I am a first year Ph.D. student, working with Peter Koepke. Currently, we are discussing possible behaviors of the 2^{κ} -function under the negation of the axiom of choice.

In [AK10], Arthur Apter and Peter Koepke determine various exact consistency strengths of the negation of the Singular Cardinal Hypothesis in Zermelo-Fraenkel set theory. For instance, they prove the equiconsistency of the following two theories, for any $\alpha \geq 2$ fixed: ZFC + "there is a measurable cardinal", and ZF + \neg AC + "GCH holds below \aleph_{ω} " + "there is a surjective function $f : [\aleph_{\omega}]^{\omega} \rightarrow \aleph_{\omega+\alpha}$ ".

It is possible to avoid the assumption of a measurable cardinal, if one only considers surjections from $\mathscr{P}(\aleph_{\omega})$ (instead of $[\aleph_{\omega}]^{\omega}$):

Theorem ([GK12]). Let V be a ground model of ZFC + GCH and λ a cardinal in V. Then there exists a cardinal preserving model $N \supseteq V$ of the theory ZF + "GCH holds below κ "+ "there is a surjective function $f : \mathcal{P}(\aleph_{\omega}) \to \lambda$ ".

The rough ideas from [GK12] can be described as follows: For every $n < \omega$, \aleph_{n+1} -many Cohen subsets are added to \aleph_{n+1} . Furthermore, λ -many subsets of \aleph_{ω} are adjoined, each of which restricted to any interval [\aleph_n, \aleph_{n+1}) is eventually equal to one Cohen subset. Let N be the choiceless submodel generated by certain equivalence classes of the adjoined \aleph_{ω} -subsets. An isomorphism argument gives that any $X \subseteq$ Ord located in N must already be contained in a "mild" V-generic extension; consequently, cardinals are N-V-absolute.

In any ZF-model, one can define for cardinals \aleph_{α} :

 $\theta(\aleph_{\alpha}) \coloneqq \sup\{\xi \mid \text{ there is a surjective function } f : \mathcal{P}(\aleph_{\alpha}) \to \xi\}.$

Concerning the model N constructed above, one can show that, indeed, $\theta(\aleph_{\omega}) = \lambda^+$. Furthermore, the results from [GK12] can be generalized to arbitrary cardinals \aleph_{α} . At the moment, we are working on the following question: Given a (sufficiently reasonable) function $E: \operatorname{Ord} \to \operatorname{Ord}$, is there a ZF-model N in which $\theta(\aleph_{\alpha}) = E(\alpha)$ for all $\alpha \in \operatorname{Ord}$?

My diploma thesis was in the area of forcing and large cardinals. The first part dealt with the question how the folklore *factor lemma* for forcing interations can be strengthened (under reasonable circumstances). The second part was based on Joel Hamkin's article *The lottery preparation* [Ham00], where he introduces a preparatory forcing that makes a variety of large cardinals indestructible by certain types of forcing. Under the assumption that there are no supercompact limits of supercompact cardinals in V, an easy modification leads to a class forcing extension V[G] with the same supercompacts as V, where additionally, every supercompact cardinal κ is indestructible by $< \kappa$ -directed closed forcing.

References

- [AK10] Arthur Apter and Peter Koepke, The consistency strength of choiceless failures of SCH, Journal of Symbolic Logic 75 (3), 2010, 1066 – 1080.
- [GK12] Moti Gitik and Peter Koepke, Violating the Singular Cardinal Hypothesis without large cardinals, 2012, submitted.
- [Ham00] Joel D. Hamkins, The lottery preparation, Annals of Pure and Applied Logic, 101 (2 - 3), 2000, 103 – 146.