
DENSE AND COMEAGER CONJUGACY CLASSES IN
ZERO-DIMENSIONAL DYNAMICS

MICHAL DOUCHA, JULIEN MELLERAY, AND TODOR TSANKOV

Abstract. Let G be a countable group. We consider the Polish space of all ac-
tions of G on the Cantor space by homeomorphisms and study the existence of
a comeager conjugacy class in this space and some natural subspaces. We also
develop a general model-theoretic framework to study this and related questions.

We prove that for a finitely generated free group, there is a comeager conju-
gacy class in the space of minimal actions, as well as in the space of minimal,
probability measure-preserving actions. We also identify the two classes: the first
one is the Fraïssé limit of all sofic minimal subshifts and the second, the universal
profinite action. In the opposite direction, if G is an amenable group which is
not finitely generated, we show that there is no comeager conjugacy class in the
space of all actions and if G is locally finite, also in the space of minimal actions.

Finally, we study the question of existence of a dense conjugacy class in the
space of topologically transitive actions. We show that if G is free or virtually
polycyclic, then such a dense conjugacy class exists iff G is virtually cyclic.
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1. Introduction

Understanding generic behavior of dynamical systems is a problem with long
history that, in ergodic theory, goes back at least to Oxtoby and Ulam [OU], and
was later extensively studied by Halmos. One way of formalizing the question
is to consider a Polish space of dynamical systems of interest and ask about the
properties of the “typical system” in the sense of Baire category. Often spaces
of this type satisfy a topological zero–one law: for every isomorphism-invariant,
sufficiently definable property, either it or its negation is generic.
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In this paper, we are interested in actions of countable groups on the Cantor
space, which we denote by Ω. For a fixed group G, it is natural to parametrize all
such actions by homomorphisms from G to the Polish group Homeo(Ω); these
form a Polish space that we denote by Ξ(G). The group Homeo(Ω) acts on
Ξ(G) by conjugation and we call its orbits conjugacy classes. Two systems are in
the same conjugacy class iff they are isomorphic in the usual dynamical sense.
The space Ξ(G) always has a dense conjugacy class (cf. Proposition 2.3) and
thus the topological zero–one law applies. In particular, every conjugacy class
is meager or comeager and there are two possibilities for the global structure of
Ξ(G), depending on the group G: either there is a comeager conjugacy class or all
classes are meager. The existence of a comeager conjugacy class is a very strong
property which implies that the generic dynamical behavior for the group G is
determined by a single system. This is quite unusual in other dynamical contexts
such as ergodic theory.

The first rather striking result of this type in topological dynamics was proved
by Kechris and Rosendal in [KR], who showed the existence of a comeager con-
jugacy class in Ξ(Z) (see also [AGW] for a more concrete construction). This
was generalized to the finitely generated free groups Fd by Kwiatkowska [K2].
Doucha [D] further extended Kwiatkowska’s result to free products of finite and
cyclic groups. In the opposite direction, Hochman [H2] showed that there is no
comeager conjugacy class in Ξ(Zd) for d ≥ 2 and this result was extended in [D]
to finitely generated nilpotent groups which are not virtually cyclic.

From a dynamical perspective, the systems in the comeager conjugacy classes
in the cases discussed above are rather degenerate: for example, they are never
topologically transitive. In order to find more interesting generic behavior, it is
therefore natural to look for generic conjugacy classes in the spaces Ξmin(G) and
Ξtr(G) of minimal and transitive actions, respectively. Here, the only results in
the literature, due to Hochman [H1], are for G = Z: there is a generic conjugacy
class in Ξmin(Z), which is isomorphic to the universal odometer and Ξmin(Z) is
dense in Ξtr(Z). The tools used to prove these results are specific to Z and do not
generalize to other groups.

It turns out that for studying the existence of a comeager conjugacy class in
this and related situations, the most general and flexible tools come from logic.
Fraïssé theory is a branch of model theory that studies generic structures and vari-
ations of these techniques have already been used by Kechris and Rosendal [KR].
In its most basic form, Fraïssé’s theorem and its extension proved by Ivanov [I],
gives a necessary and sufficient condition for the existence of a comeager iso-
morphism class, based on the family of allowed finitely generated substructures,
when this family is countable: it has to be hereditary and satisfy the joint embed-
ding and weak amalgamation properties. Group actions on the Cantor space fall
naturally in the Fraïssé framework if one uses Stone duality to represent them
as actions on a Boolean algebra (which is a countable structure). Then finitely
generated substructures correspond to finitely generated Boolean G-algebras (or,
dually, subshifts), which are the main objects of study of symbolic dynamics. So,
for example, if one wants to study the space Ξ(G), one considers the collection of
all subshifts, for Ξmin(G), the collection of minimal subshifts, etc. The correspon-
dence between the topology on the space of subshifts and the one on Ξ(G) was
already observed by Hochman in [H1].

The classes of all subshifts and minimal subshifts are hereditary and satisfy
joint embedding and (full) amalgamation but, crucially, fail to be countable. They
do, however, come with a Polish topology, which can be viewed either as the
Stone topology on the space of quantifier-free types or, more traditionally, as the
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Vietoris topology on the space of subshifts. In model theory, it has been known
for a long time that the generic model is atomic and the existence of an atomic
model is equivalent to the set of isolated types being dense. However, when we
deal with quantifier-free types, the situation is more complicated and the relevant
notion is that of projectively isolated types (cf. Definition A.8). In the context of
topological dynamics, this notion was isolated in [D], where it was proved that
the existence of a comeager conjugacy class in Ξ(G) is equivalent to the set of
projectively isolated subshifts being dense in the space S(AG) of all subshifts of
AG for every finite alphabet A.

In Appendix A, we give a general model-theoretic criterion for the existence of
a comeager isomorphism class in a class of structures based on the topology of
the spaces of quantifier-free types. Moreover, we show that when a comeager con-
jugacy class exists, it can be represented as the usual Fraïssé limit of projectively
isolated quantifier-free types. This applies in particular to the space Ξmin(G),
but also to Ξ(G) (recovering the result of [D]), to the space of marked groups
(recovering a result of [GKEL]; cf. Subsection A.1), and to the space of G-sets
(recovering a result of [GKM]; cf. Subsection A.2). The case of Ξmin(G) has a
new feature that distinguishes it from the others, namely that the spaces of mini-
mal subshifts are not compact. The lack of compactness leads to a more delicate
proof and makes apparent a surprising topological condition that is not present
in previous work (condition (iii) in Definition A.1). Even though the appendix
is self-contained, it requires slightly more familiarity with logic than the rest of
the paper. While it would be possible to translate the proofs into a more famil-
iar dynamical language, they cannot be substantially simplified, and we believe
that the benefit of the general applicability of the criterion outweighs the cost of
abstraction. Another advantage of the abstract approach is that it is not sensi-
tive to the parametrization space and can be adapted for example to the space of
“generalized subshifts” used by Hochman in [H1].

Applying the criterion to Ξmin(G), we obtain the following (cf. Corollary 3.5).

Theorem 1.1. Let G be a countable, infinite group. Then the following are equivalent:

(i) There is a comeager conjugacy class in Ξmin(G).
(ii) Minimal subshifts which are projectively isolated in Smin(AG) are dense in

Smin(AG) for every A.

Minimal actions of the free group. A sufficient condition for a minimal subshift
to be projectively isolated in Smin(AG) is for it to be sofic, i.e., a factor of a subshift
of finite type (or SFT, for short); see Section 2 for the precise definitions. We
do not know whether this condition is also necessary (cf. Question 3.7). The
first of our main results for free groups is the following (cf. Theorem 5.9 and
Corollary 6.7; the case G = Z is due to [BDK] and [H1]).

Theorem 1.2. Let G be a finitely generated free group and let A be a finite alphabet.
Then the set of sofic minimal subshifts is dense in Smin(AG).

Combining this with Theorem 1.1, we obtain the following.

Corollary 1.3. The space Ξmin(Fd) has a comeager conjugacy class, elements of which
are isomorphic to the Fraïssé limit of the sofic minimal subshifts.

Our main tool for constructing sofic minimal subshifts is a certain family of
graphs, inspired by the Rauzy graphs used for studying SFTs for Z, where the
edges are labeled by the generators of the free group, and which we use for
describing open neighborhoods in the space of subshifts. We call these graphs
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again Rauzy graphs. We start by characterizing the Rauzy graphs whose associ-
ated neighborhood contains a minimal subshift (cf. Theorem 4.8). This characteri-
zation is not obvious and several natural attempts fail (cf. Example 4.9). Then for
each of these graphs, we construct a sofic minimal subshift in the corresponding
neighborhood. On the way, we also recover Kwiatkowska’s result on the existence
of a generic class in Ξ(Fd) (cf. Corollary 5.4).

We remark that these techniques cannot work for Zd: it follows from the work
of Hochman [H2] that sofic minimal subshifts are not dense in this case and the
following problem remains open.

Question 1.4. Does there exist a comeager conjugacy class in Ξmin(Zd) for d ≥ 2?

Next we turn to finding the correct generalization of Hochman’s result that
the generic minimal Z-action is isomorphic to the universal odometer. We recall
that the universal odometer (or the universal profinite action of Z) is the action of Z
on its profinite completion by translation (the profinite completion of a group is the
compact group obtained by taking the inverse limit of all of its finite quotients).
By Theorem 1.1, this is equivalent to the finite Z-subshifts being dense among all
minimal subshifts.

There is a natural generalization of this action to the free group (namely,
the profinite completion of Fd) but there is an obvious obstruction for its be-
ing generic: profinite actions are pmp (i.e., preserve a probability measure), and
the subset of minimal pmp actions is closed in Ξmin(G) and it is proper if G is
non-amenable. It turns out that this is the only obstruction (cf. Theorem 6.5).

Theorem 1.5. The following hold:
• Periodic Fd-subshifts are dense in the space of all minimal, pmp Fd-subshifts.
• The space of minimal, pmp actions of Fd has a comeager conjugacy class whose

elements are isomorphic to the universal profinite action of Fd.

Non-finitely generated groups. Our next results concern actions of groups that
are not finitely generated. While non-finitely generated groups are perhaps less
studied in (geometric) group theory, they exhibit interesting dynamical proper-
ties. For example, the generic behavior of their dynamical systems is markedly
different from the finitely generated case. As a simple example, a generic element
of Ξ(G) is transitive iff G is not finitely generated (cf. Proposition 7.4). In view of
this, it is natural to ask whether the generic action in Ξ(G) is minimal. We have
the following characterization for amenable groups (cf. Corollary 7.13).

Theorem 1.6. Let G be a countably infinite amenable group. Then the following are
equivalent:

• G is locally finite;
• Ξmin(G) is comeager in Ξ(G).

For locally finite groups, we also obtain more detailed information about the
generic properties of the action and its invariant measures (cf. Theorem 7.11).

The next theorem is the basis of our results concerning the existence of a
generic conjugacy class in Ξ(G) for non-finitely generated groups.

Theorem 1.7. Let G be a countable group which is not finitely generated. Then a subshift
is projectively isolated in the space of all subshifts iff it is minimal and sofic.

From this and Theorem 1.1, we obtain the following.

Corollary 1.8. Let G be a countable group which is not finitely generated. If there exists
a comeager conjugacy class in Ξ(G), then the generic element of Ξ(G) is minimal.
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Combining the above results and the fact that locally finite groups admit no
sofic, minimal subshifts (cf. Proposition 7.16), we get the following partial answer
to a question from [D].

Corollary 1.9. Let G be a countable amenable group which is not finitely generated.
Then there is no comeager conjugacy class in Ξ(G). If G is locally finite, there is also no
comeager conjugacy class in Ξmin(G).

The space Ξtr(G) of transitive actions. For Ξtr(G), even the more basic question
of the existence of a dense conjugacy class is quite delicate and interesting. First,
for G = Z, it follows from [H1] that Ξmin(Z) is dense in Ξtr(Z), so Ξtr(Z) admits
even a comeager conjugacy class. It is easy to generalize this to virtually cyclic
groups (cf. Proposition 8.4) but these are all the finitely generated examples we
know.

Question 1.10. Let G be a finitely generated group which is not virtually cyclic.
(i) Is it possible that Ξmin(G) is dense is Ξtr(G)?

(ii) Can Ξtr(G) have a dense conjugacy class?

In [H2], Hochman claims that there is a dense conjugacy class in Ξtr(G) for
G = Zd and provides a general argument that does not depend on the structure
of the group. However, this argument is incorrect and we have the following
theorem. See Section 8 for more details.

Theorem 1.11. Let G be a group which is free or virtually polycyclic. Then Ξtr(G) has
a dense conjugacy class iff G is virtually cyclic.

The proof of this theorem proceeds through a general criterion, again based
on subshifts, for the (non-)existence of a dense conjugacy class in Ξtr(G) that we
are able to verify in the above cases using the special symbol property introduced
by Dahmani and Yaman in [DY].

Acknowledgments. We are grateful to Alekos Kechris for asking questions which
prompted some of this work, to Yves Cornulier for some advice in group theory,
and to Andrew Marks, Denis Osin, and Ville Salo for useful discussions.

2. Preliminaries

2.1. Minimal and transitive actions. In this section, we fix some terminology
and notation.

Let G be a countable group and let Ω denote the Cantor space. We denote by
Ξ(G) the space of all actions G ↷ Ω by homeomorphisms, that is,

(2.1) Ξ(G) = Hom
(
G, Homeo(Ω)

)
.

We equip Homeo(Ω) with the uniform convergence topology and note that Ξ ⊆
Homeo(Ω)G is a closed subset, so a Polish space.

If Z is a compact, zero-dimensional space, we denote by B(Z) the Boolean
algebra of clopen subsets of Z and if B is a Boolean algebra, we denote by S(B)
the space of ultrafilters of B. By Stone duality, an element f ∈ Homeo(Ω) can be
viewed as an automorphism of B(Ω), and the topology on Homeo(Ω) is given by
pointwise convergence on B(Ω) (seen as a discrete space). This gives a convenient
way to view the topology on Ξ(G): a subbasis consisting of clopen subsets is given
by the collection of sets of the form

(2.2) {ξ ∈ Ξ(G) : a = ξ(g) · b}, for g ∈ G, a, b ∈ B(Ω).

Another useful subbasis is given by the clopen subsets

(2.3) {ξ ∈ Ξ(G) : a ∩ ξ(g) · b = ∅}, for g ∈ G, a, b ∈ B(Ω).
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To see this, note that a = ξ(g) · b iff a ∩ (ξ(g) · ¬b) = ∅ and ¬a ∩ ξ(g) · b = ∅.
If G is generated by a subset S, then in (2.2) and (2.3), it is enough to consider
elements g ∈ S.

Definition 2.1. Let G be a group. A G-flow is an action G ↷ Z on a non-empty,
compact, Hausdorff space Z by homeomorphisms.

If G ↷ Z1 and G ↷ Z2 are G-flows, a factor map π : Z1 → Z2 is a G-equivariant,
continuous, surjective map. In this situation, we will say that Z2 is a factor of Z1
or that Z1 is an extension of Z2.

The space Ξ(G) is equipped with a continuous action of Homeo(Ω) by conju-
gation:

( f · ξ)(g) = f ξ(g) f−1, for ξ ∈ Ξ(G), f ∈ Homeo(Ω), g ∈ G.

An orbit of this action is called a conjugacy class and we will say that two actions
are conjugate if they are in the same class. The following two facts are well-known.

Proposition 2.2. Let G be a countable group, and ξ1, ξ2 ∈ Ξ(G) be such that ξ2 is a
factor of ξ1. Then ξ2 belongs to the closure of the conjugacy class of ξ1.

Proof. Choose a neighborhood of ξ2, which we may assume to be of the form

O = {ξ ∈ Ξ(G) : ∀g ∈ K ∀a ∈ A ξ(a) = ξ2(a)},

where K is a finite subset of G and A is a clopen partition of Ω. Let π : Ω → Ω
witness that ξ2 is a factor of ξ1. Let f ∈ Homeo(Ω) be such that f

(
π−1(ξ2(g)a)

)
=

ξ2(g)a for all a ∈ A and all g ∈ K. Then f · ξ1 ∈ O. □
Proposition 2.3. Let G be a countable group. Then Ξ(G) admits a dense conjugacy class.
In particular, every conjugacy invariant, Baire measurable subset of Ξ(G) is meager or
comeager.

Proof. If {ξi : i ∈ N} is a countable dense subset of Ξ(G), then the conjugacy
class of the action ∏i ξi is dense by Proposition 2.2. The second claim follows
from [K1, 8.46]. □
Definition 2.4. Let G ↷ Z be a G-set. A subset L ⊆ Z is called syndetic if finitely
many G-translates of L cover Z. It is called thick if it intersects every syndetic set,
equivalently, if every finite set of translates of L has non-empty intersection. A
subset L ⊆ G is called left syndetic if it is syndetic for the action G ↷ G by left
translation and it is called left thick if it is thick for this action. Similarly, right
syndetic and right thick for the action by right translation.

Definition 2.5. A G-flow G ↷ Z is called (topologically) transitive if for all non-
empty, open U, V ⊆ Z, there is g ∈ G such that g ·U ∩ V 6= ∅. It is called minimal
if every non-empty, open U ⊆ Z is syndetic.

For a G-flow G ↷ Z and H ≤ G, we will say that a point z ∈ Z is H-periodic if
H · z = z. We will say that z is periodic if it is H-periodic for some H ≤ G of finite
index. Z is periodic if it is finite.

We note that the two properties of being transitive or being minimal are pre-
served under factors. It is clear that every minimal action is transitive. An action
is minimal iff every orbit is dense in Z and if Z is metrizable, an action is tran-
sitive iff it admits a dense orbit. If G ↷ Z is minimal, then Z is either finite or
perfect, but this is not true for transitive actions: it is possible to have an infinite
dense orbit consisting of isolated points.

If Z = Ω, in Definition 2.5, we can take U and V to be elements of B(Ω). We
will denote by Ξtr(G) and Ξmin(G) the set of ξ ∈ Ξ(G), which are transitive and
minimal, respectively.
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Proposition 2.6. Let G be a countable group. The sets Ξtr(G) and Ξmin(G) are Gδ

subsets of Ξ(G) and, therefore, Polish spaces. Moreover, they are invariant under the
conjugation action of Homeo(Ω).

Proof. For Ξtr, this follows from the countability of B(Ω) and the fact that for fixed
a, b ∈ B(Ω) and g ∈ G, the condition ξ(g) · a ∩ b 6= ∅ defines an open subset of
Ξ(G) (see (2.3)). Similarly, for Ξmin, use the fact that for a fixed a ∈ B(Ω), the
existence of some finite F ⊆ G such that

⋃
g∈F ξ(g)a = Ω is an open condition. □

Let µ be a Borel probability measure (or just a measure, for short) on Ω. We
note that, by regularity, µ is determined by its values on B(Ω) and it follows from
Carathéodory’s theorem that any finitely additive measure on B(Ω) extends to a
Borel measure on Ω. The measure µ is called invariant under an action G ↷ Ω
if µ(g · a) = µ(a) for all g ∈ G and a ∈ B(Ω) (and thus, for all Borel sets). We
will denote by Ξpmp(G) the elements of Ξ(G) which admit an invariant measure,
and by Ξmnpmp(G) the intersection Ξmin(G) ∩ Ξpmp(G). Note that the property
of having an invariant measure is preserved under factors.

Proposition 2.7. Let G be a countable group. The set Ξpmp(G) is closed in Ξ(G).
Therefore Ξmnpmp(G) is a Gδ subset of Ξ(G).

Proof. Let (ξn)n∈N be a sequence of elements of Ξ(G) which converges to some
ξ ∈ Ξ(G); let also µn be an invariant measure for ξn for every n. Then any
limit point µ of the µn in the compact space of probability measures on Ω is
ξ-invariant. □

2.2. Subshifts. Let G ↷ Z be a G-flow. We will denote by S(Z) the set of all
subflows of Z. It is a closed subspace of the space of all closed subsets of Z,
equipped with the Vietoris topology, and thus a compact space (metrizable if Z is
metrizable). We recall that the Vietoris topology is generated by sets of the form
{K ∈ S(Z) : K ⊆ U} and {K ∈ S(Z) : K ∩ U 6= ∅} with U an open subset of Z.

We will denote by Str(Z), Smin(Z), and Sper(Z) the collections of transitive,
minimal, and periodic subflows, respectively. We also let Spertr(Z) = Sper(Z) ∩
Str(Z).

Proposition 2.8. Let G ↷ Z be a G-flow with G countable and Z metrizable. Then
Str(Z) and Smin(Z) are Gδ subsets of S(Z).

Proof. Let {Un : n ∈ N} be a basis for Z. For X ∈ S(Z), we have that X is
transitive iff for all i, j, X ∩ Ui = ∅ or X ∩ Uj = ∅ or there is g ∈ G such that
X ∩Ui ∩ g ·Uj 6= ∅. For fixed i, j this is a Gδ condition since in a metrizable space
closed subsets are Gδ, and a finite union of Gδ subsets is a Gδ subset. Similarly, X
is minimal iff for every i, Ui ∩ X = ∅ or X ⊆ G · Ui. Both conditions are Gδ (one
is closed and the other is open). □

Proposition 2.9. Let G ↷ Z be a G-flow. The collection{
{X ∈ Smin(Z) : X ⊆ U} : U ⊆ Z open

}
forms a basis of open sets of Smin(Z). If Z is zero-dimensional, one can take the sets U to
be clopen.

Proof. Let X0 ∈ Smin(Z). A basic open neighborhood of X0 in the Vietoris topol-
ogy is given by the collection of all X ∈ Smin(Z) such that X ⊆ U and X ∩Vi 6= ∅,
i = 1, . . . , n for some non-empty, open U, V1, . . . , Vn ⊆ Z. We claim that the set

(2.4) {X ∈ Smin(Z) : X ⊆ U ∩ G · V1 ∩ · · · ∩ G · Vn}
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contains X0 and is contained in this open neighborhood. First, by minimality of
X0, X0 ⊆ G · Vi for every i. Second, if X ∈ Smin(Z) and X ⊆ G · Vi, it is clear that
X ∩ Vi 6= ∅.

For the last statement, note that by compactness and 0-dimensionality, if X
is closed, U is open and X ⊆ U then there exists a clopen subset V such that
X ⊆ V ⊆ U. So we can replace U ∩ G · V1 ∩ · · · ∩ G · Vn in (2.4) by a clopen
subset. □

Let A be a finite set. The group G acts on the compact space AG by left shift:

(g · x)(h) = x(g−1h).

A subshift is an element of S(AG). We note that for any x ∈ AG, the subshift G · x
is minimal iff for any finite F ⊆ G the set {g : (g · x)|F = x|F} is left syndetic.

Let F ⊆ G be finite. An F-pattern is a function p : F → A and F is called the
support of p. Each F-pattern p defines a clopen cylinder

(2.5) Cp := {x ∈ AG : x|F = p}
and two clopen subsets of S(G)

U+
p := {X ∈ S(AG) : X ∩ Cp 6= ∅} and

U−
p := S(AG) \U+

p = {X ∈ S(AG) : X ∩ Cp = ∅}.

We say that the pattern p occurs in a subshift X if X ∈ U+
p . The pattern p occurs in

a point x ∈ AG if there is g ∈ G such that g · x ∈ Cp. The collection

{U+
p ,U−

p : p is a pattern}

forms a subbasis for the topology of S(AG). If P is a finite set of patterns, we
denote U+

P =
⋂

p∈P U+
p and U−

P =
⋂

p∈P U−
p . A subshift X ∈ S(AG) is of finite type

(or SFT, for short) if it is of the form

(2.6) X = AG \
⋃

p∈P

⋃
g∈G

g · Cp,

where P is a finite collection of forbidden patterns. In other words, X is the largest
subshift in which none of the forbidden patterns occur. It follows that if X is the
SFT given by (2.6), then the set

S(X) = U−
P

is open in S(AG). It is also clear that SFTs are dense in S(AG). If X is defined as
in (2.6) and F is finite and contains dom(p) for every p ∈ P, then we say that F is
a defining window for X.

We record the following corollary of Proposition 2.9.

Corollary 2.10. The collection

{S(X) ∩ Smin(AG) : X is an SFT}
forms an open basis for the topology of Smin(AG).

A subshift X ∈ S(AG) is sofic if there exists a finite alphabet B, an SFT Y ∈
S(BG) and a factor map Y → X. It is well known that, by enlarging the alphabet
B, one can always assume that this factor map is induced by a surjection from B
to A (hence extends to a factor map BG → AG).

A subshift X ∈ S(AG) is isolated in S(AG) if it is an isolated point in the
topology of S(AG). It is projectively isolated in S(AG) (see [D]) if there exists a
finite alphabet B, a factor map Φ : BG → AG, and a non-empty open subset
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U ⊆ S(BG) such that Φ[Y] = X for every Y ∈ U. (Here and in what follows, if
f : Z → W is a function and Y ⊆ Z, we denote by f [Y] the image of Y by f , that is,
the set { f (z) : z ∈ Z}.) Without loss of generality, we may assume that Φ comes
from a map ϕ : B → A. As SFTs are dense, it follows that every isolated subshift
is an SFT and every projectively isolated subshift is sofic.

We have the following easy sufficient condition for a subshift to be isolated in
S(AG).

Lemma 2.11. Let X ∈ S(AG) be an SFT that has an isolated point with a dense orbit.
Then X is isolated in S(AG).

Proof. Let x0 ∈ X be isolated and let U ⊆ AG be open with U ∩ X = {x0}. Then

{X} = {Y ∈ S(X) : Y ∩ U 6= ∅}. □

Similarly, if X is sofic and has an isolated point with a dense orbit, then X is
projectively isolated in S(AG).

Another operation on subshifts that we will need is the disjoint union: if X ∈
S(AG) and Y ∈ S(BG), then X t Y is a naturally a subshift of (A t B)G. Here
A t B means that if A and B are not disjoint, we take the union of two disjoint
copies.

Lemma 2.12. Suppose that G is finitely generated and X ∈ S(AG) and Y ∈ S(BG) are
subshifts. If X and Y are SFT/sofic/isolated/projectively isolated, then so is X t Y.

If X, Y are sofic/projectively isolated in S(AG) then so is X ∪ Y.

Proof. First we note that AG t BG is an SFT (as a subshift of (A t B)G). Indeed,
if S is a finite, symmetric generating set of G not containing 1G, it is enough to
forbid the patterns p : S ∪ {1G} → A t B with p(1G) ∈ A and p(s) ∈ B for s ∈ S.
Now the statements for disjoint unions of SFT and sofic subshifts are immediate,
and the other two follow after observing that S(AG t BG) is an open subset of
S((A t B)G).

The second statement follows from the first and the fact that there is a natural
factor map X t Y → X ∪ Y. □

Now let A be a (clopen) partition of Ω, that is, a finite set of elements of B(Ω)
which are pairwise disjoint and whose union is Ω. If all of the elements of A are
non-empty, we will say that the partition is non-degenerate. If A is a partition of
Ω and ω ∈ Ω, we will denote by A(ω) the element a ∈ A such that ω ∈ a. For a
fixed ξ ∈ Ξ, we can define a map ΠA

ξ : Ω → AG by

(2.7) ΠA
ξ (ω)(g) = A(ξ(g)−1 · ω) for ω ∈ Ω, g ∈ G

and we note that ΠA
ξ is continuous and G-equivariant. Using this, we define the

map πA : Ξ(G) → S(AG) by:

(2.8) πA(ξ) = ΠA
ξ [Ω]

and note that it is continuous. Moreover, the topology on Ξ(G) is induced by the
maps πA as A varies over non-degenerate partitions of Ω.

Every X ∈ S(AG) admits a canonical generating partition Â(X) given by

Â(X) :=
{
{x ∈ X : x(1G) = a} : a ∈ A

}
,

which is in a bijection with a subset of A.
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3. Fraïssé theory for Cantor actions

As was first observed by Ivanov [I] and more systematically exploited by
Kechris and Rosendal in [KR], Fraïssé theory provides a convenient framework
for studying the existence of dense and comeager conjugacy classes. In Appen-
dix A, we prove a general criterion for the existence of a comeager conjugacy class
and here we provide the necessary translations to apply this result in the context
of Cantor dynamics.

First, we use Stone duality to convert dynamical systems into algebraic objects.

Definition 3.1. A Boolean G-algebra is a Boolean algebra A equipped with an
action of G by automorphisms. A Boolean G-algebra A is finitely generated if there
is a finite subset A ⊆ A that generates A as a Boolean G-algebra.

It is easy to see that if a Boolean G-algebra is finitely generated, then the
generating set A can be taken to be a partition of 1. In that case, every element of
A can be written as a finite union of elements of the form⋂

g∈F
g · p(g),

where p : F → A is a pattern.
Using the Stone functors Z 7→ B(Z), A 7→ S(A), we see that zero-dimensional

G-flows correspond to Boolean G-algebras and subshifts of AG correspond to
Boolean G-algebras generated by the finite partition Â. More precisely, B(AG)
is the free Boolean G-algebra generated by the partition Â and subshifts of AG

correspond to its quotients. A subshift is of finite type if the corresponding ideal
in B(AG) is finitely generated (over G). Factor maps of G-flows correspond to
embeddings of Boolean G-algebras.

Next we explain how to see the space of subshifts as a type space in the sense
of Appendix A to which we refer for the relevant definitions. Let L be the lan-
guage of Boolean algebras {0, 1,∩,∪,¬} and let LG be L augmented with unary
function symbols for all elements of G. Let F be the hereditary L-class of Boolean
algebras and let F(G) be the LG-class of all G-Boolean algebras. For a finite set
of variables x, it is easy to see that Sx(F) is finite and Sx(F(G)) is compact (the
theory of G-Boolean algebras is first-order, universal). We let A = 2x and

Spart
A (F(G)) = {p ∈ SA(F(G)) : p |=

⊔
α∈A

α = 1},

that is, the set of types where the variables form a partition of 1. For α ∈ A,
we let tα(x) be the L-term

⋂
v∈x vα(v), where v1 = v and v0 = ¬v. There is a

homeomorphism Φ : Sx(F(G)) → Spart
A (F(G)) given by

Φ(q) |= ϕ(A) ⇐⇒ q |= ϕ
(
(tα(x) : α ∈ A)

)
for q ∈ Sx(F(G)),

and another homeomorphism Ψ : S(AG) → Spart
A (F(G)) given by

Ψ(X) |=
⋂
g∈F

g · p(g) 6= 0 ⇐⇒ X ∩Up 6= ∅

for X ∈ S(AG) and for every pattern p : F → A with F ⊆ G finite. Moreover, using
these identifications, if y is a finite set of variables disjoint from x and B = 2x∪y,
then the projection map πx : Sxy(F(G)) → Sx(F(G)) can be represented as the
projection S(BG) → S(AG) given by the map B → A, α 7→ α|x. This shows that
for all intents and purposes, we may identify the type space Sx(F(G)) and the
space of subshifts S(AG). In particular, it makes sense to say that a certain class
of subshifts is a topological Fraïssé class in the sense of Definition A.1.



DENSE AND COMEAGER CONJUGACY CLASSES 11

Next we consider coding models of F(G), i.e., Boolean G-algebras. We will use
a coding by expansions. Let u be a countable set of variables and let c ∈ B(Ω)u

be a tuple that bijectively enumerates B(Ω). Following Example A.12, we let

Ξ(G) = {ξ ∈ Ξ0(F(G)) : ξ|L = tp c}.

There is an obvious identification between the space defined above and the one
defined by (2.1).

Proposition 3.2. Let G be a countable group. Then the class F(G) of G-subshifts is
a topological Fraïssé class and Ξ(G) is an admissible coding for models of F(G) in the
sense of Definition A.5.

Proof. To check amalgamation, let X, Y1, Y2 be G-subshifts and let π1 : Y1 → X,
π2 : Y2 → X be factor maps. Then

Y1 ×X Y2 = {(y1, y2) ∈ Y1 × Y2 : π1(y1) = π2(y2)}
is a G-subshift which amalgamates Y1 and Y2 over X. The other two items of
Definition A.1 are satisfied because each S(AG) is compact.

That the coding Ξ(G) is admissible follows from Example A.12. □
We also note that the notion of a projectively isolated type (as in Definition A.8)

coincides with the notion of a projectively isolated subshift discussed in Subsec-
tion 2.2. From Corollary A.10, we obtain the following.

Corollary 3.3 ([D, Theorem 3.1]). Let G be a countable group. Then the following are
equivalent:

(i) Ξ(G) admits a comeager conjugacy class.
(ii) Projectively isolated subshifts in S(AG) are dense in S(AG) for every A.

Next we turn to the class of minimal subshifts that we denote by Fmin(G). We
also let Ξmin(G) = Ξ(G) ∩ Ξ0(Fmin(G)) and again, there is an obvious identifica-
tion with the previous definition.

Proposition 3.4. Let G be a countable group. Then the class Fmin(G) is a topological
Fraïssé class. If G is infinite, then Ξmin(G) is an admissible coding for models of Fmin(G).

Proof. We verify the conditions of Definition A.1.
(i) The proof is the same as in Proposition 3.2, except that now we have to take

a minimal subshift of Y1 ×X Y2.
(ii) This follows from Proposition 2.8.
(iii) Let A, B be finite alphabets and fix some surjective map B → A. Let

Π : BG → AG denote the corresponding projection. We define π : S(BG) → S(AG)
by π(X) = Π[X]. Let Smin(Z), where Z ∈ S(BG) is an SFT, be a basic open set in
Smin(BG) (see Corollary 2.10). We claim that

π[Smin(Z)] = Smin(π(Z)),

which is a closed set. The ⊆ inclusion is obvious. For the other, let X ⊆ π(Z)
be a minimal subshift and let Y be any minimal subshift of Z ∩ Π−1(X). Then
π(Y) = X.

To verify that Ξmin(G) is an admissible coding, according to Example A.12, we
only have to check that every minimal G-subshift X can be realized as a factor of
a minimal action G ↷ Ω. If X is infinite, then the underlying space of X is home-
omorphic to Ω, so we may assume that X is finite. Let G ↷ Z be any minimal
action on a Cantor space. Then any minimal subset of Z × X is homeomorphic
to the Cantor set and has X as a factor. □

Applying Corollary A.10 to this situation, we obtain the following.
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Corollary 3.5. Let G be a countable, infinite group. Then the following are equivalent:
(i) There is a comeager conjugacy class in Ξmin(G).

(ii) Minimal subshifts which are projectively isolated in Smin(AG) are dense in
Smin(AG) for every A.

We have the following characterization of minimal subshifts which are projec-
tively isolated in Smin(AG).

Proposition 3.6. Let G be a countable group and let A be a finite alphabet. Then the
following are equivalent:

(i) X ∈ Smin(AG) is projectively isolated in Smin(AG).
(ii) There exists a sofic Y ∈ S(AG) such that X is the unique minimal subshift of Y.

In particular, every sofic minimal subshift is projectively isolated in Smin(AG).

Proof. (i) ⇒ (ii). Suppose that X is projectively isolated. Then there exists a finite
alphabet B, a map ϕ : B → A, and a non-empty open set U ⊆ S(BG) such that,
denoting by Φ the G-map induced by ϕ, Φ[Z] = X for every Z ∈ U ∩ Smin(BG).
By Corollary 2.10, we may assume that U = S(Z0) for some SFT Z0. Then we can
take Y = Φ[Z0]. It is clear that X ⊆ Y and if X′ is another minimal subshift of Y,
then any minimal subshift of Φ−1(X′) ∩ Z0 does not map to X, contradicting the
choice of Z0.

(ii) ⇒ (i). Let Z ∈ S(BG) be an SFT and let Φ : BG → AG be a factor map such
that Φ[Z] = Y. Now Φ must map every minimal subshift from the open set S(Z)
to a minimal subshift of Y, i.e., to X. □
Question 3.7. Do there exist a countable group G and a subshift in Smin(AG) which
is projectively isolated in Smin(AG) but not sofic?

A negative answer of this question for Zd would also imply a negative answer
to Question 1.4.

We finally consider the classes of periodic subshifts and periodic, transitive sub-
shifts, that we will denote by Fper(G) and Fpertr(G), respectively. We also denote
Ξper(G) = Ξ(G) ∩ Ξ0(Fper(G)) and Ξpertr(G) = Ξ(G) ∩ Ξ0(Fpertr(G)). Actions in
Ξper(G) are often called profinite actions and they are exactly the equicontinuous
actions on Ω. A profinite action is in Ξpertr(G) iff it is transitive iff it is minimal
(an equicontinuous action preserves a metric, so if one orbit is dense, then all
orbits are). We note that Ξper(G) is a Gδ set in Ξ(G).

Proposition 3.8. Let G be a finitely generated group. Then:
(i) Each X ∈ Sper(AG) is isolated in S(AG).

(ii) Fper(G) and Fpertr(G) are topological Fraïssé classes.
(iii) Ξper(G) is an admissible coding for models of Fper(G).
(iv) If G has arbitrarily large finite quotients, then Ξpertr(G) is an admissible coding

for models of Fpertr(G).

Proof. (i) Let X ∈ Sper(AG). There is a finite index subgroup G0 ≤ G which
fixes the generating partition Â(X) of B(X). As G is finitely generated, G0 is
also finitely generated and “G0 fixes Â(X)” is an open condition on X. Now it
remains to notice that AG contains only finitely many G0-periodic points, so there
are only finitely many subshifts in this open set (including X).

(ii) It follows from (i) that each Sper(AG) is open and discrete, so we only have
to check amalgamation. Note that if Y1, Y2 are periodic then Y1 ×X Y2 is also
periodic (the intersection of two subgroups of finite index still has finite index).
This allows us to amalgamate periodic actions.
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To amalgamate two periodic transitive actions Y1, Y2, observe that if Y1, Y2 are
finite, then Y1 ×X Y2 is finite and consider an orbit of Y1 ×X Y2.

(iii) This is clear as every periodic flow G ↷ Z is a factor of the flow G ↷
Z × Ω, where the action on the second coordinate is trivial.

(iv) Let Γ be the profinite completion of G. By our assumptions, Γ is infinite
and metrizable, and therefore, homeomorphic to Ω. Moreover, every transitive
periodic G-flow is a factor of the left translation action G ↷ Γ. □

The next result is a direct application of Theorem A.9.

Corollary 3.9. Let G be a finitely generated group and let Γ be its profinite completion.
Then the isomorphism class of the action G ↷ Γ × Ω, where the action on the first
coordinate is left translation and on the second, is trivial, is comeager in Ξper(G). If G
has arbitrarily large finite quotients, then the isomorphism class of the action G ↷ Γ is
comeager in Ξpertr(G).

4. Neighborhoods of actions of the free group

4.1. Rauzy graphs. Let G be the free group freely generated by a finite set of
generators S0. In this section, we will give a description of neighborhood bases
of the spaces Ξ(G) and Ξmin(G). We let S = S0 ∪ S−1

0 .

Definition 4.1. A Rauzy graph (for G) is a tuple G = (V, E, σ, ρ, ℓ, ·̄), where V is a
set of vertices, E is a set of edges, σ, ρ : E → V are the source and range maps,
ℓ : E → S is a labeling of the edges, and ·̄ : E → E is an involution, satisfying the
following for all e ∈ E:

• σ(ē) = ρ(e), ρ(ē) = σ(e);
• ℓ(ē) = ℓ(e)−1;
• the map E → V × V × S, e 7→ (σ(e), ρ(e), ℓ(e)) is injective;
• for every v ∈ V and s ∈ S, there exists e ∈ E with σ(e) = v and ℓ(e) = s.

If there is an edge labeled s from v1 to v2, we will write v1
s−→ v2. A morphism

between two Rauzy graphs G1 and G2 is a map π : V(G1) → V(G2) such that for
all v1, v2 ∈ V(G1) and s ∈ S, if v1

s−→ v2, then π(v1)
s−→ π(v2). A morphism

π : G1 → G2 induces a map E(G1) → E(G2) (because the edge π(v1)
s−→ π(v2) is

unique), which we will also denote by π. We will say that the morphism π is
surjective if the induced map on the edges is surjective. When the Rauzy graph G

is given, we will denote by V(G) and E(G) its vertex and edge set, respectively. A
subgraph G′ of G is given by V′ ⊆ V(G), E′ ⊆ E(G) such that G′ = (V′, E′, σ, ρ, ℓ, ·̄)
satisfies the axioms of a Rauzy graph. If G1, G2 are Rauzy graphs and π : G1 → G2
is a morphism, then π[G1] = (π[V(G1)], π[E(G1)]) is a subgraph of G2. A Rauzy
graph is connected if the underlying graph (forgetting the labeling) is connected.
A Rauzy graph is deterministic if the map E → V × S, e 7→ (σ(e), ℓ(e)) is injective.

We note that a deterministic Rauzy graph defines an action G ↷ V by s · v =
ρ(e), where e is the unique edge with σ(e) = v and ℓ(e) = s−1. In that case, the
Rauzy graph is often called the Schreier graph of the action.

An example of a deterministic Rauzy graph is the Cayley graph of G Cay(G)
given by

• V = G, E = G × S;
• σ(g, s) = g, ρ(g, s) = gs, (g, s) = (gs, s−1);
• ℓ(g, s) = s.

The action defined by this graph is the right translation action G ↷ G, g · x =
xg−1.
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Every finite Rauzy graph G defines a non-empty SFT X(G) ∈ S(V(G)G) by

(4.1) X(G) = {π : G → V(G) : π is a morphism Cay(G) → G}.

To see that X(G) is an SFT, note that one can obtain it by forbidding the patterns
p : {1G, s} → V(G) (for s ∈ S) where there is no edge labeled s from p(1G) to
p(s). To construct a point x ∈ X(G), one can choose x(1G) arbitrarily and then
inductively choose x(gs) (for g ∈ G, s ∈ S) such that x(g) s−→ x(gs).

Let now A be a non-degenerate partition of Ω. A Rauzy graph on A is a Rauzy
graph with vertex set A. Every ξ ∈ Ξ(G) defines a labeled graph G(ξ, A) on A by

(4.2) a s−→ b ⇐⇒ a ∩ ξ(s) · b 6= ∅ for a, b ∈ A, s ∈ S.

The following lemma is immediate.

Lemma 4.2. For every ξ ∈ Ξ(G) and every non-degenerate partition A, G(ξ, A) is a
Rauzy graph.

If B is a partition of Ω that refines A, then there is a surjective morphism
π : G(ξ, B) → G(ξ, A) defined by

π(b) = a ⇐⇒ b ⊆ a.

Every Rauzy graph G on A defines a clopen subset N(G) ⊆ Ξ(G) by

N(G) = {ξ ∈ Ξ(G) : G(ξ, A) = G}.

These definitions give us an encoding of a basis of open sets for Ξ(G).

Proposition 4.3. Each N(G) is non-empty and the collection

{N(G) : A is a non-degenerate partition of Ω and G is a Rauzy graph on A}
forms a basis of open sets for the topology of Ξ(G). More precisely, for ξ ∈ Ξ(G), the
collection

{N(G(ξ, A)) : A is a non-degenerate partition of Ω}
is a basis at ξ.

Proof. N(G) is non-empty because (a conjugate of) the product of X(G) with a
trivial action on Ω belongs to it.

Let now ξ0 ∈ Ξ(G) and consider its basic neighborhood U consisting of all ξ
such that ai ∩ ξ(si) · bi = ∅ for i = 0, . . . , n − 1, where the si are elements of S and
the ai, bi are elements of B(Ω) (cf. (2.3)). Let A be the partition of Ω generated
by the ai and the bi. It is easy to check that N(G(ξ0, A)) ⊆ U: the condition
ai ∩ ξ(si) · bi = ∅ is witnessed by the absence of edges labeled si between the
elements of the partition contained in ai and the ones contained in bi. □

Rauzy graphs can also be defined from subshifts as follows. If A is a finite
alphabet and F is a finite subset of G containing 1G, we can define the graph
G(AG, AF) on AF in a way similar to (4.2):

p1
s−→ p2 ⇐⇒ p1 and s · p2 are compatible, for p1, p2 ∈ AF,

where s · p2 is the pattern sF → A defined by (s · p2)( f ) = p2(s−1 f ) and two
patterns are compatible if they agree on the intersection of their supports. If X ∈
S(AG), we can similarly define G(X, AF), which is a subgraph of G(AG, AF), by

V(G(X, AF)) = {p ∈ AF : p occurs in X}
and

p1
s−→ p2 ⇐⇒ p1 and s · p2 are compatible and p1 ∪ s · p2 occurs in X.
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We have a natural equivariant map ιF : X
(
G(AG, AF)

)
→ AG defined by

(4.3) ιF(x)(g) = x(g)(1G) for x ∈ X
(
G(AG, AF)

)
, g ∈ G.

Lemma 4.4. Suppose that F−1 is a connected subset of Cay(G). Then:
(i) ιF(x)|F = x(1G) for all x ∈ X

(
G(AG, AF)

)
.

(ii) The map ιF is an isomorphism from X
(
G(AG, AF)

)
to AG. More generally, if

Z ⊆ AG is an SFT and F is a defining window for Z, then the map ιF defines an
isomorphism between X

(
G(Z, AF)

)
and Z.

Proof. (i) Fix f ∈ F. We have to show that

(4.4) x( f )(1G) = x(1G)( f ).

Write f = s0 · · · sn−1 as a reduced word with si ∈ S for all i. By the connectedness
of F−1, si · · · sn−1 ∈ F for all i ≤ n − 1. Note that for all i,

x(s0 · · · si−1)
si−→ x(s0 · · · si),

so, by the definition of the graph G(AG, AF),

x(s0 · · · si−1)(si · · · sn−1) =
(
si · x(s0 · · · si)

)
(si · · · sn−1)

= x(s0 · · · si)(si+1 · · · sn−1).

Applying this consecutively for i = 0, . . . , n − 1, we obtain (4.4), as desired.
(ii) Define jF : AG → X

(
G(AG, AF)

)
by

jF(x)(g)( f ) = x(g f ) for x ∈ AG, g ∈ G, f ∈ F.

We will check that jF is an inverse of ιF. By definition, for any x ∈ AG, one
has (ιF ◦ jF)(x)(g) = jF(x)(g)(1G) = x(g). Conversely, given x ∈ X

(
G(AG, AF)

)
,

g ∈ G, and f ∈ F, using (i), we have:

jF
(
ιF(x)

)
(g)( f ) = ιF(x)(g f ) = ιF(g−1 · x)( f ) = (g−1 · x)(1G)( f ) = x(g)( f ).

For any Z ∈ S(AG) we have jF[Z] ⊆ X
(
G(Z, AF)

)
. If Z is an SFT with a

defining window F, then ιF[X
(
G(Z, AF)

)
] ⊆ Z since no forbidden F-pattern can

occur in ιF[X
(
G(Z, AF)

)
]. So, in this situation, ιF[X

(
G(Z, AF)

)
] = Z. □

This lemma allows us, for any SFT Z ⊆ AG with defining window F, to view
subshifts of X

(
G(Z, AF)

)
as elements of S(Z).

4.2. Minimal Rauzy graphs.

Definition 4.5. Let G be a Rauzy graph. A reduced path in G is a sequence of edges
(e0, . . . , en) such that ρ(ei) = σ(ei+1) and ℓ(ei) 6= ℓ(ei+1)

−1 for all i < n. The
graph G is called minimal if for all edges e, f ∈ E(G), there exists a reduced path
whose first edge is e and whose last edge is f or f̄ .

For fixed ξ ∈ Ξ(G) and partition A of Ω, every ω ∈ Ω defines a morphism
Cay(G) → G(ξ, A), g 7→ A(g−1 · ω). This gives a natural way to obtain reduced
paths from elements of the free group. More precisely, let ξ ∈ Ξ(G), let A be a
non-degenerate partition of Ω, and let G = G(ξ, A). Let g ∈ G and ω ∈ Ω. Write
g = s1 · · · sn as a reduced word in S and let ωi = (s1 · · · si)

−1 · ω. Then the path

(4.5) A(ω)
s−1

1−−→ A(ω1)
s−1

2−−→ · · · s−1
n−−→ A(g−1 · ω)

is reduced.

Lemma 4.6. For every ξ ∈ Ξmin(G) and every non-degenerate partition A of Ω, G(ξ, A)
is a minimal Rauzy graph.
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Proof. That G(ξ, A) is a Rauzy graph follows from Lemma 4.2. To check minimal-
ity, let e, f ∈ E be given. Let a = σ(e), s = ℓ(e), and a0 = a ∩ ξ(s) · ρ(e). Similarly,
let b = σ( f ), t = ℓ( f ), and b0 = b∩ ξ(t) · ρ( f ). By the definition of G(ξ, A), a0 6= ∅
and b0 6= ∅. Let ω ∈ a0. Let

L = {g ∈ G : g is a reduced word ending in s−1}
and note that L is infinite and for every g ∈ G, the set gL4L is finite. This
implies that L is left thick, so it intersects the set {g ∈ G : g · ω ∈ b0}, which is
left syndetic since ξ is minimal. Let g−1 be in this intersection and consider the
reduced path constructed in (4.5), whose first edge is equal to e (because ω ∈ a0
and g−1 ∈ L). Denoting by sn the label of the last edge of this path, there are two
possibilities. If sn = t, then the last edge of the path is f̄ (because g−1 · ω ∈ b0). If
not, we can add f to the end of the path and it will still be reduced. □

Lemma 4.7. Let G be a Rauzy graph and let x : Cay(G) → G be a morphism such that
for every e ∈ E(G), the set

(4.6) {σ( f ) : f ∈ E(Cay(G)), x( f ) = e}

is right syndetic in G. Then every y ∈ G · x is a surjective morphism Cay(G) → G.
(Here we view the morphism x : Cay(G) → G as an element of the subshift X(G) defined
by (4.1).)

Proof. Let y ∈ G · x. Let e ∈ E(G) and let L be the set defined in (4.6). As L
is right syndetic, there is a finite F ⊆ G such that LF−1 = G. Let g ∈ G be
such that y|F∪FS = (g · x)|F∪FS. Then there is h ∈ F such that g−1 ∈ Lh−1, i.e.,
g−1h ∈ L. Together with the fact that y(h) = x(g−1h) and y(hℓ(e)) = x(g−1hℓ(e)),

this implies that y maps the edge h
ℓ(e)−−→ hℓ(e) to e. □

If G is a minimal Rauzy graph on a partition A of Ω, we denote

Nmin(G) = N(G) ∩ Ξmin(G).

Theorem 4.8. If G is minimal, the set Nmin(G) is non-empty and the collection

{Nmin(G) : A is a non-degenerate partition of Ω

and G is a minimal Rauzy graph on A}

forms a basis of open sets of the space Ξmin(G).

Proof. We start by showing that Nmin(G) is non-empty. For each v ∈ V(G) and
s ∈ S, let Pv,s be a reduced path starting from v with an edge labeled s, which
contains e or ē for every e ∈ E(G). Such a path is easy to construct, visiting each
edge consecutively, using the minimality of G. We will construct by induction a
morphism x : Cay(G) → G which satisfies the hypothesis of Lemma 4.7. Start
with x0 with dom x0 = {1G} and x0(1G) = v0, where v0 is an arbitrary vertex of
G. Enumerate all edges of Cay(G) as e0, e1, . . . (taking only one edge of each pair
{e, ē}). Suppose that xn has been constructed and let Tn = dom xn. Let ei be the
first edge of the enumeration which is not in E(Tn) but is adjacent to Tn. We may
assume that v := σ(ei) ∈ V(Tn). Let ( f0, . . . , fk) be the edges of the path Pv,ℓ(ei)

and define xn+1 to be equal to xn on Tn and set

xn+1
(
vℓ( f0) · · · ℓ( f j)

)
= ρ( f j) for all j = 0, . . . , k.

Finally, set x =
⋃

n xn. It is clear that x is defined everywhere. Let N be the
maximum length of the paths Pv,s, for v ∈ V(G), s ∈ S and let B be the ball in G
around 1G of radius N. For e ∈ E(G), let Le be the set defined in (4.6). It follows
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from the construction that LeB = G for all e, so the hypothesis of Lemma 4.7 is
satisfied for x.

Let Y be any minimal subshift of G · x and consider first the case where Y is
perfect. Recall that A is a non-degenerate partition of Ω, V(G) = A and thus
Y ⊆ AG. Denote by η the shift action on Y. By Lemma 4.7, every y ∈ Y is
surjective on A, so Â(Y) is a non-degenerate partition of Y. Let ϕ : Y → Ω be
a homeomorphism sending the partition Â to the partition A. It is clear that
ϕηϕ−1 ∈ Nmin(G). If Y is finite, we can consider instead a minimal action G ↷ Ω
which admits Y as a factor (cf. the proof of Proposition 3.4).

For the second part, it follows from Proposition 4.3 that the sets Nmin(G(ξ, A)),
for A a non-degenerate partition of Ω, form a basis at ξ and by Lemma 4.6, the
graphs G(ξ, A) are minimal. □

s s

s
t

t

t

t

sst

ts

(ii) ⇏ (iii)

s s

s
t

t
t

t

t

t

sst

t
s

s

st

t

t

s

s

t

ts s

(i) ⇏ (ii)

Figure 1. Two examples of Rauzy graphs

Example 4.9. We give two examples showing that some natural variants of Defi-
nition 4.5 do not characterize minimality. We consider the following three condi-
tions on a Rauzy graph G:

(i) For any two vertices v, w ∈ V(G), there exists a reduced path (e0, . . . , en)
with σ(e0) = v and ρ(en) = w.

(ii) G is minimal in the sense of Definition 4.5.
(iii) For any two edges e, f ∈ E(G), there exists a reduced path (e0, . . . , en) with

e0 = e and en = f .
It is clear that (iii) ⇒ (ii) ⇒ (i). The two examples in Figure 1 (for the free

group on two generators s, t) illustrate that both implications are strict.

5. Sofic minimal subshifts of the free group

In this section, we set to prove that for free groups, sofic minimal subshifts
are dense among all minimal subshifts. We retain the notation of the previous
section.

We start by describing a device that produces sofic subshifts.

Definition 5.1. Let G be a Rauzy graph for G. An edge selector for G is a triple
T = (v0, T0, T1), where v0 ∈ V(G), T0 : S → E(G), T1 : E(G)× S → E(G) are such
that σ(T0(s)) = v0, ℓ(T0(s)) = s, σ(T1(e, s)) = ρ(e), and ℓ(T1(e, s)) = s for all
(e, s) ∈ E(G)× S.

If T = (v0, T0, T1) is an edge selector, the function T1 can be extended induc-
tively to a function E(G)× G → E(G) by:

T1(e, 1G) = e

T1(e, ws) = T1(T1(e, w), s) for a reduced word ws.
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•

• • • •

•

p(s−1)

? s
p(1G)

s
p(s)

t−1

p(t−1)

t
p(t)

Figure 2. The rules for Z if ∗ does not appear

An edge selector T defines a morphism xT : Cay(G) → G by

xT(1G) = v0

xT(sw) = ρ
(
T1(T0(s), w)

)
for a reduced word sw.

This morphism defines a subshift X(T) ⊆ X(G) by

X(T) = G · xT .

We note that while for simplicity of notation, the map T1 is defined everywhere
on E(G) × S, the values T1(e, s) with s = ℓ(e)−1 will never be used and can be
arbitrary.

We also observe that edge selectors exist in abundance for any Rauzy graph G:
in particular, there is one with v0 = v for every v ∈ V(G).

Proposition 5.2. Let G be a Rauzy graph and let T be an edge selector for G. Then the
subshift X(T) is projectively isolated in S

(
V(G)G) and, in particular, sofic.

Proof. Let ∗ be a new letter and let B = E(G) ∪ {∗}. Define a word z0 ∈ BG as
follows: z0(1G) = ∗, z0(s) = T0(s) for s ∈ S, z0(ws) = T1(z0(w), s) for a reduced
word ws. We note that

(5.1) ℓ(z0(ws)) = s for all reduced words ws.

Also, if w1w2 is a reduced word, then

(5.2) z0(w1w2) = T1
(
z0(w1), w2

)
.

Let ϕ : B → V(G) be given by ϕ(∗) = v0, ϕ(e) = ρ(e) for e ∈ E(G), and let
Φ : BG → V(G)G be the corresponding G-map. It follows from the definitions
of xT and z0 that Φ(z0) = xT . Now let Z ∈ S(BG) be the SFT defined by the
following rules for patterns p : S ∪ {1G} → E(G) (see Figure 2):

(i) ran p ⊆ ran z0;
(ii) if p(1G) 6= ∗ and p(s) 6= ∗, then ℓ(p(s)) 6= ℓ(p(1G))

−1 for s ∈ S;
(iii) if p(1G) = ∗, then p(s) = T0(s) for s ∈ S;
(iv) if ℓ(p(1G)) = s, then for all t ∈ S \ {s−1}, p(t) = T1(p(1G), t), and

p(s−1) = ∗ or p(1G) = T1(p(s−1), s).

We will show that Z = G · z0 . A direct verification shows that z0 satisfies the
rules, so we only have to prove that G · z0 is dense in Z. Let z ∈ Z. Suppose first
that the symbol ∗ occurs in z. By translating by an appropriate element of G, we
may assume that z(1G) = ∗. But then, as z0 is constructed inductively using rules
(iii) and (iv), we conclude that z = z0. This shows that z0 is an isolated point in
Z.
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Next suppose that the symbol ∗ does not occur in z. Define inductively se-
quences (sn)n∈N of elements of S and (hn)n∈N of elements of G by:

h0 = 1G, sn = ℓ(z(hn))
−1, hn+1 = hnsn.

It follows from rule (ii) that for all n, sn 6= s−1
n+1, and therefore, hn is a reduced

word of length n. It also follows, using rule (iv), that for all n and for all g ∈ G
that do not start with sn,

(5.3) z(hng) = T1(z(hn), g).

Let now F ⊆ G be a finite set, let n be larger than the length of all elements of F,
and fix f ∈ F. The word h−1

n f starts with s−1
n−1, so by (5.3),

z( f ) = z
(
hn(h−1

n f )
)
= T1

(
z(hn), h−1

n f
)
.

By rule (i), there exists g0 ∈ G such that z0(g0) = z(hn). It follows from (5.1) that
the last letter of g0 is s−1

n , so we can apply (5.2) to the word g0(h−1
n f ) and obtain

z0
(

g0(h−1
n f )

)
= T1

(
z0(g0), h−1

n f
)
= T1

(
z(hn), h−1

n f
)
= z( f ).

Thus (hng−1
0 ) · z0 agrees with z on F and as F was arbitrary, we conclude that

z ∈ G · z0 .
Therefore X(T) = Φ[Z] and Z is an isolated SFT by Lemma 2.11. This implies

that X(T) is projectively isolated. □

Theorem 5.3 ([D]). Let G be a finitely generated free group and let A be a finite alphabet.
Then projectively isolated subshifts are dense in S(AG).

Proof. A basic open set in S(AG) is given by S(Z) ∩ U+(P), where Z ∈ S(AG) is
an SFT, F ⊆ G is finite, and P is the collection of F-patterns occurring in Z. We
may further assume that F−1 is connected. Let G0 = G(Z, AF) and recall that
V(G0) = P. For every p ∈ P, let Tp be an edge selector with v0 = p. Let X =⋃

p∈P X(Tp) and note that by Proposition 5.2 and Lemma 2.12, X is projectively
isolated. There is a natural map Φ : X → AG, which is given by ιF (as defined
in (4.3)) on each X(Tp). It follows from the definition of X(Tp) and Lemma 4.4
that p occurs in Φ[X] for every p ∈ P. Thus Φ[X] belongs to the neighborhood
S(Z) ∩U+(P) and it is projectively isolated. □

The following corollary is due to Kechris and Rosendal [KR] for G = Z (see
also [AGW] for a different proof) and to Kwiatkowska [K2] in general. It implies
that the group Homeo(Ω) has ample generics, which has many further conse-
quences. See [K2] for more details.

Corollary 5.4 ([K2]). Let G be a finitely generated free group. Then the space Ξ(G) has
a comeager conjugacy class.

Proof. This follows from Theorem 5.3 and Corollary 3.3. □

Next we isolate a special type of edge selectors T for which the shift X(T)
is minimal. Let G be a Rauzy graph for G. A sequence of distinct edges C =
(e0, . . . , en−1) of G is called a simple reduced cycle if (e0, . . . , en−1, e0) is a reduced
path. We denote by C̄ the cycle (ēn−1, . . . , ē0). Sometimes, we will abuse notation
and also use the letter C for the set of edges of the cycle. We will say that an edge
selector T follows the cycle C if

T1
(
ei, ℓ(ei+1)

)
= ei+1 for all i < n.

Here and below all calculations with the indices of the cycle are done mod n.
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Definition 5.5. Let G be a minimal Rauzy graph for G, let T = (v0, T0, T1) be an
edge selector for G, and let C = (e0, . . . , en−1) be a simple reduced cycle. We will
say that T is recurrent for C if the following conditions hold:

(i) T follows C and C̄.
(ii) v0 = σ(e0) = ρ(en−1).

(iii) T0
(
ℓ(e0)

)
= e0 and T0

(
ℓ(en−1)

−1) = ēn−1.
(iv) T1(ei, s) = T1(ēi+1, s) for all i < n and s 6= ℓ(ei)

−1, ℓ(ei+1).
(v) for every edge e ∈ E(G), there exists a reduced word w such that ℓ(e)w is

reduced and T1(e, w) ∈ C ∪ C̄.

Proposition 5.6. Let G be a Rauzy graph, let C = (e0, . . . , en−1) be a simple reduced
cycle in G, and let T be an edge selector for G that is recurrent for C. Then the subshift
X(T) is minimal.

Proof. Let Bk denote the set of elements of G that can be written as a reduced
word of length at most k. As X(T) = G · xT , it suffices to show that for every k,
the set of h ∈ G such that (h−1 · xT)|Bnk = xT |Bnk is right syndetic. To that end,
let k be given. Let g0 = s0w0 be some non-identity element of G (with s0 ∈ S
and s0w0 reduced). Let e = T1(T0(s0), w0). By the definition of xT , we have that
xT(g0) = ρ(e) and the last letter of g0 is ℓ(e). By Definition 5.5 (v), there exists
w1 such that ℓ(e)w1 is reduced and T1(e, w1) ∈ C ∪ C̄. By prolonging w1 to follow
the cycle if necessary, we may assume that w1 is non-empty and T1(e, w1) = e0 or
T1(e, w1) = ē0. Suppose that T1(e, w1) = e0 (the other case is treated analogously).
For i < n, let ti = ℓ(ei) and note that the last letter of w1 is t0, i.e., w1 = w′

1t0. Let
c = t0 · · · tn−1 and

h = s0w0w′
1ck

and note that the word on the right-hand side above is reduced. We claim that
(h−1 · xT)|Bnk = xT |Bnk . This is enough because the length of the word w′

1ck is
uniformly bounded (w′

1 depends only on the edge e and there are only finitely
many edges).

We aim to show that for every u ∈ Bnk, xT(u) = xT(hu). First consider the case
u = 1G. Then

xT(h) = T1
(
T0(s0), w0w′

1ck) = T1
(
e, w′

1ck)
= T1

(
e0, (t1 · · · tn−1)ck−1) = v0 = xT(1G),

(5.4)

where the next-to-last equality uses the fact that T follows C. The same argument
shows that xT(hu) = xT(u) if there is no cancellation in the concatenation of h and
u, i.e., if the first letter of u is not t−1

n−1. Suppose, finally, that there is cancellation.
Recall that the length of u is at most nk and write u = t−1

n−1u0u1 as a reduced
word so that

hu = s0w0w′
1cqt0 · · · tm−1u1

and the right-hand side of the equation above is a reduced word, where 0 ≤ q < k
and 0 ≤ m < n. Note that the last letter of u0 is t−1

m and the first letter of u1 is
neither tm nor t−1

m−1. On the one hand, using Definition 5.5 (iii), we have

(5.5) xT(u) = ρ
(

T1
(
T0(t−1

n−1), u0u1
))

= ρ
(

T1(ēn−1, u0u1)
)
= ρ

(
T1(ēm, u1)

)
.

On the other, using the same calculation as in (5.4), we get

(5.6) xT(hu) = xT(s0w0w′
1cqt0 · · · tm−1u1) = ρ

(
T1(em−1, u1)

)
.

We conclude by noticing that, by Definition 5.5 (iv), the expressions on the right
in (5.5) and (5.6) are equal. □
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Next we turn to the existence of recurrent edge selectors. From this point onward,
we assume that |S0| ≥ 2, i.e., G is non-abelian.

Lemma 5.7. Let G be a non-abelian, finitely generated free group, let G be a mini-
mal Rauzy graph for G, and let v ∈ V(G). Then there exists a simple reduced cycle
(e0, . . . , en−1) with σ(e0) = ρ(en−1) = v.

Proof. First note that if we find a cycle that is reduced but not necessarily simple
(i.e., one with possibly non-distinct edges), then we can convert it to a simple one
by repeatedly replacing subcycles of the form (e, . . . , e) with the edge e. So for
the rest of the proof, we will ignore the requirement that the edges be distinct.

Let s ∈ S and let e, f ∈ E(G) with σ(e) = ρ( f ) = v and ℓ(e) = ℓ( f ) = s. By
minimality of G, there exists a reduced path (e0, . . . , en) with e0 = e and en = f
or en = f̄ . In the first case, (e0, . . . , en) is a reduced cycle and we are done. In the
second, ρ(en−1) = v and if ℓ(en−1) 6= s−1, then (e0, . . . , en−1) is a reduced cycle
from v to v. So we may assume that ℓ(en−1) = s−1.

Let t ∈ S \ {s, s−1} and repeat the same argument as above to produce either
a reduced cycle or a reduced path (e′0, . . . , e′m−1) from v to v with ℓ(e′0) = t and
ℓ(em−1) = t−1. Then (e0, . . . , en−1, e′0, . . . , e′m−1) is a reduced cycle. □

Lemma 5.8. Let G be a minimal Rauzy graph for G and let C be a simple reduced cycle
in G. Then there exists an edge selector for G recurrent for C.

Proof. Write C = (e0, . . . , en−1). We will construct T = (v0, T0, T1) according to
Definition 5.5. First use (ii) and (iii) to define v0 and T0 (condition (iii) gives only
partial constraints for T0; for the other letters, define it arbitrarily). Next define
T1 on C and C̄ in order to satisfy conditions (i) and (iv).

We will build collections of edges E0 ⊂ E1 ⊂ · · · and inductively extend the
definition of T1, so that at step k, condition (v) is satisfied for all edges in Ek and
the projection of dom T1 on E(G) is contained in Ek. Set E0 = C ∪ C̄ and note that
for edges in E0, (v) holds trivially (one can take w to be the empty word). Suppose
now that Ek has been defined and that Ek 6= E(G). Let e ∈ E(G) \ Ek and using the
minimality of G, let ( f0, . . . , fq) be a reduced path such that f0 = e and fq ∈ E0.
Let m be the least such that fm ∈ Ek. By the inductive assumption, condition
(v) is satisfied for fm, so there exists a word w such that ℓ( fm)w is reduced and
T1( fm, w) ∈ E0. Moreover, T1 is not defined on fi for any letter for any i < m.
Now define Ek+1 = Ek ∪ { fi : i < m} and set T1

(
fi, ℓ( fi+1)

)
= fi+1 for i < m.

Then for all i < m,

T1
(

fi, ℓ( fi+1) · · · ℓ( fm)w
)
= T1( fm, w) ∈ E0

and the word ℓ( fi)ℓ( fi+1) · · · ℓ( fm)w is reduced, thus verifying (v) for the edges
in Ek+1.

As E(G) is finite, for some k, Ek = E(G). At this point, condition (v) is satisfied
for all e ∈ E(G) and we can extend T1 arbitrarily to obtain a fully defined edge
selector. □
Theorem 5.9. Let G be a non-abelian, finitely generated free group and let A be a finite
alphabet. Then the set of sofic minimal subshifts is dense in Smin(AG).

Proof. Using Corollary 2.10, it suffices to find a sofic subshift in all neighborhoods
of the form Smin(Z), where Z ∈ S(AG) is an SFT. Let F ⊆ G be a defining window
for Z with 1G ∈ F and F−1 connected. Let X0 ∈ Smin(Z) and let G0 = G(X0, AF).
By Lemma 4.6, G0 is minimal. Moreover, as X0 ⊆ Z, the patterns in V(G0) are
allowed in Z and using the map ιF from Lemma 4.4, we can identify X(G0) with
a subshift of Z.
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Let v ∈ V(G0) be arbitrary and use Lemma 5.7 to produce a simple reduced
cycle starting at v. By Lemma 5.8, there exists an edge selector T for G0 recurrent
for C. Then by Proposition 5.2 and Proposition 5.6, the subshift X(T) is sofic and
minimal. We have that X(T) ⊆ X(G0) ⊆ Z and thus X(T) ∈ Smin(Z), completing
the proof. □

Remark 5.10. It follows from Theorem 5.9 that for a non-abelian free group G, the
minimal subshifts which are projectively isolated among minimal subshifts are
precisely the sofic minimal subshifts. Indeed, let X ⊆ AG be projectively isolated
among minimal subshifts; then there exists a non-empty open subset U of some
Smin(BG) and a factor map π : BG → AG such that π[Y] = X for every Y ∈ U.
Since U contains a sofic subshift, X is itself sofic.

Corollary 5.11. Let G be a non-abelian, finitely generated free group. Then the sofic
minimal subshifts of G form a Fraïssé class.

Proof. This follows from Remark 5.10 and Corollary A.11. □

Corollary 5.12. Let G be a non-abelian, finitely generated free group. Then the space
Ξmin(G) has a comeager conjugacy class elements of which are isomorphic to the Fraïssé
limit of the sofic minimal subshifts.

Proof. This follows from Theorem 5.9, Proposition 3.6, and Corollary 3.5. □

Remark 5.13. Theorem 5.9, Corollary 5.11, and Corollary 5.12 also hold for G = Z.
One just has to notice that in this case, the sofic minimal subshifts are precisely
the periodic transitive subshifts. See Corollary 6.7.

6. Measure-preserving actions of the free group

We keep the notation of the previous two sections; we allow again the case
G = Z.

6.1. Measured Rauzy graphs.

Definition 6.1. A measured Rauzy graph is a Rauzy graph G, equipped with two
functions µ : V(G) → R+ and m : E(G) → R+ (where R+ is the set of non-negative
reals) such that m(e) = m(ē) for all e ∈ E(G) and

(6.1) ∑
{e:σ(e)=v,ℓ(e)=s}

m(e) = ∑
{e:ρ(e)=v,ℓ(e)=s}

m(e) = µ(v) for all v ∈ V(G), s ∈ S.

We will say that a measured Rauzy graph has full support if m(e) > 0 for all
e ∈ E(G).

If an action ξ ∈ Ξ(G) admits a finite invariant measure µ and A is a partition
of Ω, then the graph G(ξ, A) becomes a measured Rauzy graph by defining

(6.2) m(e) = µ
(
σ(e) ∩ ℓ(e) · ρ(e)

)
for all e ∈ E(G(ξ, A)).

If ξ is minimal, then G(ξ, A) is minimal by Lemma 4.6 and m and µ are strictly pos-
itive because in a minimal, measure-preserving system, every non-empty open set
has positive measure (as it is syndetic).

Lemma 6.2. Let (G, µ, m) be a measured Rauzy graph with full support. Then there exist
µ′ and m′, which take integer values, such that (G, µ′, m′) is again a measured Rauzy
graph with full support.
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Proof. The equations in (6.1) form a homogeneous system of linear equations with
unknowns µ(v), m(e) for v ∈ V(G), e ∈ E(G). Let M be the matrix of this system
and note that it has integer entries. It follows from Gaussian elimination that
ker M has a rational basis, so rational solutions of the system are dense in all
solutions. It follows that it has a strictly positive rational solution, which can be
converted into an integer one by multiplying it by an appropriate integer. □

6.2. Density of the periodic flows.

Lemma 6.3. Let G be a finitely generated free group and let (G, µ, m) be a measured
Rauzy graph for G with full support. Then there exists an action G ↷η W with W finite
and a partition A of W such that G(η, A) ∼= G.

Proof. By Lemma 6.2, we may assume that m and µ take integer values. For an
integer n, we denote [n] := {0, . . . , n − 1} and we let

(6.3) W =
⊔

v∈V(G)

{v} × [µ(v)].

We define π : W → V(G) by π(v, i) = v and our goal is to define a deterministic
Rauzy graph with vertex set W such that π becomes a surjective morphism. A
partial edge relation is a subset E ⊆ W × W × S such that:

(i) for all w1 ∈ W, s ∈ S, |{w2 ∈ W : (w1, w2, s) ∈ E}| ≤ 1;
(ii) for all w1, w2 ∈ W, s ∈ S, (w1, w2, s) ∈ E =⇒ (w2, w1, s−1) ∈ E;

(iii) for all w1, w2 ∈ W, s ∈ S, (w1, w2, s) ∈ E =⇒ π(w1)
s−→ π(w2);

(iv) for all v1, v2 ∈ V(G), s ∈ S,

|{(w1, w2, s) ∈ E : π(w1) = v1, π(w2) = v2}| ≤ m(v1
s−→ v2).

A partial edge relation is total if the inequalities in (iv) are equalities. For a total
E and v ∈ V(G), s ∈ S, we have that

|{(w1, w2, s) ∈ E : π(w1) = v}| ≤ |{w1 ∈ W : π(w1) = v}|
= µ(v)

= ∑
v′∈V(G)

m(v s−→ v′)

= |{(w1, w2, s) ∈ E : π(w1) = v}|,

so we must have equality also in (i).
Thus a total edge relation makes (W, E) into a deterministic Rauzy graph by

defining σ(w1, w2, s) = w1, ρ(w1, w2, s) = w2, and ℓ(w1, w2, s) = s. The map π is a
morphism because of (iii). It is also surjective because of the equality in (iv) and
the fact that (G, µ, m) has full support.

To finish the proof, it suffices to check that to any partial edge relation which
is not total, we can add an edge. Let E be such a relation and let v1, v2 ∈ V(G)
and s ∈ S be such that we have strict inequality in (iv). Then

∑
v′∈V(G)

m(v1
s−→ v′) > |{(w1, w2, s) ∈ E : π(w1) = v1}|

and, using the same computations as above, we conclude that there exists w1 ∈
π−1(v1) such that {w′

2 ∈ W : (w1, w′
2, s) ∈ E} = ∅. Using (ii) and applying the

same reasoning to {(w2, w1, s−1) : π(w2) = v2}, we find w2 ∈ π−1(v2) such that
{w′

1 ∈ W : (w′
1, w2, s) ∈ E} = ∅. Then E ∪ {(w1, w2, s), (w2, w1, s−1)} is still a

partial edge relation. □



24 MICHAL DOUCHA, JULIEN MELLERAY, AND TODOR TSANKOV

Lemma 6.4. Let G be a finitely generated free group and let (G, µ, m) be a connected,
measured Rauzy graph for G with full support. Then there exists a transitive action
G ↷η W with W finite and a partition A of W such that G(η, A) ∼= G.

Proof. We define W as in (6.3) and π : W → V(G) as above. Let E be a total edge
relation on W as constructed in Lemma 6.3. Our goal is to modify E to become a
connected total edge relation. Note that for E to be connected, it suffices that for
every v ∈ V(G), the vertices in π−1(v) are in the same E-connected component.
Indeed, assume this holds and let R be the equivalence relation on W generated
by E and suppose that R has at least two classes C1 and C2. Then, by assumption,
π−1(π[C1]) = C1 and π−1(π[C2]) = C2, and by surjectivity of π, there is no edge
in G between π[C1] and π[C2]. This contradicts the connectedness of G.

Fix now t ∈ S and let τ : W → W be the bijection with graph {(w1, w2) :
(w1, w2, t) ∈ E}. Suppose that there is v ∈ V(G) such that π−1(v) intersects two
distinct τ-orbits, say in the points w1, w2. Define τ′ : W → W by τ′(w) = τ(w)
for all w 6= w1, w2, τ′(w1) = τ(w2), τ′(w2) = τ(w1). Then τ′ is a bijection which
merges the τ-orbits of w1 and w2. Moreover,(

E \ (τ × {t} ∪ τ−1 × {t−1})
)
∪
(
τ′ × {t} ∪ τ′−1 × {t−1}

)
is a total edge relation. By iterating this procedure, we obtain a total edge rela-
tion such that for every v, all vertices in π−1(v) are in the same t-cycle. By our
observation above, this is enough. □
Theorem 6.5. Let G be a finitely generated free group. Then:

(i) Ξmnpmp(G) has a comeager conjugacy class whose elements are isomorphic to
the left translation action of G on its profinite completion.

(ii) For every A, Spertr(AG) is dense in Smnpmp(AG).

Proof. (i) By Corollary 3.9, it suffices to prove that Ξpertr(G) is dense in Ξmnpmp(G).
Let ξ ∈ Ξmnpmp(G) and let N(G) ∩ Ξmnpmp(G) be a neighborhood of ξ, where
G is a minimal Rauzy graph on some partition B of Ω (cf. Theorem 4.8). As ξ
admits an invariant measure, we can use (6.2) to convert G into a measured Rauzy
graph (G, µ, m). As ξ is minimal, (G, µ, m) is connected and has full support. Let
G ↷η W and the partition A of W be as given by Lemma 6.4. We can realize η
as a factor of a profinite action ξ ′ of G on Ω, so that A can be identified with a
partition of Ω. Now if f ∈ Homeo(Ω) is such that f · A = B, we have that f · ξ ′

is profinite and belongs to N(G).
(ii) This follows from (i) and the facts that the map πA from Ξmnpmp(G) to

Smnpmp(AG) defined by (2.8) is continuous and surjective and that for a profinite
ξ, πA(ξ) is periodic. □
Remark 6.6. Lemma 6.4 only requires that the graph G be connected, so the proofs
above imply the following more precise result: if ξ is a transitive action of G on Ω
and µ is any G-invariant measure with full support, then there exists a sequence
of profinite actions (ξn)n such that ξn → ξ and µn → µ, where µn denotes the
unique ξn-invariant measure on Ω.

Moreover, it follows that, for measured Rauzy graphs with full support, the
three conditions in Example 4.9 are all equivalent to being connected.

Applying Theorem 6.5 to G = Z and using the fact that Ξmnpmp(Z) = Ξmin(Z)
and Smnpmp(AZ) = Smin(AZ) (because Z is amenable), we obtain the following.

Corollary 6.7 ([H1]). The following hold:
(i) Ξmin(Z) has a comeager conjugacy class whose elements are isomorphic to the

universal odometer.
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(ii) For every A, Spertr(AZ) is dense in Smin(AZ).

Remark 6.8. Periodic subshifts of free groups have also been studied by Pianta-
dosi [P]. Among other results, he has a combinatorial characterization of the SFTs
containing a periodic point. It is a consequence from the results of this section
that the SFTs defined by measured Rauzy graphs contain periodic points; it fol-
lows that measured Rauzy graphs satisfy the combinatorial condition of [P, Theo-
rem 3.4]. Conversely, any SFT with a periodic point admits an invariant measure,
so its corresponding graph can be made measured (but the measure may not have
full support). We are grateful to Ville Salo for making us aware of the paper [P].

7. Non-finitely generated groups

7.1. Co-induction. If G is a group and H ≤ G, the restriction functor takes a
G-flow and produces the H-flow which is the restriction of the action to H. Co-
induction is the right adjoint functor to restriction. It takes an H-flow and it
produces a G-flow whose restriction to H is an extension of the given H-flow and
which is universal with respect to this property. The construction is similar to the
classical notion of induced representation in representation theory.

Co-induction is particularly useful for understanding properties in Ξ(G) when
G is not finitely generated: the topology on Ξ(G) is defined by looking at finitely
many elements of G at a time, which implies that actions co-induced from finitely
generated subgroups are dense (see the proof of Proposition 7.4).

We briefly recall the construction and some of its basic properties. Let H ↷
Z be an H-flow. Then G acts on ZG via left-shift on the coordinates. Define
π : ZG → Z by π(z̃) = z̃(1G) and consider the set

Z̃ = {z̃ ∈ ZG : ∀g ∈ G ∀h ∈ H z̃(gh) = h−1 · z̃(g)},

where the symbol · refers to the action of H on Z. By definition, Z̃ is a closed, G-
invariant subset of ZG; furthermore, π : Z̃ → Z is H-equivariant. The co-induced
action of H ↷ Z (from H to G) is the action G ↷ Z̃.

Let T be a transversal for the left cosets of H in G. Then any z̃ ∈ Z̃ is uniquely
determined by its values on T, since for all h ∈ H, we have z̃(th) = h−1 · z̃(t); and
conversely, any element z̃ of ZT can be extended to an element of Z̃ by the same
formula. In particular, Z̃ is homeomorphic to ZT .

Lemma 7.1. Let H ≤ G and let H ↷ Z be a flow which is not minimal. Then the
co-induced flow G ↷ Z̃ is not minimal either.

Proof. Let U be an H-invariant, non-empty, open subset of Z and let z0 ∈ Z \ U.
We claim that G · π−1(U) is a proper subset of Z̃, where π : Z̃ → Z denotes
the natural projection. Let T be a transversal for the left H-cosets in G and set
z̃0(th) = h−1 · z0 for all t ∈ T, h ∈ H. Then it is clear that z̃0 ∈ Z̃ \ G · π−1(U). □

It is straightforward to check that the co-induced action X̃ of an H-subshift
X ∈ S(AH) is a G-subshift in the same alphabet. Indeed, in that case X̃ can be
identified with

{x ∈ AG : ∀g ∈ G
(
h 7→ x(gh)

)
∈ X}

via the G-equivariant, continuous, injective map τ : X̃ → AG defined by τ(x̃)(g) =
x̃(g)(1G). In other words, elements of X̃ are obtained by copying independently
elements of X inside each left H-coset. It follows that the co-induced action of an
SFT is an SFT (with the same forbidden patterns) and the co-induced action of a
sofic subshift is sofic (because of functoriality).
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Definition 7.2. Let G be a group and n ∈ N. A G-flow G ↷ Z is (topologically)
n-transitive if the diagonal action G ↷ Zn is transitive.

Proposition 7.3. Let G be a group, let H be a subgroup of G of infinite index, and let
H ↷ Z be an H-flow. Then the co-induced action G ↷ Z̃ is n-transitive for all n.

Proof. Fix n and two non-empty open subsets U, V of Z̃n. Let T be a transversal
for the left H-cosets in G. Identifying T with G/H, the transitive action G ↷ G/H
gives us a transitive action G ↷ T (explicitly, g · t1 = t2 if gt1H = t2H).

We may assume that there exist a finite subset F of T and two finite families of
open subsets Ui, f , Vi, f , for i < n, f ∈ F, of X such that

U = {z̃ ∈ Z̃n : ∀ f ∈ F ∀i < n x̃i( f ) ∈ Ui, f }
V = {z̃ ∈ Z̃n : ∀ f ∈ F ∀i < n x̃i( f ) ∈ Vi, f }.

Pick some ỹ ∈ U and z̃ ∈ V. Since G/H is infinite, Neumann’s lemma gives
us g ∈ G such that gFH ∩ FH = ∅. Then we can define w̃ ∈ Z̃n by setting
w̃i( f ) = ỹi( f ) and w̃i(g f ) = z̃i( f ) for all f ∈ F, and extending w̃ arbitrarily to the
other cosets. By definition, w̃ ∈ U and g−1 · w̃ ∈ V. □

This has the following immediate consequence.

Proposition 7.4. Let G be a countable group which is not finitely generated. Then a
generic element of Ξ(G) is n-transitive for all n.

Proof. Being n-transitive is a Gδ condition, so we only need to prove that n-
transitive actions are dense in Ξ(G). Consider a basic open set U in Ξ(G) of
the form

U = {ξ ∈ Ξ(G) : ∀ f ∈ F ∀a ∈ A ξ( f )a = ξ0( f )a}
where ξ0 ∈ Ξ(G), F is a finite subset of G, and A is a finite subalgebra of B(Ω).

Let η be the restriction of ξ0 to the subgroup H of G generated by F, and
denote by η̃ : G ↷ Ω̃ the co-induced action of η|H . Note that Ω̃ is homeomorphic
to Ω. Denoting by π : Ω̃ → Ω the H-equivariant factor map, we may pick a
homeomorphism ϕ : Ω̃ → Ω such that ϕ

(
π−1(ξ0( f )a)

)
= ξ0( f )a for all a ∈ A

and all f ∈ F.
Then for every f ∈ F and every a ∈ A, we have (ϕη̃ϕ−1)( f )a = ξ0( f )a, which

shows that ϕη̃ϕ−1 belongs to U. On the other hand, by Proposition 7.3, η̃ is
n-transitive for all n and we are done. □

As pointed out in [FKSV, Corollary 4.4.7], Proposition 7.4 admits a converse.
Indeed, let G be finitely generated and let {a1, a2} be a non-degenerate partition
of Ω. Then the set of ξ ∈ Ξ(G) satisfying the condition “a1 is ξ-invariant” is open,
disjoint from the set of transitive actions, and non-empty (because the trivial
action belongs to it). Thus we obtain a dynamical characterization of finitely
generated groups: a group G is finitely generated iff a generic element of Ξ(G) is
not transitive.

7.2. Density of minimality. We saw above that the density of Ξtr(G) in Ξ(G) is
characterized by G not being finitely generated. It is natural to ask for which
groups G, Ξmin(G) is dense in Ξtr(G) (this problem was brought to our attention
by A. S. Kechris). For instance, it is easy to see that this is the case when G is a free
group on infinitely many generators. While we do not have a general criterion,
we provide an answer for the class of non-finitely generated amenable groups (cf.
Corollary 7.13). Before turning to that, we point out the following obstruction.

Proposition 7.5. Let G be a countable group such that its center Z(G) contains an
element of infinite order. Then Ξmin(G) is not dense in Ξ(G).
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Proof. We fix a clopen partition {a1, a2, a3} of Ω, with each ai non-empty, as well as
a homeomorphism ϕ of Ω such that ϕ(a1) ∩ a2 6= ∅, ϕ(a2) = a3, and ϕ(a3) ⊂ a2.

We first observe that the centralizer C(ϕ) ⊂ Homeo(Ω) does not act minimally
on Ω. To see this, consider b = a1 ∩ ϕ−1(a2), which is clopen and non-empty.
Assume that C(ϕ) acts minimally; then there exists a finite F ⊆ C(ϕ) such that
for all ω ∈ Ω there exists f ∈ F with f · ω ∈ b. Now pick some ω ∈ b; since F is
finite, there exists f ∈ F such that f · ϕn(ω) ∈ b for infinitely many n ∈ N. Since
f · ϕn(x) = ϕn( f · x) for all n, we see that as soon as ϕn( f · x) ∈ b, we must have
ϕm( f · x) ∈ a2 ∪ a3 for all m ≥ n + 1, a contradiction.

Now let h ∈ Z(G) be of infinite order and consider the action 〈h〉 ↷ Ω given
by h · ω = ϕ(ω). Using co-induction, we see that the open set U of all actions
ξ ∈ Ξ(G) such that ξ(h)(ai) = ϕ(ai) for i = 1, 2, 3 is non-empty. For any ξ ∈ U,
ξ[G] ⊆ Homeo(Ω) is contained in the centralizer of ξ(h), which does not act
minimally by the argument given in the previous paragraph. Hence no element
of U acts minimally. □

Now we focus on amenable groups and we consider two cases depending on
whether the group is locally finite or not. We start with the latter.

Definition 7.6. Let G be a countable group and let G ↷ Z be a zero-dimensional
flow. We say that a ∈ B(Z) is shrinkable if it can be equidecomposed with a
proper subset of itself, i.e., if there exist a clopen partition a0, . . . , an−1 of a and
g0, . . . , gn−1 ∈ G such that

⊔
i gi · ai ⊊ a.

We say that the flow is shrinking if there exists a shrinkable a ∈ B(Ω).

We note that being shrinking is an open condition in Ξ(G).
The shrinking condition is an obstruction to the existence of an invariant mea-

sure with full support. In particular, we have the following.

Lemma 7.7. Assume that G is an amenable group and G ↷ Z is a minimal, zero-
dimensional flow. Then it is not shrinking.

Proof. Suppose that a ∈ B(Z) is shrinkable, as witnessed by a0, . . . , an−1 and
g0, . . . , gn−1. Then b = a \ ⊔

gi · ai is open, non-empty. Let µ be a G-invariant
probability measure on Z. On the one hand, by invariance, µ(a) = µ(

⊔
i gi · ai),

so µ(b) = 0. On the other, by minimality, finitely many translates of b cover Z, so
µ(Z) = 0, contradiction. □

We also need the following well-known fact.

Lemma 7.8 (Kőnig). Let Γ be a connected, infinite, locally finite graph and let v0 be a
vertex of Γ. Then Γ has an infinite ray starting at v0.

Proposition 7.9. Let G be a non-locally finite, countable group. Then the set of shrinking
actions of G is an open, dense subset of Ξ(G). If G is moreover amenable, then Ξmin(G)
is not dense in Ξ(G).

Proof. The set of shrinking actions is open and conjugacy-invariant, so by Propo-
sition 2.3, we only need to build one shrinking action on a Cantor space. Let
H be a finitely generated, infinite subgroup of G and fix a finite, symmetric
generating set S of H. Consider the left Cayley graph Γ for H and S: that is,
the graph with vertex set H and edges between h and sh for every h ∈ H and
s ∈ S. Then we can apply Lemma 7.8 to find an infinite ray (hn)n∈N in Γ. Let
T = {hn : n ∈ N} and for s ∈ S, let Ts = {hn ∈ T : hn+1 = shn}. Then

⊔
s∈S Ts = T

and sTs = {hn+1 : hn+1 = shn}, so
⊔

s∈S sTs = T \ {h0}.
Now consider the flow G ↷ βG, where βG denotes the Stone–Čech compactifi-

cation of G. It follows from the calculation above that T , which is a clopen subset
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of βG, is shrinkable. Let A be a countable, G-invariant subalgebra of B(βG)
which contains all Ts . Then the Stone space of A gives us a metrizable, shrinking
G-flow Z, with the same witnesses as in βG. If Z has isolated points, we can take
the product of Z with the trivial action on the Cantor space to obtain an action
on Ω that is still shrinking.

The second claim follows from the first and Lemma 7.7. □
Next we turn to the locally finite case. We start with a simple observation.

Lemma 7.10. Let K ≤ H be finite groups and let K ↷ A be an action on a finite set
with |A| ≤ [H : K]. Then there exists a free, transitive action H ↷ B and a K-factor
map B → A.

Proof. Set B = H and let T be a transversal for the right cosets of K in H. Let
π : T → A be an arbitrary surjection and extend it to all of H by K-equivariance:
define π(kt) = k · π(t) for all k ∈ K, t ∈ T. □

For locally finite groups, we also obtain information about the invariant mea-
sures for a generic action. In order to state the theorem, we recall that the clopen
value set of a Borel probability measure µ on Ω is the countable set

{µ(a) : a ∈ B(Ω)} ⊆ [0, 1].

Following Akin, we say that a probability measure µ on Ω is good if it is atomless,
has full support, and is such that for any two a, b ∈ B(Ω) with µ(a) < µ(b), there
exists c ∈ B(Ω) such that c ⊆ b and µ(c) = µ(a). Using results of Akin and
Giordano–Putnam–Skau, the clopen value sets of good invariant measures can be
used to characterize orbit equivalence (see Corollary 7.12).

Theorem 7.11. Let G be a countably infinite, locally finite group. Then a generic element
of Ξ(G) is minimal and uniquely ergodic, its unique invariant measure is good, and the
clopen value set of the measure is equal to

VG =
{

i/|K| : i ∈ {0, . . . , |K|}, K is a finite subgroup of G
}

.

Proof. We will show that the set of ξ ∈ Ξ(G) satisfying the condition
(∗) for any non-degenerate partition A of Ω and any finite set F ⊆ G, there

exist a finite subgroup H ≤ G containing F and a non-degenerate partition
B refining A such that B is ξ(H)-invariant and ξ|H is free and transitive
on B

is dense Gδ.
By the Baire category theorem, it suffices to see that the condition (∗) for fixed

A and F is dense (it is obviously open). Let U be a non-empty open set in Ξ(G).
By refining A if necessary, we may assume that there is a finite subgroup K ≤ G
such that A is K-invariant and U is given by the action of K on A. Let H be a finite
subgroup of G containing K and F such that [H : K] ≥ |A|. Apply Lemma 7.10

to produce a free transitive action H ↷ B that factors onto K ↷ A. Let B0 be a
partition of Ω refining A that realizes the factor map B → A. Let η0 be the action
of G co-induced from H ↷ B on the space B̃. Let ϕ : B̃ → Ω be a homeomorphism
sending B to B0 (here we view B as a partition of B̃ using the canonical factor map
B̃ → B). Then ϕηϕ−1 belongs to U and satisfies (∗) for A and F.

We have established that set of ξ ∈ Ξ(G) satisfying (∗) is dense Gδ. Let now ξ
satisfy (∗) and let µ be any ξ-invariant measure. Let a ∈ B(Ω) be arbitrary and
apply (∗) to the partition {a, Ω \ a} to obtain H and B. As the action H ↷ B is
transitive, we get that H · a = Ω, which proves the minimality of ξ. As this action
is moreover free and µ is H-invariant, we must have µ(b) = 1/|H| for all b ∈ B.
Since a is a union of elements of B, this determines µ(a) uniquely and µ(a) ∈ VG.
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To see that every element of VG is realized, let K and i be given and apply (∗) to
the trivial partition and K to obtain H ≥ K and B. Then the union of i|H|/|K|
elements of B has measure i/|K|.

Finally, to check that µ is good, let a, b ∈ B(Ω) with µ(a) < µ(b). Let B and H
be given by (∗) such that a and b can be written as unions of elements of B. Now
we can take c to be the union of |H|µ(a) elements of B contained in b. □

Akin [A] has shown that if µ1 and µ2 are two good measures with the same
clopen value sets, then there is f ∈ Homeo(Ω) with f∗µ1 = µ2. By the work of
Giordano–Putnam–Skau, this is connected with the notion of orbit equivalence.
Recall that two actions G ↷ Ω, H ↷ Ω are orbit equivalent if there exists f ∈
Homeo(Ω) such that f [G · ω] = [H · f (ω)] for all ω ∈ Ω.

Corollary 7.12. Let G be a countable, locally finite group. Then a generic pair of actions
in Ξ(G) are orbit equivalent. More generally, if G and H are locally finite, a generic
action of G is orbit equivalent to a generic action of H iff VG = VH .

Proof. We prove the more general statement. One direction follows directly from
Theorem 7.11. For the other, let ξ and η be actions of G and H, respectively,
satisfying condition (∗) in the proof of Theorem 7.11. In particular, they are free.
To show that they are orbit equivalent, we will employ [GPS, Theorem 2.3]. Using
Akin’s result mentioned above and the conclusion of Theorem 7.11, we only need
to check that the orbit equivalence relations of ξ and η are generated by AF
actions in the terminology of [GPS]. We will do this for ξ, the argument for η
being analogous.

Let JξK be the topological full group of ξ, i.e., the group of all homeomorphisms
f of Ω for which there exists a clopen partition A of Ω such that for all a ∈ A,
there is ga ∈ G with f |a = ξ(ga)|a. It is clear that JξK generates the same orbit
equivalence relation as ξ. As ξ is free, the set {ω ∈ Ω : f (ω) = ω} is clopen for
every f ∈ JξK. The only remaining condition to check is that JξK is locally finite.
To simplify notation, we will identify G with its copy in JξK. Let F ⊆ JξK be finite
and let L = 〈F〉. Let A be a clopen partition of Ω and K ≤ G be finite such that
for every f ∈ F and a ∈ A, there exists g ∈ K with f |a = g|a. Let A be a finite
K-invariant subalgebra of B(Ω) containing A and note that A is L-invariant. By
(∗), we may further assume that the action of K on the atoms of A is free. We
claim that the map L → Aut(A), f 7→ f |A is injective, which will complete the
proof. Indeed, let f belong to the kernel of this map and let a be an atom of A.
By the construction of A, there exists ga ∈ K such that f |a = ga|a. In particular,
ga(a) = f (a) = a, and by the freeness of the action of K, we must have that
ga = 1G, i.e., f |a = id |a. As this holds for all atoms a, we are done. □

In view of Corollary 7.12, it is natural to ask whether there is a comeager
conjugacy class in Ξ(G) for G locally finite. This is not the case by Corollary 7.17.

Combining Theorem 7.11 with Proposition 7.9 we obtain the following charac-
terization.

Corollary 7.13. Let G be a countably infinite, amenable group. Then the following are
equivalent:

• G is locally finite;
• Ξmin(G) is dense in Ξ(G).

7.3. Comeager conjugacy classes in Ξ(G). It was asked in [D] whether there
exists a non-finitely generated group G such that Ξ(G) has a comeager conjugacy
class. In the end of this subsection, we provide an answer for amenable groups.
We know from Corollary 3.3 that this is equivalent to the density of projectively
isolated subshifts in S(AG) for every finite A.
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Theorem 7.14. Let G be a countable group which is not finitely generated, let A be a
finite alphabet, and let X ∈ S(AG) be a subshift. Then X is projectively isolated iff it is
minimal and sofic.

Proof. One implication is obvious, since minimal sofic subshifts are projectively
isolated for any group. Similarly, a projectively isolated subshift is always sofic.
So we only need to prove that a projectively isolated subshift in S(AG) is minimal.

If X ∈ S(AG) and F ⊆ G is finite, we denote by XF the collection of F-patterns
that occur in X. For H ≤ G, denote by X|H the image of the restriction map
AG → AH and note that X|H ∈ S(AH).

Let X ∈ S(AG) be projectively isolated. Then there exist a finite set F ⊆ G, a
finite alphabet B, a map π : B → A giving rise to a map Π : BG → AG, and an
SFT Y ⊆ BG such that Π[Z] = X for any Z ∈ S(BG) with ZF = YF. Suppose,
towards a contradiction, that X is not minimal. By enlarging F if necessary, we
may assume that there is an F-pattern p0 occurring in X, and x0 ∈ X such that p0
does not occur in x0.

Let
Q = {q ∈ BF : π ◦ q = p0}

and let y0 ∈ Y be such that Π(y0) = x0. No element of Q occurs in y0.
Let H = 〈F〉 and note that Y is the subshift co-induced of Y|H , i.e., elements

of Y are obtained by copying independently elements of Y|H on each left H-coset.
As Π is defined using a map on the alphabets, the same is also true for X.

Let Z ⊆ Y be the subshift consisting of all y such that patterns in Q occur in y
in at most one left H-coset. Explicitly,

Z =
{

y ∈ Y : ∀g1, g2
(
(g−1

1 · y)|F, (g−1
2 · y)|F ∈ Q =⇒ g1H = g2H

)}
.

For each p ∈ YF, pick some yp ∈ Y|H such that yp|F = p. Let T be a transversal
for the left cosets of H in G with 1G ∈ T. For each p ∈ P, define zp ∈ Y by setting,
for t ∈ T and h ∈ H,

zp(th) =

{
yp(h) if t = 1G,
y0(h) otherwise.

Since patterns in Q do not occur in y0, zp belongs to Z. Thus Z realizes all the
patterns in YF, whence ZF = YF.

On the other hand, Π[Z] is a proper subshift of X: indeed, let x1 ∈ X|H be
a point in which p0 occurs and copy x1 on every H-coset to obtain an element
of X which is not in Π[Z] (note that as H is finitely generated and G is not, we
must have H ⪇ G). This contradicts our choice of neighborhood that projectively
isolates X. □
Corollary 7.15. Let G be a countable group which is not finitely generated. If there exists
a comeager conjugacy class in Ξ(G), then the generic element of Ξ(G) is minimal.

Proof. A generic element of Ξ(G), if it exists, is obtained as an inverse limit of
projectively isolated subshifts (see Theorem A.9 and Section 3 or [D]). We just
proved that if G is not finitely generated then projectively isolated subshifts must
be minimal. An inverse limit of minimal flows is minimal. □
Proposition 7.16. Let G be an infinite, locally finite group. Then the only minimal sofic
G-subshifts are singletons.

Proof. Let X be a minimal sofic subshift. As in the proof of Theorem 7.14 and
adopting the notation thereof, we see that there exists a finitely generated (so,
finite) subgroup H ≤ G such that X is co-induced of X|H . Furthermore for any
finite K such that H ≤ K ≤ G, X is co-induced of X|K (from K to G) and X|K is
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co-induced of X|H (from H to K). It follows from Lemma 7.1 that X|K is minimal,
which, as K is finite, implies that

∣∣X|K
∣∣ ≤ |K|. We have that

|K| ≥
∣∣X|K

∣∣ = ∣∣(X|H)[K:H]
∣∣ = ∣∣X|H

∣∣|K|/|H|,

which, applied for big enough K, implies that X|H , and therefore, X is a singleton.
□

Corollary 7.17. Let G be a countable amenable group which is not finitely generated.
Then there is no comeager conjugacy class in Ξ(G).

Proof. If G is not locally finite, then Ξmin(G) is not dense in Ξ(G) by Proposi-
tion 7.9, so Corollary 7.15 applies and there is no comeager conjugacy class in
Ξ(G).

If G is locally finite, then by Theorem 7.14 and Proposition 7.16, projectively
isolated subshifts are not dense, whence there is no comeager conjugacy class in
Ξ(G) by Corollary 3.3. □
Question 7.18. Does there exist a non-finitely generated group which admits:

(i) non-trivial, minimal SFTs?
(ii) non-trivial, minimal, sofic subshifts?

8. Transitive actions

We now turn to the study of the space Ξtr(G) of transitive actions of a count-
able group G. It is claimed by Hochman in [H2] that there is a dense conjugacy
class in Ξtr(G) for G = Zd (see Proposition 4.4 of [H2]). However, the argument
given there is incorrect, and the statement is not true for d ≥ 2 (cf. Theorem 8.12).
Hochman’s approach, which is general and does not depend on particular prop-
erties of Zd, is as follows. Let {ξn : n ∈ N} be a dense set in Ξtr(G) and let xn
be a transitive point for ξn. Then the closure Z of the orbit of (x0, x1, . . . ) in the
product ∏n ξn is a transitive system whose conjugates can approximate all of the
ξn. While this is indeed true, the problem is that the point (x0, x1, . . . ) may be
isolated in Z and even worse, sometimes Z cannot even be realized as a factor of
a flow on a perfect space. We are thus led to characterize the flows which can be
realized in such a way.

If G is a group, G ↷ Z is a G-flow, z ∈ Z, and U ⊆ Z is open, we denote

(8.1) Ret(z, U) := {g ∈ G : g · z ∈ U}.

We say that a point z ∈ Z is recurrent if Ret(z, U) is infinite for every open U 3 z.
We note that if G is infinite, then every flow contains recurrent points because
every point belonging to a minimal subflow is recurrent. A basic observation is
that a transitive point which is not isolated is necessarily recurrent (because all of
its neighborhoods have infinitely many disjoint, non-empty, open subsets). This
leads to the following criterion.

Proposition 8.1. Let G be a countable group, let G ↷ Z be a zero-dimensional, metriz-
able G-flow, and let z0 ∈ Z be a transitive point. Then the following are equivalent:

(i) The flow Z is a factor of a transitive flow on a Cantor space;
(ii) The point z0 is recurrent;

(iii) The point z0 is not isolated or it has infinite stabilizer.

Proof. (i) ⇒ (ii) ⇒ (iii). Suppose that π : Ω → Z is a factor map for some tran-
sitive flow G ↷ Ω. If z0 is not isolated, we are done by the observation above.
Suppose now that z0 is isolated. Let U0 = π−1({z0}). Then U0 is open in Ω
and therefore contains a transitive point ω0. Then π(ω0) = z0 and Ret(ω0, U0) is
infinite and is contained in the stabilizer Gz0 .
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(iii) ⇒ (i). Assume that z0 is isolated with infinite stabilizer H (otherwise, there
is nothing to prove). The shift action H ↷ 2G is transitive; let x0 ∈ 2G be a point
with dense orbit. Let Y = G · (x0, z0) ⊆ 2G × Z. We will prove that Y is perfect,
which amounts to showing that (x0, z0) is not isolated in Y. Since 2G is perfect and
x0 has a dense orbit, there exists a sequence (hn)n∈N of elements of H such that
hn · x0 6= x0 for all n, and hn · x0 converges to x0. Then hn · (x0, z0) = (hn · x0, z0)
converges to (x0, z0), and we are done. □

Theorem 8.2. Let G be an infinite countable group. Then the following are equivalent:
(i) Ξtr(G) has a dense conjugacy class;

(ii) For all SFTs X1 ∈ S(AG
1 ), X2 ∈ S(AG

2 ), and all patterns p1, p2, if there exist
recurrent points xi ∈ Xi such that pi occurs in xi for i = 1, 2, then there exist
x′i ∈ Xi such that pi occurs in x′i for i = 1, 2, and (x′1, x′2) is recurrent in
X1 × X2.

Proof. (i) ⇒ (ii). Let ξ0 ∈ Ξtr(G) have a dense conjugacy class. Let Xi, pi, xi for i =
1, 2 be given. Identify A1 and A2 with some arbitrary non-degenerate partitions
of Ω. Let

(8.2) Ui = {ξ ∈ Ξtr(G) : πAi (ξ) ⊆ Xi, pi occurs in πAi (ξ)}, i = 1, 2,

where the maps πAi are defined as in (2.8), and note that U1 and U2 are open.
They are also non-empty by the assumptions and Proposition 8.1. Then there
exist ϕi ∈ Homeo(Ω) such that ϕi · ξ0 ∈ Ui. If ω0 is any transitive point for ξ0, we
can take x′i = ΠAi

ϕi ·ξ0

(
ϕi(ω0)

)
, where the maps Π are defined by (2.7).

(ii) ⇒ (i). Let U1 and U2 be two non-empty open subsets of Ξtr(G), which, we
may assume are given by (8.2). Let ξi ∈ Ui and let ωi be a transitive point for ξi.
Then it follows from Proposition 8.1 that ΠAi

ξ (ωi) witnesses that the hypotheses of
(ii) are satisfied. Let x′1, x′2 be as in the conclusion of (ii). By Proposition 8.1, there
exists an action ξ ∈ Ξtr(G) which factors onto G · (x′1, x′2). Then ξ has conjugates
in both U1 and U2. □

Next we study how this property behaves with respect to finite index sub-
groups.

Lemma 8.3. Let G ↷ Z be a G-flow and let H ≤ G be a subgroup of finite index. If the
point z ∈ Z is recurrent for G, then it is also recurrent for H.

Proof. Without loss of generality, we may assume that Z = G · z and apply Propo-
sition 8.1. If z is isolated, then the stabilizer Gz is infinite, and Hz = Gz ∩ H is also
infinite. Suppose now that z is not isolated. Then Z is perfect. Let T be a set of
representatives for the left cosets of H. We have that Z = TH · z =

⋃
t∈T tH · z, so

H · z has non-empty interior. Therefore H · z contains a perfect open subset and
z cannot be isolated in H · z. It is therefore H-recurrent. □

Proposition 8.4. Let G be an infinite countable group and let H ≤ G be a subgroup of
finite index. If Ξtr(H) has a dense conjugacy class, then so does Ξtr(G).

Proof. We use Theorem 8.2. Let Xi ∈ S(AG
i ), pi, and xi be as in Theorem 8.2 (ii).

Let T be a set of representatives for the right cosets of H in G and consider the
map Φ : AG

i → (AT
i )

H given by

Φ(x)(h)(t) = x(ht).

Note that Φ is an isomorphism of H-flows and it is not difficult to see that Φ[Xi]
is an SFT as an H-shift (see, e.g., [B, Lemma 1.5.11]). It follows from Lemma 8.3
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that xi is recurrent for H. Thus there exist x′1, x′2 such that pi occurs in x′i for
i = 1, 2 and (x′1, x′2) is recurrent for H and therefore also for G. □

We do not know whether Proposition 8.4 works in the other direction: that is,
whether the property of having a dense conjugacy class in Ξtr(G) goes down to
subgroups of finite index.

Definition 8.5. Let G be a group and let H ≤ G. We denote by χH ∈ 2G the char-
acteristic function of H and we say that G has the special symbol property relative
to H if the subshift G · χH ∈ S(2G) is sofic. We say that G has the special symbol
property if G has the special symbol property relative to the trivial subgroup.

We note that the point χH is isolated in G · χH because it is the only point in its
orbit which belongs to the open set {x ∈ 2G : x(1G) = 1}. Its stabilizer is equal
to H and therefore it is recurrent iff H is infinite.

The special symbol property (in its non-relative version) was introduced by
Dahmani and Yaman in [DY]; the equivalent formulation that we use here comes
from [ABS]. It was proved in [DY] that hyperbolic groups have the special symbol
property and that it is stable under group extensions. All groups that have the
special symbol property are finitely generated.

The following gives a simple criterion for the non-existence of a dense conju-
gacy class in Ξtr(G), which applies, for example, to the free group.

Proposition 8.6. Let G be a countable group and let H1, H2 be two infinite subgroups
of G such that:

• G has the special symbol property relative to H1 and to H2;
• for every g ∈ G, gH1g−1 ∩ H2 is finite.

Then there is no dense conjugacy class in Ξtr(G).

Proof. Let yi = χHi for i = 1, 2. We verify that Theorem 8.2 (ii) fails. We let
πi : Xi → G · yi witness the soficity of G · yi , where Xi is an SFT. Consider the
set π−1

i ({yi}) ⊆ Xi. It is closed and Hi-invariant and, as Hi is infinite, it must
contain a recurrent point xi. Let pi be a pattern which occurs in xi and such
that if pi occurs in x′i , then πi(x′i) ∈ G · yi, and in particular, πi(x′i) is isolated
(here we use that yi is isolated in G · yi ). Now Xi, xi, pi witness the hypothe-
sis of Theorem 8.2 (ii). On the other hand, if pi occurs in x′i for i = 1, 2, then
Ret

(
x′i , π−1

i ({πi(x′i)})
)

is equal to the stabilizer of πi(x′i), which is a conjugate of
Hi. As the intersection of a conjugate of H1 and a conjugate of H2 is always finite
by hypothesis, we conclude that (x′1, x′2) cannot be recurrent. □

Lemma 8.7. Let G be a free group with a free finite generating set S0 and let s0 ∈ S0.
Then G has the special symbol property relative to 〈s0〉.

Proof. Let S = S0 ∪ S−1
0 and let A be the alphabet S t {∗}. We let X ∈ S(AG) be

the SFT with defining window S ∪ {1G} and the following rules for patterns p. If
p(1G) = ∗, then p(s0) = p(s−1

0 ) = ∗ and p(s) = s for all s ∈ S \ {s0, s−1
0 }. For

s, t ∈ S, if p(1G) = s and s 6= t−1, then p(t) = t.
Let π : A → {0, 1} be given by π(∗) = 1 and π(s) = 0 for s ∈ S. Denote

by Π : AG → 2G the corresponding factor map. Let x0 ∈ AG be defined by:
x0(g) = ∗ if g ∈ 〈s0〉 and x0(g) is equal to the last letter of g otherwise, and note
that Π(x0) = χ〈s0〉. The following are easy to check:

• x0 ∈ X;
• for every x ∈ X and g ∈ G, if x(g) = ∗, then x(gsn

0 ) = ∗ for all n ∈ Z;
• for every x ∈ X, if x(g) = x(h) = ∗, then g〈s0〉 = h〈s0〉.
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It follows from these three properties that Π[X] = G · χ〈s0〉 , which implies that
the latter subshift is sofic. □
Theorem 8.8. Let G be a non-abelian, finitely generated free group. Then there is no
dense conjugacy class in Ξtr(G).

Proof. This follows from Lemma 8.7 and Theorem 8.2 applied to the subgroups
〈s1〉, 〈s2〉, where s1, s2 are distinct members of a free generating set of G. □

Next we give a different sufficient condition for the non-existence of a dense
conjugacy class in Ξtr(G) that applies to some group extensions.

Lemma 8.9. Let G be a group and let H ⊴ G be finitely generated. If G/H has the
special symbol property, then G has the special symbol property relative to H.

Proof. Let X ⊆ AG/H be an SFT that witnesses the soficity of (G/H) · χ{1G/H} via
a map AG/H → 2G/H induced from a map π : A → {0, 1}. Define the embedding
ι : AG/H → AG by ι(x)(g) = x(gH) and let X′ = ι[X]. It is clear that the map
AG → 2G induced by π sends X′ onto G · χH , so we only have to check that X′

is an SFT. This follows from the fact that H is finitely generated: we just have to
copy the rules for X (using arbitrary representatives of the cosets) and add the
rules that x(s) = x(1G) for all and all s from a finite generating set for H, thus
ensuring that all x ∈ X are constant on H-cosets. □

The following fact is a relativized version of [DY, Proposition 4.2].

Proposition 8.10. Assume that K ≤ H ⊴ G are finitely generated groups such that H
has the special symbol property relative to K and the quotient G/H has the special symbol
property. Then G has the special symbol property relative to K.

Proof. Let X1 ⊆ AH
1 be an SFT that witnesses the soficity of H · χK via a map

Φ1 : AH
1 → 2H induced from a map ϕ1 : A1 → {0, 1}. Let E1 be a finite defining

window for X1; we may assume that E1 generates H and contains 1G.
Similarly, let X2 ⊆ AG/H

2 be an SFT witnessing the soficity of (G/H) · χ{1G/H}
via a map Φ2 : AG/H

2 → 2G/H induced from a map ϕ2 : A2 → {0, 1}. Let E2 be
a finite defining window for X2 which generates G/H and contains 1G/H = H.
We pick a map r : E2 → G such that r(H) = 1G and for every e ∈ E2, one has
e = r(e)H.

We set B = A1 × A2 and denote by α1, α2 the coordinate projections. Consider
the SFT Z ⊆ BG, with defining window {gh : g ∈ r[E2], h ∈ E1} for which a
pattern p is allowed iff it satisfies the following conditions:

• For every g ∈ r[E2], the pattern h 7→ α1 ◦ p(gh) (with support equal to
E1) is an allowed pattern for X1. This ensures that for any z ∈ Z and any
g ∈ G the map h 7→ α1 ◦ z(gh) belongs to X1.

• For every h ∈ E1, α2 ◦ p(h) = α2 ◦ p(1G). This implies that for any z ∈ Z
the map gH 7→ α2 ◦ z(g) is well-defined.

• The pattern f 7→ α2 ◦ p(r( f )) (with support E2) is an allowed pattern for
X2. Along with the previous condition, this guarantees that for all z ∈ Z
and all g ∈ G the map gH 7→ α2 ◦ z(g) is an element of X2.

We define ϕ : B → {0, 1} by ϕ(a1, a2) = ϕ1(a1)ϕ2(a2) and denote by Φ : BG →
2G the associated factor map. We now prove that Φ[Z] = G · χK .

Choose x1 ∈ X1 such that Φ1(x1) = χK and x2 ∈ X2 such that Φ2(x2) = χ1G/H .
Let S ⊆ G be a transversal for the H-cosets of G which contains 1G and define
z ∈ BG by setting

α1 ◦ z(sh) = x1(h) and α2 ◦ z(sh) = x2(sH) for all s ∈ S, h ∈ H.
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It is straightforward to check that z ∈ Z and Φ(z) = χK.
Finally, we prove that Φ[Z] ⊆ G · χK . Pick z ∈ Z. Since gH 7→ α2 ◦ z(gH) be-

longs to X2, there is at most one H-coset on which Φ(z) is non-zero. If Φ(z)
is the constant 0, necessarily 0 must belong to H · χK in 2H or 0 belongs to
(G/H) · χ{1G/H} , hence K has infinite index in G and 0 belongs to G · χK in 2G.
We are left with the case where there exists a unique coset gH on which Φ(z)
is not identically 0. Since h 7→ α1 ◦ z(gh) ∈ X1, h 7→ Φ(g−1 · z)(h) belongs to
the closure of H · χK in 2H . Since g−1 · Φ(z) is equal to 0 on all H-cosets other
than H, it follows that g−1 · Φ(z) belongs to the closure of H · χK in 2G. Hence
Φ(z) ∈ G · χK . □
Proposition 8.11. Let G be a group and let H ≤ G satisfy the following conditions:

• H is normal, finitely generated, infinite, and of infinite index;
• H and G/H have the special symbol property.

Then there is no dense conjugacy class in Ξtr(G).

Proof. We check the failure of Theorem 8.2 (ii). First, using Lemma 8.9, as in the
proof of Proposition 8.6, we find an SFT X1 ∈ S(AG

1 ), a recurrent point x1 ∈ X1
and a pattern p1 which occurs in x1 such that for all x′1 ∈ X1 in which p1 occurs,
there is an open set U1 such that Ret(x′1, U1) is a subset of a conjugate of H. As
H is normal, we can replace this by simply

(8.3) Ret(x′1, U1) ⊆ H.

Next let Y = H · χ{1H} and let X2 be an SFT witnessing the soficity of Y. Let
Ỹ and X̃2 be the corresponding subshifts co-induced to G and recall that X̃2 is an
SFT. The subshift Ỹ has a simple description: it contains all ỹ ∈ 2G which have
at most one occurrence of the symbol 1 in each left H-coset. Let π̃ : X̃2 → Ỹ be
the map co-induced from X2 → Y. Let p2 be a pattern occurring in X̃2 such that
if p2 occurs in x̃ ∈ X̃2, then 1 occurs in π̃(x̃). By the remarks before Lemma 7.1
and Proposition 7.3, X̃2 is perfect and transitive, so recurrent points are dense,
and in particular, there exists a recurrent point x̃2 ∈ X̃2 in which p2 occurs. Now
let x̃′2 be any point in X̃2 in which p2 occurs. Then there exists g ∈ G such that
π̃(x̃′2)(g) = 1. Let U2 = π̃−1({ỹ ∈ Ỹ : ỹ(g) = 1}

)
. We claim that

(8.4) Ret(x̃′2, U2) ∩ H = {1G}.

Indeed, let h ∈ H be such that h · x̃′2 ∈ U2. Then π̃(x̃′2)(h
−1g) = 1. However,

π̃(x̃′2)(g) = 1 and there is at most one occurrence of 1 in each right H-coset (as H
is normal, left and right cosets coincide). This implies that h = 1G.

Combining (8.3) and (8.4), we see that whenever p1 occurs in x′1 and p2 occurs
in x̃′2, the point (x′1, x̃′2) cannot be recurrent, which concludes the proof. □
Theorem 8.12. Let G be a virtually polycyclic, infinite group. Then there is a dense
conjugacy class in Ξtr(G) iff G is virtually cyclic.

Proof. One direction follows from the fact that Ξtr(Z) has a dense conjugacy class
(see [H1]) and Proposition 8.4.

For the other, note that, by [DY, Proposition 4.2], virtually polycyclic groups
have the special symbol property. By [S, p. 16, Lemma 6], there exists a short
exact sequence

1 → Zd → G → Q → 1
with d ≥ 1. We have two cases. If Q is infinite, then we are done by Proposi-
tion 8.11. So assume that Q is finite. As G is not virtually cyclic, we have that
d ≥ 2. Let a = (1, 0, . . . ) ∈ Zd and let {a0, . . . , an−1} ⊆ Zd be the (finite) conjugacy
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class of a in G. As d ≥ 2, Zd is not the union of finitely many cyclic subgroups,
so there exists b ∈ Zd which does not belong to

⋃
i<n〈ai〉. We claim that the sub-

groups 〈a〉 and 〈b〉 of G satisfy the hypotheses of Proposition 8.6, which allows
us to conclude. First, by Lemma 8.9, Zd has the special symbol property relative
to both 〈a〉 and 〈b〉 and, by Proposition 8.10, so does G. Second, 〈b〉 ∩ 〈ai〉 = {1G}
for all i because ai is the image of a by an automorphism of Zd, so if bk = an

i for
some k, n ∈ Z, then k|n and b ∈ 〈ai〉, contradicting the choice of b. □

Appendix A. Topological Fraïssé classes

The classical Fraïssé theorem ensures that every countable amalgamation class
F has a Fraïssé limit, i.e., a homogeneous structure with age F. It is well-known
that the isomorphism class of this Fraïssé limit is comeager in the space of all
countable structures with age included in F (in an appropriate Polish topology).
Here, we establish a criterion for the existence of a comeager isomorphism class
in the case where F is no longer countable but is equipped with a natural Polish
topology. The theorem below is inspired by the classical results about model-
theoretic forcing and atomic models, however, it differs in two important points.
First, we do not assume compactness, and second, we work exclusively with
quantifier-free types. The lack of compactness assumption is important because
the spaces of minimal subshifts, to which we apply the theorem, are not compact.
A version of this criterion for general Cantor actions was proved in [D].

We quickly recall some definitions from model theory. A language L is a collec-
tion of function and relation symbols, together with their arities. An L-structure
is a set equipped with interpretations for the L-symbols. A term is an expression
using variables and function symbols. An atomic formula ϕ is an expression of the
form R(t0, . . . , tk−1), where R is a relation symbol of arity k and t0, . . . , tk−1 are
terms. A quantifier-free formula (or simply a formula in the sequel) is a Boolean
combination of atomic formulas. If ϕ is a formula and x is a set of variables, we
will write ϕ(x) to mean that all variables that appear in ϕ are in x. Two formu-
las ϕ1(x) and ϕ2(x) are equivalent if for all L-structures M and tuples a ∈ Mx,
M |= ϕ1(a) ⇐⇒ M |= ϕ2(a). Formulas in the variables x modulo equivalence
form a Boolean algebra and the compact space of ultrafilters of this algebra, de-
noted by Sx(L), is called the space of quantifier-free L-types (which we will call
simply types in what follows). A type in Sx(L) can be viewed as an isomorphism
type of an L-structure with generators x. A type p ∈ Sx(L) satisfies a formula
ϕ(x) (in symbols: p |= ϕ) if ϕ ∈ p. A clopen basis of the topology on Sx(L) is
given by sets of the form JϕK = {p ∈ Sx(L) : p |= ϕ}.

If M is an L-structure and a ∈ Mx, the type of a, denoted by tp a, is the element of
Sx(L) defined by

tp a |= ϕ ⇐⇒ M |= ϕ(a), for all formulas ϕ(x).

If L is countable, the type spaces are Polish. If t(x) is a y-tuple of terms, then
there is a natural projection πt : Sx(L) → Sy(L) defined by

πt(p) |= ϕ(y) ⇐⇒ p |= ϕ(t(x)).

We will use this most often when y ⊆ x and t is the inclusion map, and then we
will denote the projection by πy.

Let L be a countable language. A hereditary L-class F is a collection of non-
empty subsets Sx(F) ⊆ Sx(L), for all finite x, such that for all x, y, all y-tuples
of terms t(x), and all p ∈ Sx(F), we have that πt(p) ∈ Sy(F). If u is a countable
set of variables, we will denote by Su(F) the collection of types p ∈ Su(L) such
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that πx(p) ∈ Sx(F) for all finite x ⊆ u. A model of F is an L-structure M such
that tp a ∈ Sx(F) for all finite x and a ∈ Mx. Every type p ∈ Sx(F) defines a
structure generated by x, which is a model of F. In the case where the sets Sx(F)
are Borel (which is the case which will interest us), a hereditary class is given by a
universal Lω1ω(L)-theory. For a formula ϕ(x), we will denote JϕKF := JϕK∩ Sx(F).
A formula ϕ(x) is consistent with F if JϕKF is non-empty.

Definition A.1. Let L be a countable language and let F be a hereditary L-class.
We will say that F is a topological Fraïssé class if the following conditions are satis-
fied:

(i) F has the amalgamation property: for all disjoint sets of variables x, y1, y2,
and all p ∈ Sx(F), q1 ∈ Sxy1(F), q2 ∈ Sxy2(F) with πx(q1) = πx(q2) = p,
there exists s ∈ Sxy1y2(F) with πxy1(s) = q1, πxy2(s) = q2. (Here, as usual,
xy1 is a shortcut for x ∪ y1, etc.)

(ii) For all finite x, Sx(F) is a Gδ subset of Sx(L) (and therefore a Polish space).
(iii) For all finite x ⊆ y and all open U ⊆ Sy(F), the set πx[U] is Fσ in Sx(F).

Remark A.2. In condition (i) above, we allow x = ∅, so the amalgamation property
includes the joint embedding property. For a classical Fraïssé class, one also
requires that each Sx(F) is countable. Each classical Fraïssé class can be made into
a topological one by modifying the language, so that each Sx(F) becomes discrete.
Finally, condition (iii) is automatically satisfied if πx is open or closed, but also in
other situations. In particular, if F is given by a universal, first-order theory (i.e.,
a collection of finitary forbidden configurations) then Sx(F) is compact and the
only remaining condition is amalgamation.

The notion of an existentially closed model is inspired from algebra and is key
in Robinson’s theory of model-theoretic forcing.

Definition A.3. Let F be a topological Fraïssé class. A model M |= F is ex-
istentially closed if for all formulas ϕ(x, y) and a ∈ Mx, if there exist N ⊇ M,
N |= F, and b ∈ Ny such that N |= ϕ(a, b), then there exists b′ ∈ My such that
M |= ϕ(a, b′).

The following proposition summarizes some of the basic properties of existen-
tially closed models.

Proposition A.4. Let F be a topological Fraïssé class. Then:

(i) Let M |= F, a ∈ Mx, and q ∈ Sxy(F) be such that a |= πx(q). Then there exist
N ⊇ M, N |= F, and b ∈ Ny such that (a, b) |= q.

(ii) A model M is existentially closed iff for every formula ϕ(x, y), for every a ∈ Mx,
and every q ∈ Sxy(F) such that πx(q) = tp(a) and q |= ϕ, there exists b ∈ My

satisfying M |= ϕ(a, b).
(iii) Every model of F embeds into an existentially closed one.

Proof. (i) This follows from repeated amalgamation and the fact that models of F
are closed under unions of chains.

(ii) Suppose that M is existentially closed and let a, q, and ϕ be given. By (i),
there is a model N ⊇ M and b ∈ Ny with (a, b) |= q. Now by the fact that M is
existentially closed, we have that there is b′ ∈ My with M |= ϕ(a, b′). The other
direction is obvious.

(iii) This follows by a standard argument from (i), (ii), and taking unions of
chains. □
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Next we turn to different ways to code models of F as elements of a Polish
space. Let u be a countable set of variables. Define

(A.1) Ξ0(L) = {ξ ∈ Su(L) : for every finite x ⊆ u and function symbol F(x),

there exists v ∈ u ξ |= F(x) = v}.

Every ξ ∈ Ξ0(L) defines an L-structure as follows. Let a ∈ Mu be a realization
of ξ (where M is arbitrary). Then {a(v) : v ∈ u} is a substructure of M whose
isomorphism class depends only on ξ and which we denote by Mξ . We let

Ξ0(F) = Ξ0(L) ∩ Su(F),

so that each element of Ξ0(F) codes a model of F. We note that if F is a topological
Fraïssé class, then Ξ0(F) is a Gδ subset of Su(L) and therefore a Polish space. In
an abstract setting, the elements of Ξ0(F) are perhaps the most natural way to
code models of F. However, in concrete situations, sometimes different codings
are desirable. The framework we propose below is quite flexible and includes
most codings that appear in the literature.

Definition A.5. Let F be a topological Fraïssé class. We will say that a set Ξ ⊆
Ξ0(F) is an admissible coding for models of F if the following conditions are satisfied:

(i) Ξ is a non-empty Gδ subset of Ξ0(F).
(ii) For every finite x ⊆ u, πx[Ξ] is an open subset of Sx(F).

(iii) If x ⊆ u is finite, y is a finite set of variables, and ϕ(x) and ψ(x, y) are
formulas such that JϕKF ⊆ πx[Ξ] and ϕ(x) ∧ ψ(x, y) is consistent, then
there is ξ ∈ Ξ and y′ ⊆ u with |y′| = |y| such that ξ |= ϕ(x) ∧ ψ(x, y′).

The following is clear.

Lemma A.6. Let F be a topological Fraïssé class. Then Ξ = Ξ0(F) is an admissible
coding.

For an admissible coding Ξ, we denote

Ξec := {ξ ∈ Ξ : Mξ is existentially closed}.

Note that we do not require that the models coded by Ξ meet every isomor-
phism class. However, it follows from the following proposition that there are
many existentially closed models in Ξ.

Proposition A.7. Let F be a topological Fraïssé class. If Ξ is an admissible coding for
models of F, then Ξec is a dense Gδ subset of Ξ.

Proof. By Proposition A.4 (ii), we have that

ξ ∈ Ξec ⇐⇒ ∀x ⊆ u ∀ϕ(x, y)
(
∃q ∈ JϕKF πx(ξ) = πx(q)

)
=⇒ ∃y′ ⊆ u ξ |= ϕ(x, y′).

This condition is Gδ because the left side of the implication can be rewritten as

πx(ξ) ∈ πx
[JϕKF],

which is an Fσ set by condition (iii) in Definition A.1. To verify density, by the
Baire category theorem, it suffices to check that for fixed ϕ and x, the set of ξ ∈ Ξ
satisfying the implication is dense. Let z ⊆ u be finite and let ψ(x, z) be a formula
such that JψK ∩ Ξ is non-empty. Let ξ0 ∈ JψK ∩ Ξ. We may assume that there
is q ∈ JϕKF with πx(ξ0) = πx(q) (otherwise ξ0 satisfies the implication). By
Definition A.5 (ii), we may also assume that JψKF ⊆ πyz[Ξ]. By amalgamation,
the formula ψ(x, z) ∧ ϕ(x, y) is consistent, so by Definition A.5 (iii), there is ξ ∈ Ξ
and y′ ⊆ u such that ξ |= ψ(x, z) ∧ ϕ(x, y′). □
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Definition A.8. Let F be a hereditary L-class. A type p ∈ Sx(F) is called isolated
if p is an isolated point in Sx(F) (in the relative topology). It is called projec-
tively isolated if there exists a set of variables y and a formula ϕ(x, y) such that
πx

[JϕKF] = {p}. In that case, we will say that ϕ isolates p. A model M |= F

is called projectively atomic if for all finite x and all a ∈ Mx, tp a is projectively
isolated in Sx(F).

We recall that a model M is homogeneous if for all n and a, b ∈ Mn with tp a =
tp b, there exists an automorphism f of M such that f (a) = b.

In classical model theory (where formulas are allowed to have quantifiers), the
type projection maps πx are open and being projectively isolated is equivalent to
being isolated. In that case, it follows from the omitting types theorem that the
generic model (if it exists) is the atomic one, that is, the model that only realizes
isolated types. Moreover, atomic models are always homogeneous. The following
theorem can be considered a generalization of these facts to the quantifier-free
setting. Being existentially closed provides a sufficient “quantifier elimination”
condition.

Theorem A.9. Let L be a countable language, let F be a topological Fraïssé L-class, and
let Ξ be an admissible coding for models of F. Then:

(i) An existentially closed, projectively atomic model of F exists iff the projectively
isolated types are dense in Sx(F) for every x.

(ii) If it exists, the existentially closed, projectively atomic model of F is unique up to
isomorphism and it is homogeneous.

(iii) Let M0 |= F. The following are equivalent:
• M0 is existentially closed, projectively atomic;
• {ξ ∈ Ξ : Mξ

∼= M0} is dense Gδ in Ξ;
• {ξ ∈ Ξ : Mξ

∼= M0} is non-meager in Ξ.

Proof. (ii) Let M1 and M2 be existentially closed, projectively atomic. We will
show that

{(a, b) ∈ Mn
1 × Mn

2 : tp a = tp b}, n ∈ N
is a back-and-forth system, thus proving both statements simultaneously. Sup-
pose that a ∈ Mx

1 , b ∈ Mx
2 , tp a = tp b, and let c ∈ M1. As tp ac is projectively

isolated, there is a formula ϕ(x, y, z) such that for every q |= ϕ, πxy(q) = tp ac. As
M2 is existentially closed, by Proposition A.4 (ii), there are d ∈ M2, d′ ∈ Mz

2 such
that M2 |= ϕ(b, d, d′). Then tp bd = tp ac and we are done.

The direction from left to right of (i) follows from the fact that the types real-
ized in any existentially closed model are dense (because of Proposition A.4 (ii)
applied to x = ∅). For the other direction and the first implication of (iii), we will
show that if projectively isolated types are dense, then the set of ξ such that Mξ

is existentially closed, projectively atomic is dense Gδ. For existentially closed,
this is given by Proposition A.7. To complete the proof using the Baire category
theorem, it suffices to check that for every finite x ⊆ u, the set

(A.2) {ξ ∈ Ξec : πx(ξ) is projectively isolated}
is open dense in Ξec. To see that it is open, let ξ0 belong to this set and let ϕ(x, y)
be a formula that isolates πx(ξ0). As Mξ0 is existentially closed, there exists
y′ ⊆ u with |y′| = |y| such that ξ0 |= ϕ(x, y′). Then every ξ satisfying ξ |= ϕ(x, y′)
belongs to the set (A.2). We finally check that the set (A.2) is dense. Let y ⊆ u
and let ψ(x, y) be a formula such that JψK ∩ Ξ is non-empty. By Definition A.5
(ii), we may assume that JψKF ⊆ πxy(Ξ). Let q ∈ JψKF be projectively isolated
and let ϕ(x, y, z) be a formula that isolates q. Then, in particular, ϕ(x, y, z) implies
ψ(x, y). By Definition A.5 (iii), there is z′ ⊆ u with |z′| = |z| and ξ ∈ Ξ such that
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ξ |= ϕ(x, y, z′). By Proposition A.7, we may also assume that ξ ∈ Ξec. Then πx(ξ)
is projectively isolated and ξ ∈ JψK∩ Ξec.

The second implication of (iii) being trivial, we prove the third. It follows from
Proposition A.7 that M0 is existentially closed. We will show that if x ⊆ u is finite
and p ∈ Sx(F) is not projectively isolated, then the closed set

{ξ ∈ Ξ : πx(ξ) = p}
is nowhere dense in Ξ. Suppose to the contrary that it has non-empty interior.
Then there exist y ⊆ u and a formula ϕ(x, y) such that Ξ ∩ JϕK 6= ∅ and for all
ξ ∈ Ξ ∩ JϕK, πx(ξ) = p. By Definition A.5 (ii), we may assume that JϕKF ⊆ πxy[Ξ].
We claim that ϕ isolates p. Indeed, let q ∈ JϕKF. Then there exists ξ ∈ Ξ with
πxy(ξ) = q and it follows that πx(q) = πx(ξ) = p. This is a contradiction.

The same argument shows that for any z ⊆ u with |z| = |x|, the set {ξ ∈ Ξ :
πz,x(ξ) = p} is nowhere dense. Thus the set {ξ ∈ Ξ : Mξ realizes p} is meager
and it follows that M0 does not realize p. As this is true for all non-projectively
isolated p, we conclude that M0 is projectively atomic. □
Corollary A.10. Let F be a topological Fraïssé class and let Ξ be an admissible coding
for models of F. Then the following are equivalent:

(i) The set Ξ admits a comeager isomorphism class;
(ii) The set of projectively isolated types in Sx(F) is dense for every x.

Corollary A.11. Let F be a topological Fraïssé class. If the projectively isolated types are
dense, then they form a classical Fraïssé class and their Fraïssé limit is the projectively
atomic model of F.

Proof. It is clear that the set of projectively isolated types is countable (as there
are only countably many formulas) and they form an amalgamation class by the
classical Fraïssé theorem (as the projectively atomic model is homogeneous). □
Example A.12 (Admissible codings and expansions). A common way to code struc-
tures is as expansions of a fixed infinite homogeneous structure M0. Let L0 be the
language of M0 and let F0 be its age. Assume that Sx(F0) is discrete for every
finite x. Let L ⊇ L0 and let F be a topological Fraïssé class with the property that
every type in Sx(F) can be realized in a model whose L0-reduct is isomorphic to
M0. Let u be a countable set of variables and let c ∈ Mu

0 be a tuple that bijectively
enumerates M0. Then

Ξ = {ξ ∈ Ξ0(F) : ξ|L0 = tp c}
is an admissible coding for F. Via the bijection c, we can think of the variables u
as indexed by M0. Then the group Aut(M0) acts on Ξ by permuting the variables
and its orbits are exactly the isomorphism classes.

The simplest special case of this is where L0 is the language consisting only
of equality and M0 is an infinite set. Then Ξ is the collection of all bijective
enumerations of models of F and it is equipped with an S∞-action.

We conclude the appendix with two concrete examples.

A.1. Groups. Let L be the language of groups, containing function symbols for
multiplication, inverse, and the identity, and let F be the hereditary class given
by the (universal, first-order) theory of groups. Then Sx(F) is the compact space
of marked groups with generators x. The class F has the amalgamation property
by the construction of free product with amalgamation. Also, the maps πx are
closed (because Sx(F) is compact), so F is a topological Fraïssé class.

The following characterization of projectively isolated groups is essentially due
to Rips and it is based on a theorem of Boone and Higman which states that every
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finitely generated group with a solvable word problem embeds into a simple
subgroup of a finitely presented group.

Proposition A.13 (Rips). Let G be a finitely generated marked group (that is, an element
of Sx(F) for some finite x). The following are equivalent:

(i) G is projectively isolated;
(ii) G has a solvable word problem.

Proof. This follows from the proof of the main theorem of [R]. One only needs to
observe that the formula P(x̄) that isolates G can be taken to be existential. □

Miller III [M] has constructed a finitely presented group G0 = 〈x〉 such that
all of its non-trivial quotients have an unsolvable word problem. Thus the set of
quotients of G0 forms a non-empty open neighborhood in Sx(F) which contains
no projectively isolated group. (This example has already been used in [dCGP]
to show that isolated groups are not dense.) Applying Corollary A.10, we re-
cover the result of [GKEL] that there is no generic isomorphism class in the space
of countable groups. The proof of [GKEL] uses the construction of [M]; this is
perhaps not surprising, as both Proposition A.13 and Corollary A.10 are equiva-
lences, so computability theory seems intrinsic to the problem. Similar questions
were also considered by Ivanov and Majcher in [IM].

A.2. G-sets. Let G be a fixed countable group and let L be the language consist-
ing of unary function symbols for each element of G. Let F be the hereditary class
given by the (universal, first-order) theory that says that the function symbols are
interpreted by bijections that compose according to the law of G. The models of
F are the G-sets. The type of a singleton a is determined by the stabilizer of a in G
and one can identify the type space S1(F) with the compact space Sub(G) of sub-
groups of G. The amalgamation property is easy to check. The projection maps
πx are open, so a type is projectively isolated iff it is isolated. Finally, it is easy
to see that a type p ∈ Sx(F) is isolated iff πy(p) is isolated for all y ⊆ x, |y| = 1.
Combining all of this with Corollary A.10, we recover the result of [GKM] that
the group G admits a generic action iff isolated subgroups are dense in Sub(G).
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