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ABSTRACT. We investigate some properties of the clopen type semigroup of an
action of a countable group on a compact, 0-dimensional, Hausdorff space X. We
discuss some characterizations of dynamical comparison (most of which were al-
ready known in the metrizable case) in this setting; and prove that for a Cantor
minimal action α of an amenable group the topological full group of α admits a
dense, locally finite subgroup iff the corresponding clopen type semigroup is un-
perforated. We also discuss some properties of clopen type semigroups of the
Stone-Čech compactifications and universal minimal flows of countable groups,
and derive some consequences on generic properties in the space of minimal ac-
tions of a given countable group on the Cantor space.

1. INTRODUCTION

Given an action α : Γ ↷ X of a countable group Γ on a compact, Hausdorff,
0-dimensional space X, and two clopen subsets A, B of X, an interesting question
is whether one can equidecompose A into B, that is, when there exists a clopen par-
tition A =

⊔n
i=1 Ai and γ1, . . . , γn ∈ Γ such that

⊔n
i=1 γi Ai ⊂ B.

The first such example, historically, where these questions were studied is the
case where X is the Stone-Čech compactification βΓ of Γ: the action Γ ↷ βΓ really
is the action of Γ on the powerset of Γ in disguise. Equidecomposability problems
in this setting have been studied since the beginning of the twentieth century, in
particular in connection with the Banach-Tarski paradox and paradoxical decom-
positions.

At the other extreme, the case where X is the Cantor space and Γ = Z acts min-
imally on X is also well-studied, and connected to classification of such actions
up to flip-conjugacy and orbit equivalence as well as operator algebraic proper-
ties (see [GPS1] or the book [P2]). A key fact is that such actions have the dy-
namical comparison property introduced in[B] and [K2]: if α : Z ↷ X is a minimal
action on the Cantor space, and A, B are clopen such that µ(A) < µ(B) for ev-
ery α-invariant Radon probability measure, then a result of Glasner and Weiss
[GW] asserts that one can equidecompose A into B. The dynamical comparison
property has been intensively studied in recent years following work of Kerr that
established its relevance to problems related to operator algebras. Downarow-
icz and Zhang [DZ] proved that every action of a locally subexonential group on
a compact 0-dimensional metrizable Hausdorff space has comparison; Kerr and
Narishkyn [KN] showed that every free action of an elementary amenable group
on a compact metrizable space has comparison.

Recall that the topological full group [[α]] of α : Γ ↷ X is the subgroup of all g ∈
Homeo(X) such that there exist a clopen partition X =

⊔
Ai and γ1, . . . , γn ∈ Γ

with g(x) = α(γi)(x) for all x ∈ Ai. In the case of a minimal Z-action α on the
Cantor space, [[α]] admits a natural dense, locally finite subgroup, made up of all
the elements of [[α]] which preserve the positive semi-orbit of some fixed element
x0; these dense locally finite subgroups play an important part in the Giordano–
Putnam–Skau classification of minimal Cantor Z-actions up to orbit equivalence
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(see [GPS1] and [GPS2] for the original approach, or [MR] and its references for
another point of view). Whether such a classification is valid for all countable
amenable groups is an open problem: it is not known if every minimal Cantor
action of a countable amenable group is orbit equivalent to a Z-action. A weaker
property is also not known to hold in general: given a minimal Cantor action α
of a countable amenable group, does there exist a Z-action which has the same
invariant Borel probability measures as α? If α has dynamical comparison then it
follows from a result of Ibarlucı́a and the author (see [IM], [M6]) that the answer
to this question is positive (see Section 5, where we reformulate this property as a
weaker version of dynamical comparison).

It was noted by Kerr in [K2] that dynamical comparison for an action α : Γ ↷ X
is related to a property of its clopen type semigroup; loosely speaking, this is the free
monoid generated by clopen subsets of X, quotiented by the relation ∑n

i=1 Ai ∼
∑n

j=1 Bj if one can equidecompose
⊔

Ai × {i} and
⊔

Bj × {j} using the action of
Γ × Sn on X × {1, . . . , n} (see the next section for more details). One then ob-
tains a refinement monoid which we denote T(α); for a, b ∈ T(α) we write a ≤ b
when there exists c ∈ T(α) such that b = a + c. Type semigroups were introduced
by Tarski to study equidecomposition problems, and the clopen version was first
considered in an article of Rørdam and Sierakowski [RS]; [TW] is a nice, modern
reference on type semigroups and [W] has a wealth of information on refinement
monoids. Kerr observed in [K2] that a free minimal action α of a countable group
Γ on a Cantor space X has dynamical comparison as soon as T(α) is almost unper-
forated, i.e. one has for all n ∈ N and all a, b ∈ T(α) that (n + 1)a ≤ nb ⇒ a ≤ b.
Later, Ma proved in [M2] that, for minimal actions on compact metrizable spaces
(even, not 0-dimensional, using a more general definition of the type semigroup)
almost unperforation and dynamical comparison are equivalent; even for non-
minimal actions, Ma [M2] proved that, when the acting group is amenable, dy-
namical comparison is equivalent to a condition slightly weaker than almost un-
perforation. Recently, Ara, Bönicke, Bosa and Li established a similar result, valid
for second-countable ample groupoids, in [ABBL].

In this article, we note that this analysis can also be carried out when the ambi-
ent compact space is not metrizable (but is 0-dimensional), and give an elementary
proof of a characterization of dynamical comparison for such actions as a property
of the clopen type semigroup. This leads in particular to the following result (due
to Ma in the metrizable case, see [M1] and [M2]) .
Theorem (see Lemma 2.12, Lemma 2.16 and Proposition 2.17).

Assume that Γ ↷ X is an action of a countable group Γ on a compact, 0-dimensional,
Hausdorff space X.

• If there are no α-invariant Radon probability measures on X, then α has dynamical
comparison iff α is minimal and a ≤ b for every nonzero a, b ∈ T(α).

• If γ is amenable, then α has dynamical comparison iff for every order unit b ∈
T(α) and every a such that (n + 1)a ≤ nb for some n ∈ N, one has a ≤ b

• If α is minimal then α has dynamical comparison iff T(α) is almost unperforated.

(one says that b is an order unit in T(α) iff for every a ∈ T(α) there is some
k ∈ N such that a ≤ kb)

There is a significant literature on refinement monoids (see [W] and references
therein), and some of it has interesting applications to our setting. In particular,
this can be used to give another equivalent formulation of dynamical comparison
when α is minimal, as well as conclude that if α is minimal, preserves some in-
variant Radon probability measure and has dynamical comparison then T(α) is
cancellative, i.e. whenever a + b = a + c in T(α) one has b = c. Interestingly I do
not know any direct argument to prove this, nor do I know whether clopen type
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semigroups of minimal Cantor actions of countable amenable groups are always
cancellative. It is fairly easy to see that if [[α]] admits a dense locally finite sub-
group then T(α) is cancellative and unperforated, i.e. na ≤ nb ⇒ a ≤ b for every
n ∈ N∗ and every a, b ∈ T(α). Exploiting a connection between T(α) and the
coinvariants of α (see section 2.5 for details), it then follows from a result of Matui
[M3] that there exists a free, minimal action α of Z2 on the Cantor space such that
[[α]] does not have a dense locally finite subgroup. This stands in stark contrast to
the case of minimal Z-actions. Interestingly, the existence of a dense locally finite
subgroup of [[α]] is captured by algebraic properties of T(α).
Theorem (see Theorem 2.28).

Assume that α is an action of a countable group Γ on a compact, metrizable, 0-dimensional
space. Then [[α]] admits a dense locally finite subgroup iff T(α) is unperforated and can-
cellative.

When Γ is amenable and α is minimal, it follows that [[α]] has a dense locally
finite subgroup iff T(α) is unperforated.

The fact that our arguments work also in the non-metrizable setting makes it
easy to deduce the following fact from classical results.
Theorem (See Theorem 3.2).

Let Γ be a countable amenable group. Then the action Γ ↷ βΓ has dynamical com-
parison; this means that for any two subsets A, B of Γ, if µ(A) < µ(B) for every finitely
additive, Γ-invariant probability measure µ on Γ, then there exist A1, . . . , An ⊂ Γ and
γ1, . . . , γn ∈ Γ such that

⊔n
i=1 Ai = A,

⊔n
i=1 γi Ai ⊆ B.

Using a standard trick of topological dynamics (the existence of a Γ-equivariant
retraction from βΓ onto the universal minimal flow µΓ of Γ), we obtain that Γ ↷ µΓ
also has dynamical comparison for every countable Γ. We then use this to glean
some insight into the generic properties of minimal actions of countable amenable
groups on the Cantor space. For this to make sense, note first that the space of ac-
tions A(Γ) on the Cantor space X can be seen as a closed subspace of Homeo(X)Γ,
hence a Polish space. The space of miimal actions Min(Γ) ⊂ A(Γ) is a Gδ sub-
set, so it is also Polish with the induced topology; and the conjugation action
Homeo(X) ↷ Min(Γ) is readily seen to be transitive. It follows that every Baire-
measurable subset of Min(Γ) is either meager or comeager. This applies in partic-
ular to conjugacy classes, and one is led to wonder when there exists a comeager
conjugacy class in Min(Γ). This is known to hold for Γ = Z by a result of Hochman
([H]; the generic element is the universal odometer) and seems to be an open prob-
lem for every other countable group Γ. As a consequence of our work, we establish
the following fact.
Theorem (see Proposition 4.7).

Let Γ be an infinite countable group. A generic element α of Min(Γ) is such that:

• α is free.
• T(α) is unperforated (hence T(α) has dynamical comparison).
• The algebraic order on T(α) is a partial ordering.

This can be used to give an alternative argument for the fact, due to Conley,
Kerr, Jackson, Marks, Seward and Tucker-Drob that a generic element of Min(Γ)
is almost finite [CJK+].

The organization of the article is fairly straightforward: we begin by introduc-
ing the clopen type semigroup of an action and see how certain properties of an
action are visible in its clopen type semigroup. Then we discuss what this im-
plies for the Stone-Čech compactification and universal minimal flow of a given
countable group Γ, before deriving some consequences for generic properties in
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the space of minimal actions. After that we briefly discuss two weakenings of
dynamical comparison and a few open problems.

There are two appendices to the paper; in the first one, we note that some of
the ideas discussed here can be used to improve a result of [M6] about approxi-
mate divisibility of sets of invariant measures, and that m-comparison (in the sense
of Kerr [K2]) is equivalent to dynamical comparison for aperiodic actions on 0-
dimensional metrizable compact spaces. The second appendix is devoted to a
variation on an argument of Krieger which is used in our characterization of the
existence of a dense locally finite subgroup of [[α]] by algebraic properties of T(α).

As we already mentioned above, the results in section 2 concerning dynami-
cal comparison were already known (and due to Ma, [M1] and [M2]) for metric
spaces; we still give complete arguments since one of the aims of this paper is to
gather some of the ideas used when studying refinement monoids and make them
accessible to an audience not used to this topic (which includes the author before
embarking on this project), as well as pointing out some of the relevant literature.
Our hope is that this article can serve as a starting point for a deeper study of these
connections.

Acknowledgements. My interest in the clopen type semigroup in the non metriz-
able case stems from a suggestion of Andreas Thom. This work also benefited
from conversations with Andy Zucker as well as Nicolás Matte Bon, who made
me aware of some of the literature related to this topic; Mikael Rørdam helpfully
provided a reference that helped me see how one can prove Proposition 2.10.

Simon Robert should have a special mention here, for our many discussions
regarding this paper; Simon eventually elected not to be a co-author of this article
but those conversations were important in it coming to fruition.

2. PROPERTIES OF THE CLOPEN TYPE SEMIGROUP

2.1. Vocabulary and preliminary observations. Throughout this section we fix a
0-dimensional compact Hausdorff space X, a countable discrete group Γ, and an
action α : Γ ↷ X. Since α is fixed for now, we suppress it from our notation and
simply write γx for α(γ)(x).

We consider the space Y = X × N, endowed with the product topology, and
say that a A ∈ Clopen(Y) is bounded if A ∩ (X × {n}) = ∅ for any large enough
n. We denote Γ̃ = Γ ×S, where S is the permutation group of N, and let Γ act
diagonally on Y.

Definition 2.1. Let A, B be two bounded clopen subsets of Y.
We say that A and B are equidecomposable if there exist Ai ∈ Clopen(Y), γ̃i ∈ Γ̃

such that A =
⊔n

i=1 Ai, B =
⊔n

i=1 γ̃i Ai.
We denote by [A] the set of all bounded clopen subsets of Y which are equide-

composable with A, and set T(α) = {[A] : A bounded and clopen in Y}.

Definition 2.2. Given two bounded clopen A, B ⊂ Y we let [A] + [B] = [Ã ∪ B̃],
where Ã and B̃ are any two bounded clopen subsets of Y such that [Ã] = [A],
[B̃] = B, and Ã ∩ B̃ = ∅.

It is straightforward to check that this definition indeed makes sense ([Ã ⊔ B̃]
does not depend on the choice of Ã ∈ [A], B̃ ∈ [B] as long as they are disjoint) and
that (T(α),+) is a commutative monoid with neutral element 0 = [∅].

We endow T(α) with the algebraic pre-ordering, i.e. set a ≤ b whenever there
exists c ∈ T(α) such that a + c = b. The structure (T(α),+,≤) is the clopen type
semigroup with which we will be working throughout this paper. This construc-
tion is analogous to Tarski’s well-known approach to paradoxicality questions,
see [TW]; the clopen version discussed here first came up in [RS].
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We briefly discuss an interesting alternative construction of T(α) mentioned by
Kerr [K2] : given f ∈ C(X, N) and γ ∈ Γ, let γ · f be the function mapping x ∈ X
to f (γ−1x). Then, for any f , g ∈ C(X, N) say that f ∼ g if there exist hi ∈ C(X, N)
and γi ∈ Γ such that ∑n

i=1 hi = f and ∑n
i=1 γi · hi = g. This is an equivalence

relation. The addition on C(X, N) induces a well-defined, associative, commuta-
tive operation on C(X, N)/∼; and the monoid we just described is isomorphic to
(T(α),+) via the (quotient of) the map f ∈ C(X, N) 7→ ⋃n

i=1{x : f (x) ≥ i} × {i}.

Definition 2.3. A commutative monoid T is

• conical if for any u, v ∈ T one has u + v = 0 ⇒ u = v = 0.
• simple if for any y, any x ̸= 0 there exists n such that y ≤ nx (every element

is an order unit).
• a refinement monoid if whenever ∑n

i=1 ai = ∑m
j=1 bj, there exist (ci,j) such

that for all i one has ∑m
j=1 ci,j = ai, and for all j one has ∑n

i=1 ci,j = bj.

Clearly, T(α) is a conical refinement monoid; and T(α) is simple iff α is minimal,
i.e. if there is no nontrivial closed α-invariant set (equivalently, every orbit of α is
dense in X).

Definition 2.4. A state on (T(α),+) is a morphism from (T(α),+) to [0,+∞],
where as usual x + ∞ = +∞ for every x ∈ [0,+∞]. A normalized state is a state µ
such that µ([X]) = 1 (note that then µ only takes finite values).

We denote by M∞(α) the set of states on T(α), and by M(α) the set of normal-
ized states.

Note that normalized states correspond to Γ-invariant finitely additive proba-
bility measures (f.a.p.m) on Clopen(X) : given a state µ one obtains a Γ-invariant
f.a.p.m ν by setting ν(A) = µ([A]); conversely any Γ-invariant f.a.p.m ν induces
a state by setting ν([A]) = µ(A) and extending to T(α) (this is straightforward to
prove, see e.g. [TW] for the classical case, and [RS] for the clopen case we consider
here). In turn, since X is 0-dimensional, any Γ-invariant f.a.p.m on Clopen(X)
uniquely determines a positive linear functional on C(X) mapping 1 to 1, i.e. a Γ-
invariant Radon probability measure on X (when X is metrizable every Borel prob-
ability measure is Radon so we are simply dealing with Borel probability measures
in that case); and a Γ-invariant Radon probability measure restricts to a Γ-invariant
f.a.p.m. We will use the same notation for all these objects, making the obvious
identifications whenever convenient. One should however beware that elements
in M∞(α) do not necessarily come from a Radon measure (a trivial example be-
ing the state mapping every non-zero element to +∞; in the non-metrizable case
there are other complications, such as the fact that Clopen(X) does not in general
generate the Borel σ-algebra).

Lemma 2.5. Assume that Γ is amenable. Then b ∈ T(α) is an order unit iff µ(b) > 0 for
every µ ∈ M(α).

Proof. Assume first that b is an order unit. Then there exists n such that [X] ≤ nb,
whence nµ(b) ≥ µ(X) = 1 for every µ ∈ M(α).

Conversely, assume that b is not an order unit; let B =
⊔

Bi × {i} be a represen-
tative of b and let A =

⋃
Bi. Then A is clopen and ΓA ⊊ X since otherwise a finite

union of translates of the Bi would cover X, which would imply that [X] ≤ nb for
some n. Thus X \ ΓA is a nonempty closed subset of X, and since Γ is amenable
there exists a Γ-invariant Radon probability measure µ on X which is supported
on X \ A, hence µ(Bi) = 0 for all i. Viewing µ as an element of M(α), we have
µ(b) = 0. □
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Definition 2.6. We say that an element b ∈ T(α) is directly finite if for all a one has
a + b = b ⇒ a = 0. The semigroup T(α) is said to be stably finite if every element
of T(α) is directly finite.

Definition 2.7. The semigroup T(α) is cancellative if for any a, b, c ∈ T(α) we have
(a + b = a + c) ⇒ b = c.

Clearly cancellativity implies stable finiteness; we will shortly see that, in the
minimal case, stable finiteness is equivalent to the existence of a normalized state
on T(α). Our understanding of cancellativity is currently lacking, even in the Can-
tor minimal case ; namely, I do not know if there exists a Cantor minimal action of
an amenable group whose clopen type semigroup is not cancellative, though that
seems unlikely (see section 2.3 for a more detailed discussion).

The next result follows immediately from Tarski’s famous theorem [T]. See
[TW] for a detailed discussion of this and related results.

Theorem 2.8 (Tarski, see [TW, Theorem 11.1]). Let b ∈ T(α). There exists µ ∈
M∞(α) such that µ(b) = 1 iff for any n one does not have (n + 1)b ≤ nb.

Proposition 2.9. Assume that α is minimal. Then M(α) is nonempty iff T(α) is stably
finite.

Proof. If there exists µ ∈ M(α), then for every nonzero element a ∈ T(α) we have
µ(a) > 0 (because for some n one has [X] ≤ na since a is an order unit). From
a + b = b we obtain µ(a) + µ(b) = µ(b), whence µ(a) = 0 since µ(b) is finite; and
we noted that this is only possible if a = 0.

Conversely, Tarski’s theorem asserts that the nonexistence of a state on T(α)
such that µ(X) = 1 implies that there exists n such that (n + 1)[X] ≤ n[X], i.e.
there exists u such that n[X] + [X] + u = n[X], whence nX is not directly finite. □

Below (see section 2.3) we give an example of a uniquely ergodic Z-action α on
the Cantor space X such that (T(α),+) is not stably finite. Note that if T(α) is
stably finite (in particular, if α is a minimal action of an amenable group) then ≤ is
a partial order on T(α); in general ≤ may only be a pre-order, i.e. it could happen
that u ≤ v and v ≤ u but u ̸= v. For instance, ift follows from the homology
computation in the last section of [M5] that for the natural action of a nonabelian
free group on its boundary one has a ≤ b for all nonzero a, b ∈ T(α), yet there exist
nonempty clopen sets which are not equidecomposable.

We now note the following fact, which (in our context) is the same as Proposi-
tion 2.1 of [OPR]. This proposition is also used by Ara–Bönicke–Bosa–Li [ABBL],
Kerr [K2] and Ma [M2], among others. The proof given in [OPR] appeals to re-
sults of Goodearl-Handelman [GH] which are stated for partially ordered abelian
groups, and it was not immediately clear to the author how to fill out all the details.
M. Rørdam was kind enough to point to Proposition 2.8 of [BR] for an alternative
argument to plug in to the proof; for the reader’s convenience, here is a detailed
argument.

Proposition 2.10. For any a, b ∈ T(α), the following are equivalent:
(1) There exists n ∈ N such that (n + 1)a ≤ nb.
(2) There exists n such that a ≤ nb, and for every µ ∈ M∞(α) such that µ(b) = 1

one has µ(a) < µ(b).

Proof. One implication is immediate. For the converse, fix a, b ∈ T(α) such that
µ(a) < µ(b) for every µ ∈ M∞(α) satisfying µ(b) = 1.

We let Ub denote the subsemigroup of T(α) made up of all x such that x ≤ nb
for some n. Every state on T(α) restricts to a state on Ub, and every state on Ub
extends to a state on T(α) by assigning the value ∞ for every element not in Ub.
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Since T(α) may fail to be stably finite, we then form the maximal quasi-ordered
quotient Vb of Ub, declaring that u ∼ v iff u ≤ v ≤ u. To each state on Ub corre-
sponds a unique state on Vb, and states on Vb extends to states on Ub.

Next, consider the Grothendieck group G(Vb) of Vb, i.e the group obtained from
Vb by adding a formal inverse −u for every u ∈ Vb; the natural map φ : Vb →
G(Vb) may not be injective, since one has φ(u) = φ(v) iff there exists w ∈ Vb such
that u + w = v + w and we do not assume T(α) to be cancellative.

The group G(Vb) becomes a partially ordered abelian group when declaring its
positive cone to be equal to {u − v : u, v ∈ Vb , v ≤ u}. To avoid confusion we
denote by ⪯ the corresponding ordering, and note that for any u, v ∈ Vb we have
φ(u) ⪯ φ(v) if, and only if, there exists w such that u + w ≤ v + w.

Every normalized state on G(Vb) (i.e. such that µ(b) = 1) restricts to a nor-
malized state on Vb; and every normalized state on Vb uniquely extends to a nor-
malized state on G(Vb). So our assumption on a, b amounts to the statement that
µ(φ(a)) < µ(φ(b)) for every normalized state on G(Vb). Applying [G, Theorem
4.12] it follows that φ(b)− φ(a) is an order-unit in G(Vb); in particular, there exists
some integer m such that φ(a) ⪯ m(φ(b)− φ(a)).

Thus, there exists u ∈ Ub and an integer m such that (m + 1)a + u ≤ mb + u.
Using commutativity and associativity of +, we obtain r(m + 1)a + u ≤ rmb + u
for any integer r; since u ∈ Ub we have some integer p such that u ≤ pb, leading to
the inequality r(m+ 1)a ≤ (rm+ p)b. Choose an integer r > p and set n = rm+ p.
Then (n + 1)a ≤ r(m + 1)a ≤ (rm + p)b = nb. □

2.2. Almost unperforation and dynamical comparison.

Definition 2.11. Say that T(α) is almost unperforated if for any a, b ∈ T(α) one has

((n + 1)a ≤ nb) ⇒ (a ≤ b)

Lemma 2.12. T(α) is almost unperforated iff for any a, b ∈ T(α) one has

(∃k a ≤ kb and (∀µ ∈ M∞(α) µ(b) = 1 ⇒ µ(a) < 1)) ⇒ (a ≤ b)

Proof. Assume T(α) is almost unperforated and a, b ∈ T(α) are such that a ≤ kb
for some k, and µ(a) < 1 for every µ ∈ M∞(α) satisfying µ(b) = 1. Then by
Proposition 2.10 there exists n such that (n + 1)a ≤ nb, whence a ≤ b by almost
unperforation.

The converse is immediate. □

If α is minimal the first condition on a, b in Lemma 2.12 is redundant, since it
is satisfied for every order unit b and every nonzero element is an order unit; and
(still for minimal α) the second condition amounts to the fact that µ(a) < µ(b) for
every µ ∈ M(α).

The property above is called the stable dynamical comparison property in [ABBL],
and generalized dynamical comparison in [M2]; we reserve “dynamical comparison”
for another condition which we introduce now, since it seems to be commonly
accepted terminology.

Definition 2.13 (Buck [B], Kerr [K2]). We say that α has the dynamical comparison
property if for any two nonempty clopen A, B ⊆ X such that µ(A) < µ(B) for all
µ ∈ M(α) one has [A] ≤ [B].

We ask that B be nonempty above to rule out trivial counterexamples, for in-
stance without that requirement no action α with M(α) = ∅ could have dynam-
ical comparison, although this case leads to interesting questions. We will see
shortly that, when M(α) = ∅, dynamical comparison is only possible if α is min-
imal.
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We note the following fact, which shows that dynamical comparison is a prop-
erty of T(α). The proof of Proposition 2.10 in [ABBL] directly gives this; that ar-
gument is actually in large part the same as the one used to show Lemma 3.2 in
[DZ]. We briefly describe the proof for the reader’s convenience (the same idea
will come up later, see Proposition 2.30 and Lemma A.1).

Proposition 2.14. The action α has dynamical comparison if, and only if, for any nonzero
a, b ∈ T(α) such that µ(a) < µ(b) for all µ ∈ M(α) one has a ≤ b.

Proof. The implication from right to left is immediate.
For the converse, fix an action α with dynamical comparison; let a, b be such

that µ(a) < µ(b) for all µ ∈ M(α) then find some p such that a, b ≤ p[X], and
choose representatives A, B of a, b contained in X × {1, . . . , p} = X̃.

The group Γ̃ = Γ ×Sp acts on X̃ via the action α̃ : (γ, σ) · (x, i) = (γx, σ(i)). We
may, and do, identify T(α̃) and T(α).

For every µ ∈ M(α̃) = M(α) we have µ(A) < µ(B), so by compactness of
M(α) there exists ε ∈ ]0, 1[ such that µ(A) + ε < µ(B) for every µ ∈ M(α).

Enumerate Γ̃ = {γ̃i : i ∈ N} then define A0 = A ∩ γ̃−1
0 (B), B0 = γ̃0(B) and, for

n ≥ 1, An = (A \⋃n−1
i=0 Ai) ∩ γ̃−1

n (B \⋃n−1
i=0 γ̃i Ai).

The key step of the proof is the fact that, for large enough n, µ(A \⋃n
i=0 Ai) <

ε
p

for all µ ∈ M(α). Grant this for the moment. Using the fact that α has dynamical
comparison and µ(A \ ⋃n

i=0 Ai) < 1 for all µ ∈ M(α), we see that there exists a
clopen subset A∞ of X such that [A∞] = [A \⋃n

i=0 Ai].
Next, let C = B \⊔n

i=0 γ̃i Ai. By definition of ε, µ(C) ≥ ε for all µ ∈ M(α); also,
there exists D ∈ Clopen(X̃) such that [D] = [C], D =

⋃p
i=1 Di × {i} ∈ Clopen(X̃)

and Di+1 ⊆ Di for all i ≤ p − 1. In particular µ(D1) ≥ µ(C)
p > µ(A∞) for all

µ ∈ M(α), so by dynamical comparison [A∞] ≤ [D1]. We conclude by noting that

a =
n

∑
i=1

[Ai] + [A∞] ≤
n

∑
i=1

[γ̃i Ai] + [D1] ≤
n

∑
i=1

[γ̃i Ai] + [C] ≤ b

To finish the proof, we go back to our claim that µ(A \ ⋃n
i=0 Ai) < ε

p for all
µ ∈ M(α) as soon as n is large enough. To see this, begin by fixing an ergodic
measure ν ∈ M(α). If ν(A \ ⋃∞

i=0 Ai) ̸= 0, then by ergodicity there exists j such
that (A \⋃∞

i=0 Ai) ∩ γ̃−1
j (B \⋃+∞

i=0 γ̃i Ai) ̸= ∅, a contradiction.
Thus µ(A \⋃∞

i=0 Ai) = 0 for all µ ∈ M(α). Hence the maps µ 7→ µ(A \⋃n
i=0 Ai)

form a decreasing sequence of continuous maps from the compact space M(α) to
[0, 1] which converges pointwise to 0. Applying Dini’s theorem we obtain that the
convergence is uniform, which gives the desired result. □

The following fact is also worth noting; for metrizable X an equivalent state-
ment appears as Corollary 3.12 of [M2]. Actually Ma’s statement is proved for
a more general definition of the type semigroup and applies also when X is not
0-dimensional (but metrizable).

Lemma 2.15. Assume Γ is amenable. Then the following are equivalent:
• The action α has dynamical comparison.
• For every order unit b ∈ T(α), and every a and n such that (n + 1)a ≤ nb, one

has a ≤ b.

Proof. Assume that α has dynamical comparison, and a, b ∈ T(α) are such that b is
an order unit and (n + 1)a ≤ nb fr some n. Then µ(b) > 0 for all µ ∈ M(α) since b
is an order unit, whence µ(a) < µ(b) for all µ ∈ M(α). So dynamical comparison
gives, as desired, that a ≤ b.
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Conversely, assume that the second condition holds, and that a, b ∈ T(α) are
such that µ(a) < µ(b) for all µ ∈ M(α). Then Lemma 2.5 implies that b is an
order unit, so a ≤ nb for some n and µ(a) < µ(b) for every µ ∈ M∞(α) such that
µ(b) = 1. Proposition 2.10 then implies that (n + 1)a ≤ nb for some n, whence
a ≤ b and α has dynamical comparison. □

Lemma 2.16. Assume that M(α) = ∅. Then α has dynamical comparison iff α is
minimal and a ≤ b for every nonzero a, b ∈ T(α).

Proof. The implication from right to left is immediate; if α has dynamical compar-
ison and M(α) = ∅ then Proposition 2.14 implies that a ≤ b for any nonzero
a, b ∈ T(α).

For the converse implication, assume that M(α) = ∅ and α has dynamical
comparison; then a ≤ b for all a, b ∈ T(α). Fix a nonempty clopen U; we must
have [X] ≤ [U], whence X is covered by translates of U. This proves that α is
minimal. □

In the case where M(α) = ∅, or Γ is amenable and α is free, and X is the
Cantor space, the following result appears in [M1]; in the second-countable case
this is in [ABBL] (for ample groupoids). This statement also has a precursor in
[K2, Lemma 13.1].

Proposition 2.17. Assume that α is minimal. Then α has dynamical comparison if, and
only if, T(α) is almost unperforated.

Proof. Assume first that M(α) ̸= ∅. By minimality, if µ ∈ M∞(α) is such that
µ(b) = 1 for some b then also µ(X) < ∞; so Lemma 2.12 combined with Proposi-
tion 2.14 give the desired result.

Now, assume that M(α) = ∅. If α has dynamical comparison then a ≤ b for
any nonzero a, b ∈ T(α) by Lemma 2.16, hence T(α) is almost unperforated. To
prove the converse, assume that T(α) is almost unperforated. Since α is minimal
and M(α) = ∅, by Tarski’s theorem for every nonzero a there exists n such that
(n + 1)a ≤ na. Using associativity, we obtain (n + 1)2a = 2(n + 1)a ≤ na. Weak
unperforation then gives 2a ≤ a, whence na ≤ a for any n ∈ N∗. Since α is
minimal, a is an order unit in T(α) so b ≤ a for any b ∈ T(α). This proves that the
action has dynamical comparison. □

In the minimal case, one can provide yet another characterization of dynamical
comparison.

Definition 2.18. Assume that α is minimal; we say that T(α) has the weak compa-
rability property if

∀a ̸= 0 ∃k ∈ N∗ ∀b kb ≤ [X] ⇒ b ≤ a

Note that our formulation above only applies to the case where T(α) is simple
(i.e. α is minimal). One can formulate weak comparability in non-simple semi-
groups but the definition is more involved; here we only use for minimal α so we
give the simpler reformulation above. One could add the condition that a = [A]
for some A ∈ Clopen(X) and obtain an equivalent definition (for a more gen-
eral formulation of weak comparability, a detailed discussion and references, see
section 1.6 of [W]).

Proposition 2.19. Assume that α is minimal. Then:
(1) T(α) satisfies weak comparability if, and only if, it is almost unperforated.
(2) If T(α) is stably finite (i.e. if M(α) ̸= ∅) then these conditions imply that T(α)

is cancellative.
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This follows from Proposition 1.6.8 of [W], which contains a wealth of infor-
mation on refinement monoids (the first statement follows from Theorem 4.1 of
[AGPT]; the second one is a particular case of Theorem 1.7 in [AP]).

Recall that Downarowicz and Zhang [DZ] proved recently that every Cantor
action of a group of subexponential growth has the dynamical comparison prop-
erty; Ker and Naryshkin [KN] even more recently showed the same result for free
actions of elementary amenable groups. It follows that free minimal Cantor ac-
tions of such amenable groups are all such that T(α) is cancellative. Interestingly,
I do not know of a direct argument to prove cancellativity for these actions, and it
seems to be an open problem whether clopen type semigroups of minimal Cantor
actions of amenable groups are always cancellative.

2.3. A few words about cancellativity. Let us give a simple example of a uniquely
ergodic, free Cantor Z-action such that T(α) is not stably finite (hence not cancella-
tive either). Note that this action has the dynamical comparison property since the
acting group is Z.

Let Y = Z ∪ {∞} be the one-point compactification of Z, with Z acting on itself
by translation and fixing ∞. Form the product X = Y × 2ω, with Z acting on the
second coordinate via (say) the dyadic odometer. Then X is a Cantor space, on
which Z acts freely; further, there is a unique Z-invariant Borel probability mea-
sure, supported on {∞} × 2ω. Let A = (Y \ {0})× 2ω; the map

τ : (n, x) 7→
{
(n + 1, x) if n ≥ 0
(n, x) if n < 0

witnesses that [X] ≤ [A], so the action is not stably finite.
Also note that B = {0} × 2ω is clopen, has measure 0 for every invariant mea-

sure, yet one does not have (n + 1)[B] ≤ n[B] for any n.
In section 3 we will see that the clopen type semigroup of the universal minimal

flow of any amenable group is cancellative.
Another reason why cancellativity would be useful: it would be nice to rule

out the existence of a minimal amenable Cantor action α and two clopen A, B such
that [A] = [B] in T(α) yet there does not exist any γ ∈ [[α]] such that γA = B. If
[A \ B] = [B \ A] then there is an involution σ ∈ [[α]] such that σ(A \ B) = B \ A
and σ fixes all the other elements, so that σA = B; but without cancellation it is not
clear whether [A] = [B] implies [A \ B] = [B \ A] in T(α). Actually, it would be
enough to know that [A] = [B] ⇒ [X \ A] = [X \ B] to conclude that the clopens
equidecomposable with some fixed clopen A consist of all the translates of A by
elements of [[α]].

2.4. Tameness and dense locally finite groups. In this section we assume that
X is metrizable. We recall that the group Homeo(X) is endowed with a natural
Polish group topology, which comes from viewing homeomorphisms of X as au-
tomorphisms of the Boolean algebra Clopen(X). A basis of neighborhoods of 1 for
this topology is given by subgroups of the form

{g ∈ Homeo(X) : ∀A ∈ A gA = A}

where A ranges over all clopen partitions of X.
What we really care about in this section is the case of minimal Cantor actions

of countable amenable groups. We recall some terminology.

Definition 2.20 (Krieger [K3]). Given an algebra A of clopen subsets of X and G
a subgroup of Homeo(X), we let [G,A] be the smallest subgroup of Homeo(X)
containing G and such that, for any partition A1, . . . , An of X with Ai ∈ A, and
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g1, . . . , gn ∈ G, if the mapping h : x ∈ Ai 7→ gi(x) is an homeomorphism, then
h ∈ [G,A].

We say that G is a full group if G = [G, Clopen(X)].

Definition 2.21 (Krieger [K3]). Given g ∈ Homeo(X) and a subalgebra A ⊆ BX
which is g-invariant, we denote by g|A the automorphism of A induced by g, and
by G|A = {g|A : g ∈ G}. We say that (A, G) is a unit system if:

• A is a subalgebra of Clopen(X);
• G is a countable, locally finite subgroup of Homeo(X) which leaves A in-

variant and G = [G,A];
• The mapping g 7→ g|A is an isomorphism;
• For each g ∈ G, {x : g(x) = x} ∈ A.

An ample group is a subgroup G ⊆ Homeo(X) such that (Clopen(X), G) is a unit
system (in particular, G is a countable, locally finite full group).

Definition 2.22. The topological full group [[α]] of an action α : Γ ↷ X is the smallest
full group which contains α(γ) for every γ ∈ Γ.

Whenever α is a minimal Z-action on a Cantor space X, there exists an ample
group Λ which is dense in [[α]] (equivalently, Λ and α have the same orbits on
clopen sets). Any two such ample groups are conjugated, and they play an impor-
tant role in the Giordano–Putnam–Skau classification of minimal Z-actions up to
orbit equivalence (see [GPS1] or [MR] and the references given therein).

Interestingly, the existence of such an ample subgroup is connected to the fol-
lowing property of T(α); this, along with an example of Matui [M3], implies that
even for minimal free Z2-actions there does not always exist a dense locally finite
subgroup in [[α]] (see Theorem 2.32 below).

Definition 2.23. T(α) is unperforated if for every a, b ∈ T(α) and every n one has
na ≤ nb ⇒ a ≤ b.

Definition 2.24 (Ara–Goodearl [AG]). A refinement monoid is tame if it is an in-
ductive limit of finitely generated refinement monoids.

Stably finite, tame conical monoids have been characterized as follows by Ara
and Goodearl.

Theorem 2.25 ([AG, Theorem 3.14]). A stably finite, conical monoid is tame iff it is
unperforated and cancellative.

Lemma 2.26. Assume that α is an action on a compact, 0-dimensional metrizable space
X such that [[α]] has a dense, locally finite subgroup. Then T(α) is unperforated and
cancellative (hence also stably finite).

Proof. Let a, b ∈ T(α) and n ∈ N be such that na ≤ nb.
Write a = ∑n

i=1[Ai], b = ∑m
j=1[Bj] where Ai, Bj are clopen subsets of X. The

assumption on [[α]] implies that there exists a finite subgroup Λ of [[α]] and a
finite Λ-invariant clopen partition A such that the relation na ≤ nb is witnessed
using elements of Λ and A. Letting Z denote the finite set of atoms of A, the type
semigroup of the action Λ ↷ Z is unperforated (by a simple matching argument,
see e.g. [TW, Theorem 10.20]) and from this we see that a ≤ b is witnessed by
elements of Λ and A.

The proof of cancellativity is similar, since the type semigroup of an action of a
finite group Λ on a finite set Z is cancellative by a simple counting argument: a = b
means that, for each orbit O of the action Λ ↷ Z, there are as many elements of (a
representative of) a equivalent to some element of O as there are such elements in
b. □
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Proposition 2.27. Let α be an action on a compact 0-dimensional metrizable space X.
Assume that T(α) is tame and stably finite. Then [[α]] has a dense ample subgroup.

Proof. We first build inductively a sequence of finite Boolean subalgebras An of
Clopen(X), and finite groups Λn ↷ An, such that:

• Each (An, Λn) is a unit system.
• For all n An is a subalgebra of An+1, Λn is a subgroup of Λn+1 and the

action of every λ ∈ Λn on An+1 extends its action on An.
• For every A ∈ Clopen(X) and g ∈ [[α]], there exists n such that A ∈ An

and λ ∈ Λn such that λA = gA.
• For every n, every A ∈ An and every λ ∈ Λn, there exists g ∈ [[α]] such

that λA = gA.

To see why this construction can be carried out, fix a finite Boolean algebra A
and a finite Λ such that (A, Λ) is a unit system such that for each A ∈ A and each
λ ∈ A there exists g ∈ [[α]] with gA = λA. Fix also B ∈ Clopen(X) and g ∈ [[α]].
Find a finite algebra B refining A, B, and gB, then consider the submonoid U of
T(α) generated by the types of atoms of B. By Ara-Goodearl [AG, Theorem 3.6]
there exists a finitely generated refinement submonoid U′ of T(α) which contains
U. Take a generating system x1, . . . , xd of U′ with minimal cardinality.

Assume that we have a nontrivial relation of the form ∑d
i=1 nixi = ∑d

i=1 mixi
with coefficients in N. Using stable finiteness we can reduce to the case where for
all i either ni = 0 or mi = 0. Hence we have two disjoint, nonempty subsets I, J
of {1, . . . , d} and integer coefficients such that ∑i∈I nixi = ∑j∈J mjxj. Unfolding
this as a sum where each xi appears ni times and each xj appears mj times, then
applying refinement, we obtain (using stable finiteness, conicality and the mini-
mality of d) a refinement matrix such that each line can only contain one nonzero
term (equal to some xi, i ∈ I) and each column contains one nonzero term (equal
to some xj, j ∈ J). We conclude that xi = xj for some i ∈ I and j ∈ J, contradicting
the minimality of d.

Thus every element of U′ can be written uniquely as a sum ∑d
i=1 nixi with in-

teger coefficients. Write [X] = ∑d
i=1 nixi; we may find realizations (Ui,j)j=1,...,ni of

ui which form a clopen partition of X refining the partition induced by B. Let C
be the corresponding Boolean algebra, and Λ′ the unit subsystem of Aut(C) gen-
erated by the transpositions Ui,j 7→ Ui,l (and identity elsewhere). Uniqueness of
the decomposition on x1, . . . , xd inside U′ enables us to extend elements of Λ to
elements of Λ′ (respecting the group operation on Λ).

This shows that one can inductively perform the construction described at the
beginning of the proof; then Λ =

⋃
Λn is an ample group such that, for every

A, B ∈ Clopen(X),

(∃λ ∈ Λ λA = B) ⇔ (∃g ∈ [[α]] gA = B)

We have not yet ensured that Λ ⊆ [[α]]; however, a variation on a construction
of Krieger [K3] (we postpone the proof to appendix B, since it is a mostly routine
modification of Krieger’s proof) implies that there exists g ∈ Homeo(X) such that
g[[α]]g−1 = [[α]] and gΛg−1 ⊂ [[α]]. Then gΛg−1 is the desired dense ample
subgroup of [[α]]. □

The following theorem is a direct consequence of the previous facts.

Theorem 2.28. Assume that α is an action of a countable group Γ on a compact, metriz-
able, 0-dimensional space. Then [[α]] admits a dense locally finite subgroup (even, a dense
ample subgroup) iff T(α) is unperforated and cancellative.



CLOPEN TYPE SEMIGROUPS OF ACTIONS ON 0-DIMENSIONAL COMPACT SPACES 13

If Γ is amenable and α is minimal, we already mentioned that by a result of
Ara and Pardo T(α) is cancellative as soon as it is stably finite and almost unper-
forated (since it then has the weak comparability property), so the assumption of
cancellativity is redundant in that case.

Proof. The existence of a dense locally finite subgroup in [[α]] gives us unperfora-
tion and cancellativity by Lemma 2.26. Conversely, [AG, Theorem 3.14] gives us
that unperforation, cancellativity and conicality imply tameness (as well as stable
finiteness, of course) and Proposition 2.27 gives the desired implication. □

2.5. Coinvariants and saturation. Given a group action α ↷ X, X a compact, 0-
dimensional space, the group of coinvariants (see e.g. Matui [M3]) is the group

H(α) = C(X, Z)/{⟨ f − f ◦ α(γ) : γ ∈ Γ⟩}
We denote by ( f ) the equivalence class of f for this quotient map. Since α is fixed
we again suppress if from our notation below and simply write γ · f for the map
x 7→ f (α(γ)−1x).

Recall that, as mentioned in the last section of [K2], we can view T(α) as the
quotient C(X, N)/∼, where f ∼ g iff there exist hi ∈ C(X, N) and γi ∈ Γ such that
f = ∑n

i=1 hi and g = ∑n
i=1 γi · hi. In particular, if [ f ] = [g] then we have

f = g +
n

∑
i=1

(hi − γi · hi)

so that [ f ] = [g] ⇒ ( f ) = (g).
Thus we have a natural surjection π : T(α) → H(α)+, where H(α)+ is the posi-

tive cone of H(α), i.e. the image of C(X, N) under the quotient map. If we assume
that T(α) is cancellative then T(α) is the positive cone of the partially ordered in-
terpolation group G(α), and π induces a surjection from G(α) onto H(α). In the
case of minimal Z-actions on the Cantor space, H(α) is well-understood, since it
is equal to K0(C(X, Z)×α Z). Actually in that case we have T(α) = H(α)+, as we
will explain below. It would be interesting and useful to gain a better understand-
ing of the kernel of π; for saturated actions, which we define now, this kernel is
trivial.

Definition 2.29. Say that α is saturated if α has dynamical comparison and, for any
clopen A, B we have

(∀µ ∈ M(α) µ(A) = µ(B)) ⇒ [A] = [B]

We could replace [A] = [B] in the statement above by the (formally stronger)
existence of g ∈ [[α]] such that gA = B without changing the definition. One can
see saturation as a property of T(α), as the next proposition shows.

Proposition 2.30. The following conditions are equivalent:
(1) α is saturated.
(2) α has dynamical comparison and for any a, b ∈ T(α) such that µ(a) = µ(b) for

all µ ∈ M(α), one has a = b.

Proof. One implication is immediate from the definition.
If M(α) = ∅ then dynamical comparison gives that for any a ∈ T(α) there

exists A ∈ Clopen(X) such that a = [A], whence the converse implication is trivial
in that case.

Assume that M(α) ̸= ∅ and α is saturated. An argument similar to the proof
of 2.14 gives the desired implication: first use an exhaustion argument to reduce
to the case where µ(a) = µ(b) < 1 for all µ ∈ M(α), then conclude by noting that
(thanks to dynamical comparison) in that case there exists A, B ∈ Clopen(X) such
that a = [A], b = [B]. □
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It is now immediate that, for a saturated α and f , g ∈ C(X, N), one has ( f ) = (g)
iff [ f ] = [g]: indeed ( f ) = (g) implies that µ( f ) = µ(g) for every µ ∈ M(α),
whence [ f ] = [g] by saturation.

Assuming minimality and dynamical comparison, saturation can be reformu-
lated using only the ordering, in the form of the following condition:

∀a, b ∈ T(α) (∀c ((c < a ⇒ c < b) ∧ (c < b ⇒ c < a))) ⇒ a = b

Note that if α : Γ ↷ X and β : Λ ↷ X are two actions of countable groups
on the same 0-dimensional compact Hausdorff space X such that for any A, B ∈
Clopen(X) there exists γ ∈ Γ such that α(γ)A = B iff there exists λ ∈ Λ such
that β(λ)A = B, then T(α) = T(β) and H(α) = H(β). The following result is an
immediate consequence.

Proposition 2.31. Assume that α is a minimal action of an amenable group on the Cantor
space X such that T(α) is unperforated. Then, for any two f , g ∈ C(X, N) we have
[ f ] = [g] iff ( f ) = (g). In particular H(α)+ = T(α) is unperforated.

Proof. If T(α) is unperforated then by Theorem 2.28 there exists a dense ample
subgroup Λ of [[α]]; considering the (minimal) action β : Λ ↷ X we have both
T(α) = T(β) and H(α) = H(β). But for a minimal action β of an ample group it is
easy to see that T(β) = H(β) (for a more general argument, valid for groupoids,
see [M4, Theorem 6.12]; for groups one only needs to use the existence of a se-
quence of compatible unit systems as in [K3] to obtain the desired result). □

When α is a minimal Cantor Z-action, it is well-known that [[α]] admits a dense
ample subgroup (the stabilizer of a positive semiorbit), hence the assumption of
the previous proposition is satisfied and H(α)+ = T(α).

Matui [M3] gave examples of free minimal Cantor Z2-actions for which the tor-
sion part of H(α) is nontrivial (this contradicts a result of Forrest–Hunton [FH1]
whose proof had a gap); given the previous result this implies that T(α) is perfo-
rated, and this yields the following corollary.

Theorem 2.32. There exists a free minimal Cantor action α of Z2 on the Cantor space
such that [[α]] does not have any dense, locally finite subgroup.

3. DYNAMICAL COMPARISON IN THE STONE-ČECH COMPACTIFICATION AND IN
THE UNIVERSAL MINIMAL FLOW

We again let Γ be a countable discrete group, and denote by βΓ its Stone-Čech
compactification; it is a compact, Hausdorff, 0-dimensional space (and very much
non-metrizable unless Γ is finite).

The clopen subsets of βΓ correspond to subsets of Γ (identifying βΓ with the
set of all ultrafilters on Γ, clopen subsets of βΓ are of the form {U : A ∈ U} for
A ⊆ Γ). Thus the action of Γ on βΓ corresponds to the well-studied action of Γ
on its subsets via translation γ · A = {γx : x ∈ A}, and equidecomposability of
clopen subsets in βΓ is the same as classical equidecomposability of subsets in Γ.

One should note here that, for instance, T(Z ↷ βZ) is not stably finite, since
[{0}] + [βZ] = [βZ] (as witnessed by the map sending each n ≥ 0 to n + 1, and
each n < 0 to n, whose image is Z\ {0}). Actually, an inequality of the form 2a ≤ a,
with a nonzero, is possible in T(Γ ↷ βΓ) even for a countable amenable Γ. Indeed,
there exists such an a iff Γ is not supramenable; and there exist some countable,
solvable, not supramenable groups. This kind of example is not restricted to non-
metrizable spaces: using arguments similar to those in the proof of Proposition
3.4 below, it follows that there exist free topologically transitive Cantor actions of
some solvable groups with a nonempty clopen set A such that 2[A] ≤ [A].
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Still, classical results show that type semigroups of Stone-Čech compactifica-
tions are rather well-behaved.

Theorem 3.1 ([TW, Theorems 3.6 and 10.20]). The semigroup T(βΓ ↷ βΓ) is unper-
forated and ≤ is a partial order on T(Γ ↷ βΓ).

Since clopen sets in βΓ correspond to subsets of Γ, states on T(Γ ↷ βΓ) corre-
spond to finitely additive Γ-invariant probability measures on Γ. The following
result is an immediate consequence of this, along with our earlier observations.

Theorem 3.2. Let Γ be a countable amenable group, and A, B be two subsets of Γ such
that µ(A) < µ(B) for any Γ-invariant f.a.p.m on Γ. Then there exist A1, . . . , An ⊂ Γ
and γ1, . . . , γn ∈ Γ such that A =

⊔
Ai,

⊔
γi Ai ⊂ B.

Proof. We know that T(Γ ↷ βΓ) is unperforated, whence it has dynamical com-
parison since Γ is amenable. This is precisely the content of the previous state-
ment since invariant finitely additive probability measures on Γ correspond to Γ-
invariant Radon measures on βΓ. □

The previous result can also be seen as a consequence of the finitileability the-
orem of Downarowicz, Huczek and Zhang [DHZ] via a standard compactness
argument. The proof presented here is much more elementary.

It seems worth noting that, as explained to the author by B. Weiss, there exists
A ⊂ Z such that µ(A) = 1

2 for every µ ∈ M(Z ↷ βZ), yet A and Z \ A are not
equidecomposable. To see this, write Z as a disjoint union of arithmetic sequences,
e.g.

Z = {2n : n ∈ Z} ⊔ {4n − 1 : n ∈ Z} ⊔ {8n + 3 : n ∈ Z} . . .
Then let A consist of every element from each of these sequences, i.e.

A = {4n : n ∈ Z} ⊔ {8n − 1 : n ∈ Z} ⊔ {16n + 3 : n ∈ Z} . . .

Clearly for every µ ∈ M(Z ↷ βZ) we have µ(A) ≥ 1
4 + 1

8 + 1
16 + . . . = 1

2 ; the
same holds for B = N \ A and it follows that µ(B) = µ(A) = 1

2 for every invariant
µ. Yet one can check that infinitely many shifts are needed to map A into B, so A
and B are not equidecomposable.

Next, we consider the universal minimal flow of Γ, which we denote Γ ↷ µΓ.
We recall that µΓ is a compact, Hausdorff, 0-dimensional space and that Γ ↷ µΓ
is free. Further, any minimal subset for the action Γ ↷ βΓ is isomorphic to µΓ;
we identify µΓ with some fixed minimal subset of βΓ, and choose a Γ-equivariant
retraction r : βΓ → µΓ. We refer the reader to [P1] and its bibliography for more
details on this part of topological dynamics.

The retraction r induces a homomorphism

φ : (T(Γ ↷ µΓ),+) → (T(Γ ↷ βΓ),+)

defined by setting φ([A]) = [r−1(A)] for A ∈ Clopen(µΓ), and then extending to
T(Γ ↷ µΓ).

In the other direction, one can define ψ : T(Γ ↷ βΓ) → T(Γ ↷ µΓ) by setting
ψ(A) = [A ∩ µΓ] for A ∈ Clopen(βΓ), and extending to T(Γ ↷ βΓ) (here it is
crucial that µΓ is Γ-invariant for this to make sense).

Since r is a retraction we have ψ(φ(a)) = a for all a ∈ T(Γ ↷ µΓ). Hence
T(Γ ↷ µΓ) is isomorphic to a subsemigroup of T(Γ ↷ βΓ).

The following result is an immediate consequence of this and Theorem 3.2.

Proposition 3.3. T(Γ ↷ µΓ) is unperforated, and ≤ is a partial order on T(Γ ↷ µΓ).

It follows that T(Γ ↷ µΓ) has the dynamical comparison property. If Γ is not
amenable, this (along with ≤ being a partial ordering) implies that a = b for every
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nonzero a, b ∈ T(µΓ). In particular any two nonempty clopen subsets of µΓ are
equidecomposable.

In the amenable case, dynamical comparison implies that T(Γ ↷ µΓ) is can-
cellative. Amusingly, we seem to have found a new condition to add to the long
list of characterizations of amenability for countable groups: Γ is amenable iff
T(Γ ↷ µΓ) is stably finite iff T(Γ ↷ µΓ) is cancellative.

The following proposition is a routine consequence of the aforementioned prop-
erties of µΓ.

Proposition 3.4. Any minimal Cantor action of Γ is a factor of a free, minimal Cantor
action whose clopen type semigroup is unperforated and partially ordered (in particular,
this action has the dynamical comparison property and if Γ is amenable its clopen type
semigroup is cancellative).

Proof. Given a minimal Cantor action α : Γ ↷ X, find a factor map π : µΓ → X.
Let A = π−1(Clopen(X)), which is a countable, Γ-invariant Boolean subalge-

bra of Clopen(µΓ).
Given a Γ-invariant Boolean subalgebra B of Clopen(µΓ), we denote by TB(Γ ↷

µΓ) the semigroup of types obtained by considering only decompositions with
pieces in B (still with Γ as the acting group), and ≤B the corresponding partial
ordering. We also denote equality of types for this relation by =B .

We build a sequence of countable atomless subalgebras (An)n of Clopen(X) as
follows. First, we let A0 be any countable, Γ-invariant, atomless Boolean subalge-
bra of Clopen(µΓ) containing A and such that, for any γ ∈ Γ \ {1}, there exists
a clopen partition (Ui)i∈I of µΓ whose elements belong to A0 and are such that
γUi ∩ Ui = ∅ for all i ∈ I (if necessary, see the proof of 4.2 below for an explana-
tion of why such clopen partitions exist).

Next, assume that An has been built; for any u, v ∈ TAn(Γ ↷ µΓ) and any
n ∈ N∗ such that nu ≤An v, find clopen sets forming decompositions of u, v wit-
nessing that u = v in TΓ ↷ (µΓ); and similarly if u ≤An v ∧ v ≤An u find clopen
decompositions witnessing that u = v. Take any Γ-invariant, countable, atomless
Boolean subalgebra An+1 that contains An and all these new clopen sets; we have

• For any u, v ∈ TAn(Γ ↷ µΓ), and any n ∈ N∗, nu ≤An nv ⇒ u ≤An+1 v.
• For any u, v ∈ TAn(Γ ↷ µΓ), (u ≤An v ∧ v ≤An u) ⇒ u =An+1 v.

Then B =
⋃

n An is countable, atomless, Γ-invariant, contains A, and satisfies
the following conditions:

• For any u, v ∈ TB(Γ ↷ µΓ), and any n ∈ N∗, nu ≤B nv ⇒ u ≤B v.
• For any u, v ∈ TB(Γ ↷ µΓ), (u ≤B v ∧ v ≤B u) ⇒ u =B v.
• For any γ ∈ Γ \ {1}, there exists a clopen partition (Ui)i∈I of µΓ whose

elements belong to B and are such that γUi ∩ Ui = ∅ for all i ∈ I.

Denote by Y the quotient of µΓ associated with B (i.e. induced by the closed sub-
algebra of C(βΓ) whose {0, 1}-valued functions are the indicator functions of ele-
ments of B).

This Y is a Cantor space, and we have a free action Γ ↷ Y whose clopen type
semigroup is unperforated and partially ordered; since Clopen(µΓ) ⊃ B ⊃ A, π
factors through a Γ-equivariant map ψ : Y → X, and we are done. □

4. SPACES OF ACTIONS

We fix a Cantor space X, an infinite countable group Γ and consider the space
A(Γ) of actions of Γ on X, which we see as a closed subset of Homeo(X)Γ, hence a
Polish space.
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4.1. Some Gδ subsets of A(Γ). The following is well-known.

Proposition 4.1. The space Min(Γ) of all minimal Cantor actions of Γ is a Gδ subset of
A(Γ).

Proof. An action α is minimal iff for every nonempty clopen A there exist γ1, . . . , γn
such that

⋃
i α(γi)A = X. For fixed A, this is an open condition on α. □

Hence Min(Γ) is a Polish space in its own right.

Proposition 4.2. The space Free(Γ) of all free actions is a Gδ subset of A(Γ).

Proof. Assume that α is a free action, and fix γ ∈ Γ \ {1}. Then for every x ∈
X there exists a clopen U containing x and such that α(γ)U ∩ U = ∅. Hence
one can find finitely many clopen subsets A1, . . . , An such that

⋃
i Ai = X and

α(γ)Ai ∩ Ai = ∅ for all i.
Conversely, any α satisfying the condition in the previous paragraph is free.

Thus
Free(Γ) =

⋂
γ∈Γ

⋃
A
{α : ∀A ∈ A α(γ)A ∩ A = ∅}

(in the line above A runs over the set of all clopen partitions of X) □

Note that Proposition 3.4 shows in particular that for any Γ there exists a free
minimal action of Γ on the Cantor space, a well-known fact (see e.g. [HM]). We
are particularly interested in generic properties (in the sense of Baire category) in
Min(Γ).

Lemma 4.3. Assume that (αn) ∈ A(Γ)N converge to some α ∈ A(Γ), and µn ∈ M(αn)
for all n. Let µ be a cluster point of (µn)n. Then µ ∈ M(α).

Proof. We might as well assume that (µn)n converges to µ. Fix A ∈ Clopen(X) and
γ ∈ Γ. There exists N such that for any n ≥ N one has αn(γ)A = α(γ)A. Hence

∀n ≥ N µn(A) = µn(αn(γ)A) = µn(α(γ)A)

Letting n go to ∞, we obtain µ(A) = µ(α(γ)A). □

Proposition 4.4. The set A∗(Γ) of all actions which admit an invariant probability mea-
sure is closed in A(Γ).

The set A∗
1 of all uniquely ergodic actions of Γ is a Gδ subset of A(Γ).

Proof. The first fact is an immediate consequence of the previous lemma allied to
the compactness of the space of Borel probability measures on X.

To see why the second fact holds, fix a clopen A and ε > 0. Then it follows from
the previous lemma that

ΩA,ε = {α : ∃µ1, µ2 ∈ M(α) |µ1(A)− µ2(A)| ≥ ε}
is closed in A(Γ). Hence

ΣA = {α : ∀µ1, µ2 ∈ M(α) µ1(A) = µ2(A)}
is Gδ in A(Γ). Considering the intersection of all Σ(A) as A ranges over clopen
subsets of X, we conclude. □

Proposition 4.5. The following subsets of A(Γ) are all Gδ:
• Actions with the dynamical comparison property.
• Actions such that T(α) is almost unperforated.
• Actions such that T(α) is unperforated.
• Actions such that T(α) is cancellative.
• Actions such that ≤ is a partial order on T(α).
• Saturated actions.
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Proof. Let us only prove the first fact, the others being similar. Fix A, B ∈ Clopen(X).
By Lemma 4.3 the set Σ(A, B) = {α : ∃µ ∈ M(α) µ(A) ≥ µ(B)} is closed in A(Γ).
The set ∆(A, B) = {α : [A] ≤ [B] in T(α)} is open in A(Γ). The set of all actions of
Γ with the dynamical comparison property is equal to⋂

A,B∈Clopen(X)

(
Σ(A, B) ∪ ∆(A, B)

)
hence it is a Gδ subset of A(Γ) (since the union of a closed and an open set is Gδ,
and there are only countably many clopen subsets in X). □

4.2. Conjugacy classes in Min(Γ). Below we will repeatedly make use of the
easily-verified fact that if α, β are two Cantor actions and α is a factor of β, then
α belongs to the closure of the conjugacy class of β.

Proposition 4.6. There exist actions with dense conjugacy classes in A(Γ) and Min(Γ).

Proof. The case of A(Γ) is well known: let (αn)n enumerate a dense subset of A(Γ),
then consider the product action α. It is again a Cantor action, and each αn is a
factor of α. In particular each αn is contained in the closure of the conjugacy class
of α, which is thus dense in A(Γ).

The case of Min(Γ) is similar; again enumerate a dense subset (αn) of Min(Γ),
with α0 being free, and let α be any minimal component of the product action.
Then α is a free, minimal Cantor action which maps into every αn, so by minimality
each αn is a factor of α. □

The existence of dense conjugacy classes implies that every Baire-measurable,
conjugacy invariant subset of Min(Γ) is either meager or comeager (the so-called
0-1 topological law, see [K1]).

4.3. Genericity in Min(Γ). For Z, there exists a generic conjugacy class (the uni-
versal odometer [H]). What about other groups? I do not know the answer to this
question even for Z2.

Proposition 3.4 immediately implies the following:

Proposition 4.7. A generic element α of Min(Γ) is such that:
(1) α is free.
(2) T(α) is unperforated (hence T(α) has dynamical comparison).
(3) The algebraic order on T(α) is a partial ordering.

The fact that a generic minimal Cantor action of an amenable group has the dy-
namical comparison property also follows from [CJK+] and the relation between
almost finiteness and dynamical comparison (see Theorem 6.1 of [KS]). Conversely
using the previous proposition one recovers Theorem 4.2 of [CJK+] by applying
Theorem 6.1 of [KS].

5. WEAKENINGS OF DYNAMICAL COMPARISON

This work was in part motivated by the following question: given a minimal
action α of a countable amenable group on the Cantor space, does there exist a
minimal Z-action β such that M(α) = M(β)? Of course, if α is orbit equivalent to
a Z-action then the previous question has an affirmative answer.

The criterion established in [M6] shows that there exists such an action β as soon
as M(α) is such that, for any A, B ∈ Clopen(X) such that µ(A) < µ(B) for every
µ ∈ M(α), there exists C ∈ Clopen(X) such that µ(A) = µ(C) for all µ ∈ M(α)
and C is contained in B. This is a weakening of dynamical comparison.
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Definition 5.1. Let α be a minimal action of Γ on a Cantor space X. Denote by
K(α) the group {g ∈ Homeo(X) : ∀µ ∈ M(α) g∗µ = µ}.

We say that α has the measured comparison property if the action K(α) ↷ X has
dynamical comparison.

Here we are departing from our earlier conventions, since K(α) is not count-
able, and we only defined comparison for countable groups (this played a part in
some arguments, when we are using an enumeration of Γ). However, whenever
X is metrizable, Homeo(X) is separable, whence K(α) admits a countable dense
subgroup Λ. Then M(K(α)) = M(Λ ↷ X) (= M(α)), T(K(α)) = T(Λ ↷ X) so
all our earlier results apply equally well to any discrete group in that case.

The following is more or less immediate.

Lemma 5.2. Let α be a minimal action of an amenable group on the Cantor space X. Then
there exists a Z-action β such that M(α) = M(β) iff α has measured comparison.

Proof. Implication from left to right is immediate, since Z-actions have dynamical
comparison.

Conversely, assume that α has measured comparison and let A, B ∈ Clopen(X)
be such that µ(A) < µ(B) for all µ ∈ M(α). Since M(α) = M(K(α)), there exists
g ∈ [[K(α)]] = K(α) such that gA ⊂ B, so the criterion of [M6] is satisfied. □

So the various characterizations obtained in section 2 have counterparts for
measured comparison. Unfortunately, this does not seem to lead to new exam-
ples of minimal actions with measured comparison, because it is difficult to say
anything meaningful about the group K(α).

Definition 5.3. Let α : Γ ↷ X be an action of a countable group Γ on the Cantor
space. The full group of α is the group

[α] = {g ∈ Homeo(X) : ∀x ∃γ ∈ Γ g(x) = α(γ)x}

Definition 5.4. The action α has orbital comparison if [α] ↷ X has dynamical com-
parison.

Since M(α) = M([α]) = M(K(α)), dynamical comparison implies orbital
comparison, which implies measured comparison. None of the converse impli-
cations is clear. If an action α is orbit equivalent to a Z-action, then it must satisfy
orbital comparison.

Question 5.5. Let α : Γ ↷ X be a minimal action on the Cantor space. Is the full
group [α] dense in K(α) = {g ∈ Homeo(X) : ∀µ ∈ M(α) g∗µ = µ}?

Note that, if M(α) is empty, one has K(α) = Homeo(X), and it seems unlikely
that emptiness of M(α) is enough to guarantee that [α] is dense in Homeo(X)
(there certainly are examples where [[α]] is not dense, like the action of a non-
abelian free group on its boundary).

By the same argument as in the proof of Lemma 3.5 in [GW], orbital compar-
ison does imply that [α] = K(α). Even in the case where there are no invariant
measures, I do not know of any example where this equality does not hold (it fol-
lows from dynamical comparison, and I do not know examples where dynamical
comparison fails for minimal Cantor actions).

6. CONCLUDING REMARKS AND QUESTIONS

6.1. On the clopen type semigroup. I do not know of any minimal action of a
countable group on a Cantor space which fails to have dynamical comparison,
even when there are no invariant Borel probability measures. At the moment, it
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is possible that dynamical comparison always holds in this setting, though that
would perhaps be surprising.

In the case where α : Γ ↷ X is a minimal action of a countable amenable group
on the Cantor space, we know that T(α) is cancellative as soon as α has dynamical
comparison; the proof is rather indirect, as it goes through the fact that dynamical
comparison is equivalent to weak comparability in this context, and a simple, con-
ical, stably finite refinement monoid with weak comparability is cancellative by a
theorem of Ara and Pardo. Can one prove that (T(α),+) is always cancellative in
this case? By Corollary 1.9 of [AP] it would be enough to prove that T(α) is strictly
cancellative, i.e. that a + b < a + c ⇒ b < c.

6.2. On the space of actions. We fix a countable group Γ and denote again by
Min(Γ) the set of all minimal actions of Γ on the Cantor space X, with its usual
Polish topology. A basic problem, which we already mentioned above, is to de-
termine when there exist a generic conjugacy class in Min(Γ). It seems that, in
order to make progress on this question, it would be useful to determine the clo-
sure of Min(Γ) inside the space of actions A(Γ). When Γ = Z this is understood:
by Theorem 5.9 of [BDK] the closure of the set of minimal homeomorphisms in
Homeo(X) is the set of all homeomorphisms g such that for any nontrivial clopen
set U both gU \ U and U \ gU are nonempty. Is a similar description available for
other groups?

In the case of Z we know that a generic minimal action is saturated; is that true
for other groups?

It would be very interesting to determine whether unique ergodicity is generic
in Min(Γ) for every countable amenable Γ; we at least know that the set of all
uniquely ergodic actions is Gδ and nonempty when Γ is amenable. To see that it is
nonempty, one can use a generalization of the Jewett–Krieger theorem to amenable
groups, due to Rosenthal; or one can apply a more general theorem of Frej–Huczek
[FH2].

When Γ is not amenable, I do not know if there always exists a strictly ergodic
action on the Cantor space; Elek [E] recently proved that every countable group
admits a free, minimal action on the Cantor space which preserves a Borel proba-
bility measure.

APPENDIX A. APPROXIMATE DIVISIBILITY OF SETS OF INVARIANT MEASURES
FOR APERIODIC ACTIONS

In this section α : Γ ↷ X is an action of a countable group Γ on a compact, 0-
dimensional metrizable space X. We denote by M(X) the set of Borel probability
measures on X, endowed with its usual compact topology and let M(α) ⊆ M(X)
denote the set of α-invariant measures.

Lemma A.1. Let F be a closed subset of X, and ε > 0. Let K be a compact subset of M(X)
and g : K → R be a continuous function such that µ(F) ≤ g(µ) + ε for all µ ∈ K. Then
there exists a clopen U which contains F and is such that µ(U) ≤ g(µ) for all µ ∈ K.

In particular, if µ(F) = 0 for all µ ∈ K, then F is contained in a clopen set U with
µ(U) ≤ ε for any µ ∈ K.

Proof. Write F =
⋂

n<ω Un, where each Un is clopen. Given µ ∈ K, set

fn(µ) = max(µ(Un), g(µ))

The sequence ( fn)n is a decreasing sequence of continuous functions, which con-
verges pointwise to the continuous function µ 7→ g(µ), since for each fixed µ the
sequence (µ(Un))n converges to µ(F) ≤ g(µ). By Dini’s theorem, the convergence
is uniform on K, so for n large enough we have fn(µ) ≤ g(µ) + ε for all µ ∈ K. □
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Lemma A.2. Assume that A ∈ Clopen(X) is such that |Γx| ≥ N3 for all x ∈ U, for
some fixed integer N ≥ 2. Then for any µ ∈ M(α) we have

µ ({x ∈ A : |Γx ∩ A| ≤ N}) ≤ 1
N

In particular, if α is aperiodic then µ(({x ∈ A : |Γx ∩ A| < +∞}) = 0 for all µ ∈
M(α).

Proof. We let F = {x ∈ A : |Γx ∩ A| ≤ N} and note that F is closed. Since |Γx| > N
for all x ∈ X, we can find disjoint clopens (Ui)i=1,...,n such that F ⊆ ⋃

Ui and
elements γ1, . . . , γn ∈ Γ such that γix ̸∈ F for each x ∈ Ui ∩ F.

Consider the map φ1 : x ∈ Ui ∩ F 7→ γix. For any y ∈ φ1(F), φ−1
1 (F) is com-

posed of elements of F which belong to the same Γ-orbit, so |φ−1
1 (y)| ≤ N. It

follows that µ(φ1(F)) ≥ µ(F)
N for every µ ∈ M(α).

For any x ∈ F, at most 2N elements of Γx can be contained in F ∪ φ1(F), and
we assumed that |Γx| ≥ N3. Thus we can repeat this construction to define φ2(F),
disjoint from F ∪ φ1(F) and such that µ(φ2(F)) ≥ µ(F)

N for all µ ∈ M(α). Iterating

N2 − 1 times, we conclude that N2 × µ(F)
N ≤ µ(X) = 1 for all µ ∈ M(α). □

Proposition A.3. Let A ∈ Clopen(X), p ∈ N∗ and ε > 0. Assume that α is aperiodic.
One can write [A] = p[B] + [C] where B, C ∈ Clopen(X) and µ(C) ≤ ε for every

µ ∈ M(α).

In the language of [M6], this proves that the set of invariant Borel probability
measures associated to an aperiodic action is approximately divisible, which im-
proves [M6, Theorem 2.1]. Note that this result is best possible, since as soon as
there exists an orbit of cardinality N any sufficiently small neighborhood of this or-
bit cannot be divided in N + 1 pieces which approximately have the same measure
for every µ ∈ M(α).

Proof. We may of course assume that A is nonempty. Fix N ∈ N such that p
N ≤ ε.

Since α is aperiodic, F = {x ∈ A : |Γx ∩ A| ≤ N} has measure 0 for all µ ∈
M(α) by Lemma A.2, hence it is contained in a clopen U ⊂ A such that µ(U) ≤ ε
for all µ ∈ M(α) by Lemma A.1.

For any x ∈ V = A \ U, there exists a clopen Vx such that x ∈ Vx ⊆ A and
γ1(x), . . . , γN(x) ∈ Γ such that γi(x)Vx are pairwise disjoint clopen subsets of A.
Using the cutting and stacking argument of [M6], and compactness of V, we obtain
that there exist disjoint clopen subsets (Ai,j)i∈I,1≤j≤Ni such that :

• |Ni| ≥ N for all i ∈ I.
• For all i and all j1, j2 ∈ {1, . . . , Ni} there exists γ ∈ Γ such that γAi,j1 =

Ai,j2 .
• V ⊆ ⋃

i,j Ai,j.

For each i, we write Ni = pmi + q with 0 ≤ q ≤ p− 1, and set Bl
i =

⊔
1≤k<mi

Ai,l+kp

for l ∈ {1, . . . , p}. Then define Bl =
⊔

i∈I Bl
i and D =

⋃
Bi,j \

⋃
Bl .

By construction [Bj] = [Bk] for every j, k. Also, since µ(
⋃

Ai,1) ≤ 1
N for all

µ ∈ M(α) (this set has more than N disjoint translates by elements of [[Γ]]) we
obtain than µ(D) ≤ p

N for all µ ∈ M(α).
Set C = A \ ⋃

Bl ⊂ D ∪ U; we have µ(C) ≤ ε + p
N ≤ 2ε for all µ ∈ M(α), and

[A] = p[B1] + [C].
□

It follows from the above result that, if α is aperiodic and X is metrizable, then
for every u ∈ T(α) there exists a, b ∈ T(α) such that u = 2a + 3b.
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We briefly note a consequence of Proposition A.3 combined with Lemma 3.4 of
[DZ].

Definition A.4 (Kerr [K2]). The action α is said to satisfy m-comparison if when-
ever A, B are nonempty clopen subsets such that µ(A) < µ(B) for all µ ∈ M(α),
one can write [A] = ∑m

i=0[Ai] with [Ai] ≤ [B] for all i ∈ {0, . . . , m}.

Kerr defines m-comparison in a more general setting; Proposition 3.4 of [K2]
asserts that, for 0-dimensional metrizable X, this general definition is equivalent
to the one given above.

It follows from Theorem 6.1 of [KS] that dynamical comparison (that is, 0-
comparison in this language) and m-comparison are equivalent for free actions
of amenable groups. We observe that one can relax the assumption of freeness to
aperiodicity.

Proposition A.5. Let α be an aperiodic action of Γ on a compact, 0-dimensional, metriz-
able space X.

Assume that there exists m ∈ N such that whenever A, B are nonempty clopen and
µ(A) < µ(B) for all µ ∈ M(α) one has [A] ≤ (m + 1)[B]. Then α satisfies dynamical
comparison.

Note that the assumption on α above is formally weaker than m-comparison.

Proof. We first deal with the case when M(α) is nonempty. Assume that α has
the property above and fix A, B nonempty clopen with µ(A) < 1

m+1 µ(B) for all
µ ∈ M(α).

Since α is aperiodic, we can apply Proposition A.3 to write B = (m+ 1)[C] + [D]
where B, C are clopen and µ(A) < µ(C) for all µ ∈ M(α). Our assumption on α
yields that [A] ≤ (m + 1)[C] ≤ [B].

So as soon as µ(A) < 1
m+1 µ(B) for any µ ∈ M(α) we have [A] ≤ [B], and this

is enough to guarantee dynamical comparison by Lemma 3.4 of [DZ].
Next, assume that M(α) = ∅. Whenever A is nonempty clopen the assumption

on α yields [X] ≤ (m + 1)[A], so α is minimal and X is a Cantor space. Let A, B be
nonempty clopen. By minimality of α, we can find a clopen C ⊂ B and elements
γ0, . . . , γm of Γ such that

⊔m
i=0 γiC ⊆ B, in particular (m + 1)[C] ≤ [B]. We then

have [A] ≤ (m + 1)[C] ≤ [B], whence α satisfies dynamical comparison. □

APPENDIX B. A VARIATION ON AN ARGUMENT OF KRIEGER

We now describe an argument that completes the proof of 2.27. We fix a metris-
able 0-dimensional compact space X; see section 2.4 for some of the terminology
used in this appendix.

Definition B.1. We say that a unit system (A, Γ) is compatible with a full group G
if for any A ∈ A and any γ ∈ Γ there exists g ∈ G such that γA = gA.

The main tool for our construction is an adaptation to our context of Lemma
3.4 of [K3], and the proof is essentially the same as Krieger’s; we describe the
argument for the reader’s convenience (our formulation here is quite close to the
one used for another variation on Krieger’s theorem given in [MR]).

Lemma B.2. Fix a full group G ⊂ Homeo(X). Assume that we are given finite unit
systems (A, ∆), (C, Λ) compatible with G, along with an isomorphism Φ : A → C with
the following properties:

(1) For all A ∈ A, there exists g ∈ G such that Φ(A) = g(A).
(2) Λ|C = Φ∆|AΦ−1.
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Then, for every G-compatible finite unit system (A′, ∆′) refining (A, ∆), there exists a
G-compatible finite unit system (C ′, Λ′) and an isomorphism Ψ : A′ → C ′ that extends
Φ and such that the conditions above are still satisfied.

Proof. For every orbit ρ of the action of ∆ on atoms of A we choose a representative
Aρ. For every A ∈ ρ, A ̸= Aρ, we denote by δ(ρ, A) the element of ∆ that induces
on the atoms of A the transposition exchanging A and Aρ; we define similarly
λ(ρ, A) the element of Λ inducing the transposition that maps Φ(A) to Φ(Aρ).

For each ρ, we can write

Φ(Aρ) =
⊔

B∈atoms(A′) : B⊆Aρ

B′ ,

with B′ in the G-orbit of B, for each atom B of A′.
We then define a finite Boolean algebra C ′ by setting as its atoms all B′ for B an

atom of A′ contained in an Aρ, as well as all λ(ρ, A)(B′) for A ∈ Aρ. Then we
obtain the desired Ψ : A′ → C ′ as follows: first, we set Ψ(B) = B′ for all atoms B of
A′ contained in an Aρ; and whenever A is an atom of A belonging some ρ, A ̸= Aρ,
and B is an atom of A′ contained in A, we set Ψ(B) = λ(ρ, A)Ψδ(ρ, A)(B).

We now need to describe the group Λ′. In the remainder of this proof, the letter
σ will always stand for an orbit of the action of ∆ on the atoms of A′, and the letter
ξ for an orbit of the action of ∆′ on the atoms of A′. By definition, for all σ there
exists a unique ξ such that σ ⊆ ξ.

We begin by picking, for each σ, an atom Eσ of A′ contained in σ. Then for each
orbit ξ we pick some σ(ξ) such that σ(ξ) ⊆ ξ.

We can find for all σ, ξ such that σ ⊆ ξ some g(ξ, σ) ∈ G which maps Ψ(Eσ(ξ))

onto Ψ(Eσ) and is the identity elsewhere. For all E ∈ σ, E ̸= Eσ we denote by
λ(σ, E) the element of Λ which induces on the atoms of C the transposition that
maps Ψ(Eσ) onto Ψ(E). Then our desired group Λ′ is the group generated by
{g(ξ, σ) : σ ⊆ ξ} ∪ {λ(σ, E) : E ∈ σ, E ̸= Eσ}.

By construction (C ′, Λ′) is a unit system, and the action of Λ′ on the atoms
of C ′ coincides with that of all permutations of the atoms of C ′ which stabilize
all Ψ(ξ). Thus Ψ carries ∆′-orbits onto Λ′-orbits and we have as desired Λ′

|C ′ =

Ψ∆|A′Ψ−1. □

Now, we fix a full group H, and an ample group Λ such that, for any U, V ∈
Clopen(X), one has

(∃h ∈ H hU = V) ⇔ (∃λ ∈ Λ λU = V)

This condition amounts to stating that H = Λ̄.; equivalently, H is Λ-compatible
and Λ is H-compatible.

Proposition B.3. There exists g ∈ Homeo(X) such that:
• For every clopen U, there exists h ∈ H such that gU = hU (equivalently,

gHg−1 = H)
• hΛh−1 ⊆ G

Applying this result to H = [[α]] completes the proof of Theorem 2.27.

Proof. We begin by fixing a refining sequence of finite unit systems (An, Λn) such
that

⋃An = Clopen(X) and
⋃

Λn = Λ (see [K3] or [MR]).
Applying lemma B.2 (with the role of the full group G being played by H at

even steps, and by Λ at odd steps), we can build by induction sequences of finite
unit systems (Cn, ∆n) and (Dn, Σn), along with isomorphisms Φn : Cn → Dn with
the following properties:
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(1) For all n (Cn+1, ∆n+1) refines (Cn, ∆n) and (Dn+1, Σn+1) refines (Dn, Σn);
(2) For all n ∆n ⊆ Λ and (C2n, ∆2n) refines (An, Λn);
(3) For all n Σn ⊆ H and D2n+1 refines An;
(4) For all n, for all A ∈ Cn there exists h ∈ H such that Φ(A) = hA;
(5) For all n, Λn |Dn = Φn∆n |Cn Φ−1

n ;

This construction produces an automorphism Φ =
⋃

Φn of Clopen(X), and by
Stone duality there exists g ∈ Homeo(X) such that gA = Φ(A) for every clopen
A. In particular g is H-compatible, so gHh−1 = H.

We also built an ample subgroup Σ =
⋃

Σn which is contained in H, and such
that gΛg−1 = Σ. The proof is complete. □
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[KS] D. Kerr and G. Szabó, Almost finiteness and the small boundary property, Communications in
Mathematical Physics 374 (February 2020), no. 1, 1–31.

[M1] X. Ma, Comparison and pure infiniteness of crossed products, Transactions of the American Math-
ematical Society 372 (August 2019), no. 10, 7497–7520.

[M2] , A generalized type semigroup and dynamical comparison, Ergodic Theory and Dynamical
Systems 41 (July 2021), no. 7, 2148–2165.

[M3] H. Matui, Torsion in coinvariants of certain Cantor minimal Z2-systems, Trans. Amer. Math. Soc.
360 (2008), no. 9, 4913–4928.

[M4] , Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc.
Lond. Math. Soc. (3) 104 (2012), no. 1, 27–56. MR2876963

[M5] , Topological full groups of one-sided shifts of finite type, Journal für die reine und ange-
wandte Mathematik (Crelles Journal) 2015 (January 2015), no. 705.

[M6] J. Melleray, Dynamical simplices and Fraı̈ssé theory, Ergodic Theory Dynam. Systems 39 (2019),
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