Research Statement for Young Set Theory Workshop CIRM, April 30th - May 4th, 2012 Vassilis Gregoriades

My research is focused on descriptive set theory with emphasis on effective theory and its applications. A characteristic type of problems of this area is to examine the existence of Borel-measurable choice functions. This is strongly related to the existence of Δ_1^1 (i.e., HYP) points satisfying a given property. To be more specific assume that \mathcal{X} and \mathcal{Y} are recursively presented Polish spaces and that $P \subseteq \mathcal{X} \times \mathcal{Y}$ is a Π_1^1 set such that for all $x \in \mathcal{X}$ there exists a $y \in \Delta_1^1(x)$ such that $(x, y) \in P$. Then there exists a Borel-measurable function $f : \mathcal{X} \to \mathcal{Y}$ such that $(x, f(x)) \in P$ for all $x \in \mathcal{X}$. In a typical example of an application one knows beforehand that for the given set P for each x there exists a y such that $(x, y) \in P$. The proof of the existence of the latter y does not imply though that it can be chosen in a Δ_1^1 -way. Hence one has to actually provide a new proof of the statement $(\forall x)(\exists y)[(x, y) \in P]$, where the latter y is actually in $\Delta_1^1(x)$. In other words one has to find an "effective" proof.

A result of this kind that I have obtained recently is the effective version of the theorem about extending the original topology in a Polish space into another Polish topology so that a given Borel-set becomes a clopen set and the Borel structure remains the same. I have also provided conditions under which the extended topology can be encoded in a Δ_1^1 -way. As described above this gives rise to a Borel measurable function which carries a code of the original topology to a code of the extended topology, provided that the appropriate conditions are satisfied.