W1,W2 non-empty open and contained in U ′, we
have some v1, v2 ∈ V ′ such that v1x ∈W1, v2x ∈W2. Thus v2v−1

1 W1 ∩W2 �= ∅ and (iii) holds.
Finally, assume that (i) is false; since there exist dense orbits, any orbit must be meager

or co-meager, by the 0–1 topological law [2]. So, in this case, all orbits are meager. Given
z ∈ Z, we then have a family of closed subsets Fn with empty interior such that P (z) ⊆ ∪Fn;
some {g ∈ P : gz ∈ Fn} must have non-empty interior, proving that there exists some open
neighborhood V of 1 such that V (z) is nowhere dense. Thus Z is the union of sets of the form
{z ∈ Z : V (z) is nowhere dense}, where V ranges over a countable basis of neighborhoods of
1; one of these sets must be non-meager, hence (since these sets are Borel) co-meager in some
non-empty open U . Assume that (iii) holds, and pick U ′ ⊆ U witnessing it. The assumption
of (iii) amounts to saying that {z ∈ U ′ : V (z) ∩W �= ∅} is dense open in U ′ for any non-empty
open W ⊆ U ′; this implies that {z ∈ U ′ : V (z) is dense in U ′} is co-meager in U ′. This is a
contradiction with the fact that V (z) must be nowhere dense for a generic element of U , hence
also of U ′.

Now, we need to understand when the above criterion is satisfied, for G a countable group,
P = X! and Z = Hom(G,X!). Given an open set U = O(ρ, S,A), let i(ρ) denote the number
of distinct G-orbits of elements of A; we may pick ρ such that i(ρ) is minimal among elements
of U . Then, enlarging S and shrinking A as needed, we can reduce to the situation where

∀π ∈ U ∀a �= a′ ∈ A, ∀g ∈ G, π(g)(a) �= a′.

We are now in a situation where orbits of elements of A cannot interfere with each other; this
enables us to reduce to the case where A = {a} is a singleton and we are working inside the
Polish space Z ′ of transitive G-actions. Consider an open set U = O(ρ, S, a) ∩ Z ′; let Ga denote
the stabilizer of a for this action, and let V be the group of permutations fixing a finite set
F . Enlarging S if needed, we may assume that F ⊆ Sa. Then, it is readily checked that two
elements ρ1, ρ2 of U belong to the same V -orbit if and only if the stabilizers of a for ρ1 and ρ2

are the same. Let

S1 = {g2g−1
1 : g1, g2 ∈ S and g1(a) = g2(a)}, S2 = {g ∈ S : g(a) �= a}.
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The discussion above shows that the criterion (iii) of Lemma 5.1 is satisfied if and only if there
exists an open set W = O(ρ̃, S̃, a) ∩ Z ′ contained in U such that the stabilizer of a is the same
for any two elements of W ; that is, if and only if there exist finite sets S̃1, S̃2 ⊆ G, with S̃1 ⊇ S1

and S̃2 ⊇ S2, and a subgroup G′
a such that

∀H ∈ Sub(G) (∀g ∈ S1 g ∈ H and ∀g ∈ S2 g �∈ H) ⇔ (H = G′
a).

Thus H is an isolated point in Sub(G); since Ga was an arbitrary subgroup of G, and S1, S2

encode an arbitrary open neighborhood of Ga, we just established that there exists a generic
action in Hom(G,X!) if and only if G is solitary.

One can try to use the same approach as above to understand when there exists generic
conjugacy classes in Hom(G,P ) for other Polish groups P . But, as the structure of P becomes
more complicated, the above analysis is harder to carry out (in particular, the reduction to
transitive actions no longer works). One case when one can do it is when P = Aut(R) is the
automorphism group of the random graph. Then, reasoning in much the same way as above,
one obtains the following criterion, which probably can be further simplified.

Proposition 5.2. Given G a countable group, there exists a generic element in
Hom(G,Aut(R)) if and only if the following condition is satisfied:

For any finitely-generated subgroups H1, . . . , Hn of G, and any finite Ki,j ⊆ G with HiHj ∩
Ki,j = ∅ for all i � j, there exist finitely generated subgroups H ′

1, . . . , H
′
n such that:

(i) for all i H ′
i contains Hi;

(ii) for all i, j the double coset space H ′
i\G/H ′

j is finite;
(iii) for all i � j one has H ′

iH
′
j ∩Ki,j = ∅.

The above property is hard to grasp; it does impose some strong conditions on G, namely:

(1) G is finitely generated;
(2) any finitely generated subgroup of G is an intersection of finitely generated subgroups

with finite bi-index (say that H ⊆ G has finite bi-index if and only if the double coset
space H\G/H is finite). In particular, G is solitary (because any subgroup with finite
bi-index is isolated);

(3) for any two subgroups H,H ′ of G with finite bi-index, the double coset space H ′\G/H
is finite.

Question 3. Does there exist a countable group satisfying the previous conditions which
is not LERF?

Note that, in a LERF group G, a subgroup H of finite bi-index must actually be of finite
index (since there exist only finitely many subgroups of G that contain H). Also, one can
check that if there exists a generic action of G on the random graph, then the stabilizers of
points for this action are exactly the subgroups of finite bi-index; thus in a LERF group they
would be exactly the subgroups of finite index, and all orbits for the generic action must then
be finite. Recall that a countable group G has property (RZ2) if, whenever H,H ′ are finitely
generated subgroups of G, the subset HH ′ is closed for the profinite topology on G; taking
H ′ = {e}, this is obviously a strengthening of the LERF property, and the two notions are not
equivalent: it was pointed out to us by Y. Cornulier that, in his thesis [6], Coulbois proved that
free metabelian groups have property (RZ1), but not (RZ2) (see Théorème 4.4). Rosendal [20]
proved that, whenever G is finitely generated and has property (RZ2), there exists a generic
action of G on the random graph, which has all of its orbits finite; and conversely, if the set of
actions of Γ on the random graph which have only finite orbits is dense, then G has property
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(RZ2). Thus any finitely generated group which is (RZ1), but not (RZ2) is an example of a
group admitting a generic action on the infinite countable set, but not on the random graph.

6. A-separability

Definition 8. An action G � X of a discrete, countable group G is called amenable if it
satisfies any one of the following equivalent conditions.

(1) For every ε > 0 and Ω ⊆ G finite, X admits an (ε,Ω)-Følner subset, that is, a finite set
F ⊆ X such that |gFΔF |/|F | < ε for all g ∈ Ω.

(2) There exists a finitely additive G-invariant probability measure on X.

When the action is transitive, of the form G � G/K, these conditions are further equivalent
to the following:

(1) if G acts continuously on a compact space and K admits an invariant Borel measure,
then so does G.

In the transitive case it is sometimes convenient to adopt group theoretic terminology as follows.

Definition 9. A subgroup K of a group G is called co-amenable if the quasi-regular action
G � G/K is amenable.

The equivalence of these three conditions is classical. By definition, an amenable action always
admits a Følner-sequence. This is a sequence of finite subsets Fn ⊆ X such that, for all g ∈ G,
we have limn→∞ |gFn�Fn|/|Fn| = 0. We recall the following remark.

Remark 3. A Følner-sequence can be chosen to be increasing (with respect to inclusion).

As defined in the introduction, a group G is A-separable if the set of co-amenable subgroups
is dense in Sub(G). We now prove Theorem 1.4, giving a characterization of A-separability in
the language of generic actions.

Proof of Theorem 1.4. Denote by CoAm(G) the set of all co-amenable subgroups of G. For
x ∈ X define

Σ(x) = {σ ∈ Hom(G,X!) | G σ
� (G)x is amenable}

= {σ ∈ Hom(G,X!) | Gx(σ) ∈ CoAm(G)}
and Σ = ∩x∈XΣ(x). If Σ is generic, then Σ(x) is dense in Hom(G,X!) and by Lemma 2.3 the
image of this set {Gx(σ) | σ ∈ Σ(x)} is a dense subset of Sub(G) consisting of co-amenable
subgroups.

Conversely, assume that CoAm(G) is dense in Sub(G); we wish to prove that the set Σ is
generic in Hom(G,X!). It is enough to show that Σ(x) is generic in Hom(G,X!) for every
x ∈ X. The density of Σ(x) is assured by the hypothesis, the fact that Σ(x) = G−1

x (CoAm(G))
and Lemma 2.3. To show that Σ(x) is Gδ, it is enough to show that, given ε > 0 and F,Ω ⊆ G
finite, the set of all σ for which F ⊆ σ(G)x and F is (ε,Ω)-Følner is open in Hom(G,X!). To
see this, pick, for every f ∈ F, a group element gf ∈ G such that f = σ(gf )x. Let F ′ = F ∪ {x}
and Ω′ = Ω ∪ {gf | f ∈ F}; then O = O(σ, F ′,Ω′) is an open neighborhood of σ such that, for
every ϕ ∈ O F, is contained in the orbit of x and (ε,Ω)-Følner.
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As mentioned in the introduction, LERF groups and amenable groups are A-separable, but
they are not the only examples of A-separable groups. In order to give an example of an
A-separable group which is neither LERF nor amenable, we will first prove that A-separability
is closed under taking free products.

Theorem 6.1. Let G and K be countable groups. If G and K are A-separable, then so is
G ∗K.

Proof. Every element of Hom(G ∗K,X!) is of the form ϕ ∗ ψ for ϕ ∈ Hom(G,X!),
ψ ∈ Hom(K,X!); where ϕ ∗ ψ is defined by setting (ϕ ∗ ψ)(g) = ϕ(g) and (ϕ ∗ ψ)(k) = ψ(k),
∀g ∈G, k ∈ K and expanding the definition to the free product.

For every x ∈ X, ε > 0 and finite subsets S ⊆ G, T ⊆ K let

Σ(x, ε, S, T ) = {σ ∗ τ ∈ Hom(G ∗K,X!) | the (σ ∗ τ)-orbit of x
contains an (ε, S ∪ T )-Følner set}.

We want to prove that Σ = ∩Σ(x, 1/n, S, T ) (x ∈ X, n ∈ N, S ⊆ G, T ⊆ K finite) is generic in
Hom(G ∗K,X!). SinceX,G andK are countable, it is enough to show that the sets Σ(x, ε, S, T )
are open and dense for every x ∈ X, ε > 0 and finite subsets S ⊆ G, T ⊆ K. The argument
that shows that Σ(x, ε, S, T ) is open was given in the proof of Theorem 1.4.

Fix x, ε, S and T as above. We prove that Σ(x, ε, S, T ) is dense in Hom(G ∗K,X!).
Let ϕ ∗ ψ ∈ Hom(G ∗K,X!) and let A ⊆ X be finite. We will find ϕ′ ∈ Hom(G,X!) and
ψ′ ∈ Hom(K,X!) such that ϕ′(s)a = ϕ(s)a, ψ′(t)a = ψ(t)a for all s ∈ S, t ∈ T, a ∈ A and
such that ϕ′ ∗ ψ′ ∈ Σ(x, ε, S, T ). We can assume that x ∈ A. By A-separability, there exist
σ ∈ Hom(G,X!) and τ ∈ Hom(K,X!) such that σ(s)a = ϕ(s)a, τ(t)a = ψ(t)a for all s ∈
S, t∈T , a ∈ A and such that the actions G

σ
� X and K

τ
� X are amenable on every orbit.

Let L := σ ∗ τ(G ∗K) = 〈σ(G), τ(K)〉.
Case 1: All the σ and τ orbits which are contained in Lx are finite. Let B ⊆ Lx be a

finite, σ-invariant set containing A ∩ Lx and let C =
⋃
b∈B τ(K)b. We define a representation

ϕ′ ∈ Hom(G,X!) by declaring every c ∈ C �B and every element in the σ-orbit of c to be a
fixed point for ϕ′ and on every other element of X, ϕ′(g) identifies with σ(g) for all g ∈ G.
Note that since B is σ-invariant, ϕ′(g) is well defined and acts the same as σ(g) on B for all
g ∈ G. In particular, ϕ′(g) agrees with ϕ(g) on A. We have that C is finite, invariant under
both ϕ′ and τ and contains x. Setting ψ′ = τ , the (ϕ′ ∗ ψ′)-orbit of x is finite, so the orbit itself
is an (ε, S ∪ T )-Følner set for ϕ′ ∗ ψ′.

Case 2: Lx contains either an infinite σ-orbit or an infinite τ -orbit. Assume, without loss of
generality, that Lx contains an infinite τ -orbit Y . Define B = A ∪ (

⋃
s∈S σ(s)A) and let Fn be

an increasing Følner-sequence in Y for the τ -action. Since the sets Fn are finite, none of them is
τ -invariant and so the Følner-sequence does not stabilize. This implies that |Fn| → ∞ and, in
particular, Y contains an (ε, T )-Følner set F such that |F | > 2(|B| + 1)/ε. Now, let z ∈ G ∗K
be such that (σ ∗ τ)(z)x ∈ F and such that z is of minimal length with respect to the canonical
presentation: z = gnkngn−1kn−1 · · · g1k1 (gi ∈ G, kj ∈ K, g1, . . . , gn−1, k2, . . . , kn �= 1). Define
y = (σ ∗ τ)(z)x. By Lemma 2.6, we can assume that σ has infinitely many fixed points. In
particular, there exists a set C ⊆ X on which σ(G) acts trivially, such that |C| = |F � (B ∪
{y})| and such that C does not intersect the finite set B ∪ F ∪ trace(σ∗τ)(z)(x), where we
think of (σ ∗ τ)(z) as the word over X! corresponding to the given presentation of z. Define
D = F � (B ∪ {y}) and let ξ ∈ X! be a permutation of order 2 that takes C bijectively onto D
and acts trivially on X � (C ∪D). We define an action ϕ′ ∈ Hom(G,X!) by ϕ′(g) = ξ−1σ(g)ξ
for all g ∈ G. Since ξ acts trivially on B, we have that ∀s ∈ S, ∀a ∈ A : ϕ′(s)a = σ(s)a = ϕ(s)a
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and that every element of D is fixed under ϕ′(s) for all s ∈ S. Hence

∀s ∈ S :
|ϕ′(s)FΔF |

|F | � 2|F �D|
|F | � 2(|B| + 1)

|F | < ε.

Thus F is (ε, S)-Følner for ϕ′ and (ε, T )-Følner for ψ′ := τ , and thus F is (ε, S ∪ T )-Følner for
ϕ′ ∗ ψ′. Note that, by the minimality of the length of z, we have that trace(σ∗τ)(z)(x) ∩ F = {y}
and so ξ acts trivially on trace(σ∗τ)(z)(x). This means that (ϕ′ ∗ ψ′)(z)x = y ∈ F and, since F
is contained in a τ -orbit, this implies that F is contained in the (ϕ′ ∗ ψ′)-orbit of x, as required.

Recall that the (m,n) Baumslag–Solitar group is the group BS(m,n) = 〈s, t | t−1smt = sn〉.
It is well known that BS(m,n) is solvable (hence amenable) if and only if m = 1.

Proposition 6.2. For every n, the group BS(1, n) is not LERF.

Proof. Write BS(1, n) = 〈s, t | t−1st = sn〉 and note that t−1〈s〉t = 〈sn〉 � 〈s〉. Thus, an
element of 〈s〉 � t−1〈s〉t cannot be separated from t−1〈s〉t by a homomorphism into a finite
group.

Corollary 6.3. There exist non-LERF, non-amenable A-separable groups.

Proof. Let G = BS(1, n) for some n. We see that G is amenable, hence A-separable and
so, by Proposition 6.1, G ∗G is A-separable. On the other hand, G ∗G is not LERF since G
is not LERF and the LERF property passes to subgroups; G ∗G is also not amenable since it
contains a free subgroup on two generators.

In order to complete the proofs of all the statements promised in the introduction, we prove
the following.

Proposition 6.4. A group G with Kazhdan property (T) is A-separable if and only if it
is LERF. In particular the following groups are never A-separable.

(1) Groups with property (T) that are not residually finite, and in particular any simple
group with property (T).

(2) Irreducible lattices in higher-rank semi-simple Lie groups with property (T) that satisfy
the congruence subgroup property.

Proof. This follows directly from the fact that a transitive action of such a group G � G/H
is amenable if and only if G/H is finite. Indeed, if such an action is amenable and F ⊆ G/H
is an (K, ε) Følner set, then 1F ∈ �2(G/H) is a (K, ε)-almost invariant vector. Taking (K, ε)
to be Kazhdan constants for G, we can deduce the existence of a non-zero invariant vector
f ∈ �2(G/H). Since the action of G on G/H is transitive, f must be a constant function. But
a non-zero constant function is in �2 if and only if G/H is finite.

Now if Γ is a lattice as in the statement, then it inherits property (T) from the ambient group.
However, it cannot be LERF because, by the strong approximation theorem [15, Window 9,
17], every Zariski dense subgroup has a finite index closure in the pro-congruence topology;
which coincides with the profinite topology by assumption.

Note that conjecturally the congruence subgroup property automatically holds for such
higher-rank lattices, and this is indeed proved in many different cases. In particular, the
groups SLn(Z), n � 3 are good examples for residually finite groups that are not A-separable.
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We conjecture further that the LERF property can never occur in a non-trivial way for property
(T) groups; namely, we have the following conjecture.

Conjecture 1. A countable group G with Kazhdan property (T) is LERF if and only if
it is finite.

It was pointed out to us by Matthew Stover that a similar question was already asked by
Long and Reid [14, Question 4.5].
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