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Abstract. We show that many countable groups acting on trees, including free prod-
ucts of infinitely countable groups and surface groups, are isomorphic to dense subgroups
of isometry groups of bounded Urysohn spaces. This extends previous results of the first
and the last authors with Y. Stalder on dense subgroups of the automorphism group of the
random graph. In the unbounded case, we also show that every free product of infinitely
countable groups arises as a dense subgroup of the isometry group of the rational Urysohn
space.
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1. Introduction. There is an extensive, and still growing, literature
concerning countable groups G admitting faithful actions on N which are
highly transitive, that is, such that for any partial bijection σ with finite
domain there exists g ∈ G such that g · x = σ(x) for all x ∈ domσ. Such
groups are called highly transitive groups. It is clear that the group S(∞)

consisting of finitely supported bijections of N is highly transitive. For a
finitely generated example, one can consider the group of permutations of Z
which are translations up to a finite set, or more generally Houghton groups.

The first explicit examples of highly transitive non-amenable groups are
the free groups Fn for 2 ≤ n ≤ +∞, as was shown in 1976 by T. P. Mc-
Donough [McD77] (see also the work of J. D. Dixon [Dix90]). The case of
a general free product was studied by A. M. W. Glass and S. H. McCleary
[GM91] and later settled by S. V. Gunhouse [Gun92] and independently by
K. K. Hickin [Hic92]: a free product Γ = Γ1 ∗ Γ2 of two non-trivial count-
able groups Γi, i = 1, 2, is highly transitive if and only if Γ is i.c.c. (1),
which is equivalent to asking that at least one the Γi has cardinal at least 3.
In the last few years, many new examples of highly transitive groups have
been discovered: non-elementary hyperbolic groups with trivial finite radical
(V. V. Chaynikov [Cha12]), surface groups (D. Kitroser [Kit12]), Out(Fn)
for n ≥ 4 (S. Garian and Y. Glasner [GG13]), many groups acting on trees
(P. Fima, S. Moon and Y. Stalder [FMS15]), and finally, acylindrically hy-
perbolic group with trivial finite radical (M. Hull and D. Osin [HO16]).

Note that the class of highly transitive countable groups consists of all
countable groupswhich are isomorphic to a dense subgroup ofS∞, the group of
all permutations ofN. It makes sense to ask a similar question for other groups.

Question. Given a Polish group G, what can be said about the class of
all its countable dense subgroups?

This question is particularly interesting when G is the isometry group
of a homogeneous countable metric space, i.e. a countable metric space with
the property that any partial isometry with finite domain extends to a global
isometry. Indeed, if (X, d) is a countable homogeneous metric space, then a
countable subgroup Γ of Iso(X) is dense (2) if and only if its natural action
on X satisfies the following definition.

Definition 1.1. An action of a countable group Γ on a homogeneous
metric space (X, d) is called homogeneous if every partial isometry of X with
finite domain extends to an element of Γ .

(1) A group is i.c.c. (infinite conjugacy classes) when all the conjugacy classes of
nonidentity elements are infinite.

(2) Note that since X is countable, Iso(X) is endowed with the topology of pointwise
convergence, if X is viewed as a discrete space.
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If (X, d) is a homogeneous metric space, we denote by H(X) the class
of all countable groups which admit a faithful homogeneous isometric action
onX. Note that the set N endowed with the discrete metric is a homogeneous
metric space, and its isometry group is S∞, so H(N) denotes the class of
highly transitive groups. In this paper, we are studying the classH(X) where
X is one of the countable Urysohn spaces.

To define countable Urysohn spaces, one first fixes a countable set S ⊂
[0,+∞[, containing 0, and considers the class of all S-metric spaces, that
is, the class of all metric spaces whose distances take values in S. Under a
suitable assumption on S (see the next section), there exists a generic object
in this class, which is characterized as being the unique S-metric space which
contains an isometric copy of each finite S-metric space (universality), and
such that any isometry between finite subsets extends to the whole space
(ultrahomogeneity). We call this space the S-Urysohn space (when S = Q,
this space was built by Urysohn in the seminal paper [Ury27]) and denote
it by US . For instance, when S = {0, 1}, US is simply a countable infinite
set with the discrete metric; for S = {0, 1, 2}, US may be identified with
Erdős–Rado’s random graph R equipped with the path metric.

Little is known about the class H(R). It contains F2 (H. D. Macpher-
son [Mac86]), a locally finite group (M. Bhattacharjee and H. D. Macpher-
son [BM05]), many groups acting on trees such as free products of any two
infinite countable groups (P. Fima, S. Moon and Y. Stalder [FMS16]). A re-
sult of S. Solecki (a proof appears in a paper by C. Rosendal [Ros11]) implies
that the class H(US) always contains a locally finite group. Our main result
relies on the following notion, which was introduced in [FMS15].

Definition 1.2. A subgroup Σ of a countable group Γ is highly core-free
if whenever F is a finite subset of Γ , we may find γ ∈ Γ such that the map

Σ × F → Γ, (σ, f) 7→ σγf,

is injective and its range ΣγF is disjoint from F .

Easy examples of highly core-free subgroups are provided by the trivial
group and any finite subgroup of an i.c.c. group.

Theorem A (see Thm. 6.1). Let Γ be a countable group acting on a
non-trivial tree T . If each edge stabilizer is highly core-free in the two corre-
sponding vertex stabilizers, then Γ ∈ H(US) for all bounded distance sets S.

Corollary B (see Cor. 4.2 and Cor. 5.2). Let S be a bounded distance
set and Γ1, Γ2, H be countably infinite groups with a common subgroup Σ.
Let also θ : Σ → H be an injective group homomorphism. Then:

(1) If Σ is highly core-free in both Γ1, Γ2 then Γ1 ∗Σ Γ2 ∈ H(US). In partic-
ular:
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(a) For any infinite countable groups Γ1, Γ2 one has Γ1 ∗ Γ2 ∈ H(US).
(b) If Sg is a closed, orientable surface of genus g > 1, we have

π1(Sg) ∈ H(US).
(2) If Σ and θ(Σ) are both highly core-free in H then HNN(H,Σ, θ) ∈
H(US).

We also study unbounded Urysohn spaces, for instance when S = Q+.
In that case, we obtain the following result (see Corollary 7.10).

Theorem C. For any infinite countable groups Γ1 and Γ2 one has

Γ1 ∗ Γ2 ∈ H(UQ+).

The method of proof finds its roots in a paper of Dixon [Dix90], and is
an adaptation to the context of S-Urysohn spaces of techniques of P. Fima,
S. Moon and Y. Stalder [MS13, FMS15, FMS16]. Let us describe briefly the
argument in the case of a free product of infinite groups Γ ∗ Λ. First, one
proves that any countable group admits a “sufficiently free” and “sufficiently
rich” action on US (notions that are made clear below; this is easier to do
in the case when S is bounded, explaining why we have stronger results
in that case). Then one uses a Baire category argument: start from two
sufficiently free, sufficiently rich actions π1, π2 of Γ,Λ respectively. Then, for
any α ∈ Iso(US), one can consider the action πα of Γ ∗Λ which coincides with
π1 on Γ and with απ2α−1 on Λ; we then prove that {α : πα is faithful} and
{α : πα(Γ ∗Λ) is dense} are both dense Gδ in Iso(US), thus the intersection O
of these two sets is non-empty; and for any α ∈ O the subgroup πα(Γ ∗ Λ)
is dense in Iso(US) and isomorphic to Γ ∗ Λ.

When S is bounded, this basic strategy can be employed, with some
technical modifications, to cover the case of amalgamated free products over
highly core-free subgroups, and thus surface groups, as well as the case of
free products where one of the factors is finite and the other infinite. Unfor-
tunately, while the basic structure and underlying ideas are the same in all
these proofs, technical aspects involving the triangle inequality differ, forcing
us to write down several times some very similar arguments.

Looking at the results discussed above, one question in particular begs
to be answered: what happens to the class H(US) when S varies? Do these
classes all coincide, can there be non-trivial inclusions, etc.? This question
remains largely open; however, we do manage to establish in the last section
the following result.

Theorem D (see Thm. 8.1). The group S(∞) of all finitary permutations
of N does not belong to H(US) unless |S| = 2, that is, unless Iso(US) ∼= S∞.

Finally, consider the Urysohn space (U, d) which can be obtained as the
metric completion of UQ+ . Then Iso(U) is a Polish group for the topology
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of pointwise convergence induced by the metric d, and a result of Cameron–
Vershik implies that Iso(UQ+) is a dense subgroup of Iso(U) [CV06]. Theo-
rem C thus shows that every free product of infinite countable groups can be
densely embedded in Iso(U). It is however unclear whether every countable
dense subgroup of Iso(U) belongs to the class H(UQ+). The same question
can be asked in the bounded case.

The paper is organized as follows: We first introduce some basic facts
about group actions on metric spaces, and develop the machinery we need to
deal with the bounded case. We then establish the theorems mentioned above
in that case. Once that work is completed, we turn to the unbounded case.
While similar in spirit, this case requires some additional work, including
the construction of some isometric actions of countable groups on countable
metric spaces with interesting combinatorial properties. Finally, we prove
that S(∞) does not belong to H(US) unless |S| = 2.

2. Preliminaries

Definition 2.1. Consider a countable set S ⊆ [0,+∞[ containing 0 and
at least one other element. We say that S is an unbounded distance set if S
is a subsemigroup of the additive semigroup [0,+∞[, meaning that for all
s, t ∈ S we have s+ t ∈ S.

We say that S is a bounded distance set if S has a maximum M =
max(S) > 0 with

∀s, t ∈ S, min(s+ t,M) ∈ S.

Given a bounded or unbounded distance set S, we say that a metric space
(X, d) is an S-metric space if the metric d takes values in S.

Example 2.2. Every graph can be viewed as a {0, 1, 2}-metric space
by letting d(x, y) = 1 when there is an edge between x and y, d(x, y) = 0
if x = y and d(x, y) = 2 if x 6= y and there is no edge between x and y.
Conversely, every {0, 1, 2}-metric space can be seen as a graph equipped with
the above metric.

A map between two metric spaces (X, dX) and (Y, dY ) is an isometry if
it is surjective and for all x1, x2 ∈ X we have dY (f(x1), f(x2)) = dX(x1, x2).
We denote by Iso(X, dX) or simply Iso(X) the group of isometries X → X.

A partial isometry between X and Y is a map ϕ : domϕ ⊆ X → rngϕ
⊆ Y which is an isometry for the restrictions of dX and dY to the sets domϕ
and rngϕ respectively.

A partial isometry is finite if its domain is. We denote by Pf (X) the set
of finite partial isometries between X and X.

Throughout the paper, by A b X we mean A ⊆ X and A is finite.
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For any bounded or unbounded distance set S, the S-Urysohn space US
is the unique, up to isometry, countable S-valued metric space which has
the extension property : given a finite S-metric space (X, d), if (Y, d) is an-
other finite S-valued metric space containing (X, d), any isometric embed-
ding ρ : X → US extends to an isometric embedding ρ̃ : Y → US .

The back-and-forth argument allows one to prove that if (X, dX) and
(Y, dY ) are two countable S-metric spaces satisfying the extension property,
then any finite partial isometry ϕ : domϕ b X → rngϕ b Y extends to
an isometry X → Y . Applying this to the empty map, one sees that the
S-Urysohn space is indeed unique up to isometry.

Before tackling the case S = Q∩ [0,+∞[, we will be focusing on bounded
metric spaces, since our constructions work best in the latter case. Thus we
make the following

Convention. Until Section 7, we assume that S ⊆ [0, 1] and 0, 1 ∈ S.
We thus have a bounded distance set S satisfying

(2.1) ∀s, t ∈ S, min(s+ t, 1) ∈ S.

Remark 2.3. We make the convention that our bounded S-metric spaces
have diameter at most 1 for the sake of simplicity. This does not affect the
strength of our results because we are interested in isometry groups, so the
results remain the same when multiplying the metric by a constant.

Remark 2.4. The {0, 1}-Urysohn space is the set N equipped with
the discrete metric. The {0, 1/2, 1}-Urysohn space is the random graph R
equipped with the metric discussed in Example 2.2. The Q ∩ [0, 1]-Urysohn
space is called the rational Urysohn sphere.

2.1. Finitely supported extensions and amalgamation. We now
recall the construction of amalgamations of metric spaces and recast the
notion of finitely supported extension in this context. The material in this
section is standard.

Let (Y, d) be an S-metric space, supposeX is a subset of Y and let y ∈ Y .
A subset F ⊆ X is called a support for y over X if for all x ∈ X, we have

d(x, y) = min
(
1,min
f∈F

(d(x, f) + d(f, y))
)
.

Observe that every subset containing F is then also a support of y.
We say that a point y ∈ Y is finitely supported over X if it has a fi-

nite support. Note that every element x of X is finitely supported with
support {x}.

We say that a metric space (Y, d) is a finitely supported extension of a
subset X if all its points are finitely supported over X.
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Definition 2.5. Suppose (X1, d1) and (X2, d2) are two S-metric spaces,
such that A = X1∩X2 and d1�A = d2�A. Then we define the metric amalgam
of (X1, d1) and (X2, d2) over A as the set X1∪X2 equipped with the metric d
which restricts to d1 on X1 and d2 and X2 and such that for all x1 ∈ X1 and
all x2 ∈ X2 we have

d(x1, x2) = min
(
1, inf
a∈A

(d1(x1, a) + d2(a, x2))
)
.

We denote the metric amalgam by (X1, d1) ∗A (X2, d2). Note that we allow
amalgamation over the empty set, in which case d(x1, x2) = 1 for all x1 ∈ X1

and all x2 ∈ X2. The fact that we have a well-behaved way of amalgamat-
ing S-metric spaces over the empty set is a notable difference between the
bounded case and the unbounded case.

Remark 2.6. For X ⊆ (Y, d), a point y ∈ Y is finitely supported over X
with a support F b X if and only if X ∪ {y} is the metric amalgam of
F ∪ {y} and X over F .

It is not clear a priori when the metric amalgam of two S-metric spaces
is an S-metric space. However, this is the case when X1 and X2 are finitely
supported over A.

Proposition 2.7. Let (X1, d1) and (X2, d2) be two S-metric spaces which
are finitely supported extensions of a common metric subspace A = X1 ∩X2.
Then the metric amalgam (X1, d1) ∗A (X2, d2) is an S-metric space.

Moreover, if F1 is a support of x1 ∈ X1 and F2 is a support of x2 ∈ X2,
and infa∈A(d1(x1, a)+d2(a, x2)) < 1, then this infimum is a minimum which
is attained both on F1 and F2.

Proof. Pick x1 ∈ X1, x2 ∈ X2. If d(x1, x2) = 1 then this distance belongs
to S, so we only have to deal with the case when

d(x1, x2) = inf
a∈A

(d1(x1, a) + d2(a, x2)) < 1.

By symmetry, we only need to check that if F1 b A is a support of x1, then
infa∈A(d(x1, a) + d2(a, x2)) is attained on F1.

By definition, for each a∈A we have d(x1, a)=minf∈F1(d(x1, f)+d(f, a)).
So for each a ∈ A there is f ∈ F1 such that

d1(x1, a) + d2(a, x2) = d1(x1, f) + d1(f, a) + d2(a, x2).

But d1 and d2 coincide on A, so d1(f, a) + d2(a, x2) = d2(f, a) + d2(a, x2) ≥
d2(f, x2). We conclude d1(x1, a) + d2(a, x2) ≥ d1(x1, f) + d2(f, x2), so our
infimum is indeed a minimum attained on F1.

We will also make use of the following fact.

Lemma 2.8. Suppose (Y, d) is an S-metric space, X ⊆ Y and y1, y2 ∈ Y
are finitely supported over X, with supports F1, F2, and X ∪ {y1, y2} is the
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metric amalgam of X ∪ {y1} and X ∪ {y2} over X. Suppose moreover that
d(f1, f2) = 1 for all f1 ∈ F1 and all f2 ∈ F2. Then d(y1, y2) = 1.

Proof. This follows from Proposition 2.7: Assume d(y1, y2) < 1. Then
there exists f1 ∈ F1 such that d(y1, y2) = d(y1, f1) + d(f1, y2), and by def-
inition of a support there exists f2 ∈ F2 such that d(f1, y2) = d(f1, f2) +
d(f2, y2). Hence d(f1, f2) < 1, contradicting the assumption of the lemma.

The construction of metric amalgams makes sense with an arbitrary num-
ber of factors: when (Xi, di)i∈I is a family of S-metric spaces which are
finitely supported over A and for all i 6= j we have A = Xi ∩ Xj and
di�A = dj�A then we can form the metric amalgam of (Xi, di)i∈I over A as
the set

⋃
i∈I Xi equipped with the metric d which coincides with di when

restricted to Xi, and such that for all i 6= j and all xi ∈ Xi and xj ∈ Xj we
have

d(xi, xj) = min
(
1, inf
a∈A

(di(xi, a) + dj(a, xj))
)
.

Observe that when restricted to Xi ∪Xj , the metric is the one of the met-
ric amalgam of Xi and Xj over A. Proposition 2.7 then has the following
immediate corollary.

Corollary 2.9. Let (Xi, di)i∈I be a family of S-metric spaces such that
for all i 6= j we have A = Xi ∩Xj and di�A = dj�A. Suppose that each Xi is
finitely supported over A. Then the metric amalgam of (Xi, di)i∈I over A is
an S-metric space.

2.2. S-Urysohn spaces and one-point extensions. Let us now see
how to build US , i.e. how to build a countable S-metric space with the
extension property using a slight variation of Katětov’s ideas [Kat88].

Given an S-metric space (X, d) and another S-metric space (Y, d) con-
taining X, we say that Y is a one-point extension of X if |Y \ X| = 1.
A straightforward induction yields that US is characterized by the follow-
ing version of the extension property: for every one-point extension (Y, d)
of every finite S-metric space (X, d), any isometric embedding ρ : X → US
extends to an isometric embedding ρ̃ : Y → US .

One-point extensions are completely determined by the distance to the
added point. Such distance functions can be characterized as the functions
f : X → S satisfying

(2.2) |f(x1)− f(x2)| ≤ d(x1, x2) ≤ f(x1) + f(x2) for all x1, x2 ∈ X.
The functions f : X → S satisfying the above condition are thus also called
one-point extensions of X, and we will often switch between the two points
of views.

Definition 2.10. Whenever (X, d) is an S-metric space, we denote by
ES(X) the space of all finitely supported one-point extensions of X. By
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definition these are the functions f : X → S satisfying (2.2) such that there
is F b X satisfying, for all x ∈ X,

f(x) = min
(
1,min
y∈F

(f(y) + d(y, x))
)
.

Such a subset F is called a support for f . Supports are not unique: any finite
set containing a support of f is a support of f .

Note that if F b X, any one-point extension f of (F, d) extends to a
finitely supported one-point extension f̃ of X defined by

f̃(x) = min
(
1,min
y∈F

(f(y) + d(y, x))
)
.

This extension is called the Katětov extension of f , and may be viewed as
the metric amalgam of F ∪ {f} and X over F .

A key idea of the Katětov construction of the S-Urysohn space is that X
embeds isometrically into ES(X) as the space of trivial one-point extensions,
i.e. extensions of the form x̂ = d(x, ·). We moreover have ‖f − x̂‖∞ = f(x),
so ES(X) contains as a metric subspace every finitely supported one-point
extension of X, and hence every one-point extension of every finite subset
of X. Also note that ES(X) is countable if X was countable.

However the metric induced by ‖·‖∞ on ES(X) is not the right one for
us because we want the one-point extensions to be as far from each other as
possible. The reason for this will become apparent when we construct for every
countable group an action on the S-Urysohn space which is as free as possible.

So for f, g ∈ ES(X) we define a new metric, still denoted by d, by setting

d(f, g) :=

min
(
1, inf
x∈X

(f(x) + g(x))
)

if f 6= g,

0 if f = g.

Observe that d is the metric obtained by amalgamating all the finitely sup-
ported one-point extensions of (X, d) over X, which as a set is still ES(X).
In particular, d is indeed a metric and takes values in S by Corollary 2.9.
By construction, (X, d) is a metric subspace of (ES(X), d).

One way of constructing the S-Urysohn space is now to start with an
arbitrary countable metric space (X, d), let X0 = X and then define by
induction Xn+1 = ES(Xn). The metric space

⋃
n∈NXn then satisfies the

one-point extension property by construction, and hence it is isometric to
the S-Urysohn space US . Moreover, the construction is equivariant in the
sense that if Γ acts on X by isometries, then the action naturally extends to
ES(X) so that in the end we get a Γ -action by isometries on US . In order to
make the action as free as possible, we will however need to further modify
this construction. Let us start by making clear what we mean by “as free as
possible”.
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2.3. Freeness notions for actions on metric spaces. Let Γ be a
countable group. If (X, d) is a metric space, we write Γ y (X, d) if Γ acts
on X by isometries. A Γ -action by isometries on X is thus a group homo-
morphism Γ → Iso(X, d).

We will need the following three notions for an action Γ y (X, d) where
X is an S-metric space.

Definition 2.11. An action Γ y (X, d) is mixing if for all x, y ∈ X and
for all but finitely many γ ∈ Γ we have d(γx, y) = 1.

Observe that if Γ y (X, d) is mixing, then for any finite subset F ⊆ X,
for all but finitely many γ ∈ Γ we have d(γx, y) = 1 for all x, y ∈ F . Also
note that the action of any finite group is mixing. Finally, if Γ y (X, d) is
mixing then the restriction of the action to every subgroup Λ ≤ Γ is mixing.

Definition 2.12. An action Γ y (X, d) is strongly free if, for all γ ∈
Γ \ {1} and all x ∈ X, one has d(γx, x) = 1.

Note that any strongly free action is obviously free.

Definition 2.13. Let Σ < Γ be a subgroup. We say that Σ is highly
core-free for the action Γ y (X, d) if for all F b X, there exists g ∈ Γ such
that d(gx, u) = 1 = d(σgx, gy) for all x, y ∈ F , u ∈ ΣF and σ ∈ Σ \ {1}.

Remark 2.14. The fact that d(σgx, gy) = 1 for all x, y ∈ F , σ ∈ Σ \{1}
implies that the Σ-action on ΣgF is conjugate to the Σ-action on Σ × F
given by σ(σ′, x) = (σσ′, x) where we put on Σ × F the metric d̃ given by

d̃((σ, x), (σ′, y)) =

{
d(x, y) if σ = σ′,

1 else.

Note that if Σ is highly core-free for an action Γ y (X, d) then any
subgroup of Σ is highly core-free for Γ y (X, d).

Our terminology extends that from [FMS15]: it is easy to check that, if d
is the discrete metric, then Σ is highly core-free for Γ y (X, d) in the sense
above if and only if Σ is strongly highly core-free for the action Γ y X
on the set X in the sense of [FMS15, Definition 1.7]. If moreover the action
Γ y X is free, then the previous conditions are equivalent to Σ being highly
core-free in Γ (see [FMS15, Definition 1.1 and Lemma 1.6]). As mentioned in
the introduction, easy examples of highly core-free subgroups are the trivial
subgroup of an infinite group and any finite subgroup of an i.c.c. group. A less
immediate example is the fact that in the free group over two generators
F2 = 〈a, b〉, the cyclic subgroup generated by the commutator [a, b] is highly
core-free. This fact will allow us to show that surface groups arise as dense
subgroups in the isometry group of any bounded S-Urysohn space, following
the same strategy as in [FMS15, Ex. 5.1]. We refer to [FMS15, Ex. 1.11] for
proofs and for more examples of highly core-free subgroups.
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Let us now see how these notions behave with respect to ES(X) (see Def-
inition 2.10). Note that we have an injective group homomorphism Iso(X, d)
→ Iso(ES(X), d) defined by ϕ 7→ (f 7→ ϕ(f)), where ϕ(f)(x) = f(ϕ−1(x)).
In particular, from any action Γ y X we get an action Γ y ES(X) defined
by (γf)(x) = f(γ−1x) for γ ∈ Γ and f ∈ ES(X).

Proposition 2.15. Let Γ y (X, d) be an action by isometries. Then:

(1) If Γ y (X, d) is faithful then Γ y ES(X) is faithful.
(2) If Γ y (X, d) is mixing then Γ y ES(X) is mixing.
(3) If Σ < Γ is highly core-free for Γ y (X, d) then it is also highly core-free

for Γ y ES(X).

Proof. (1) is obvious since we have a Γ -equivariant inclusionX ⊆ ES(X).
(2) Let f, g ∈ ES(X); let F be a common finite support for f and g.

Since Γ y X is mixing, for all but finitely many γ ∈ Γ we have d(γx, y) = 1
for all x, y ∈ F . Note γF is a support for γf . It now follows from Lemma 2.8
that d(γf, g) = 1 for all but finitely many γ ∈ Γ .

(3) Let F ⊆ ES(X) be a finite subset. For each f ∈ F let Yf b X
be a support for f and define Y =

⋃
f∈F Yf ⊆ X. If γ ∈ Γ is such that

d(γx, u) = 1 and d(σγx, γy) = 1 for all x, y ∈ Y , u ∈ ΣY and σ ∈ Σ \ {1},
then it follows from Lemma 2.8 that d(γf, h) = 1 and d(σγf, γg) = 1 for all
f, g ∈ F , h ∈ ΣF and σ ∈ Σ \ {1}.

Observe that we did not mention strong freeness, which indeed does not
carry over to ES(X). For instance, if X is finite and we let f ∈ ES(X) be
defined by f(x) = 1 for all x ∈ X, then f is actually fixed by the Γ -action.
One can tweak the above construction of US to get rid of this obstruction,
as we will see in Section 3.

2.4. Homogeneous actions on countable metric spaces. When all
the finite partial isometries of a metric space (X, d) extend to isometries, we
say that X is homogeneous. By a back-and-forth argument, US is a homo-
geneous metric space.

The isometry group of the S-Urysohn space US is endowed with the
topology of pointwise convergence for the discrete topology on US . It then
becomes a Polish group, and our main motivation is to understand which
countable groups arise as dense subgroups of Iso(US). Recall from the in-
troduction that this is the same as asking which countable groups admit a
faithful action by isometries on US such that every finite partial isometry
of US extends to an element of Γ . Such actions are called homogeneous ac-
tions, and we denote by H(US) the class of countable groups which admit a
faithful homogeneous action on US .

One can use the methods of K. Tent and M. Ziegler [TZ13a] (see also
[TZ13b] for considerations on the unbounded case) to show that the isometry
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group of any countable S-Urysohn space is topologically simple (every non-
trivial normal subgroup is dense). This yields via the following proposition
some restrictions on the class H(US).

Proposition 2.16. Let G be a non-abelian infinite topologically simple
topological group, and suppose Γ is a dense subgroup. Then every non-trivial
normal subgroup of Γ is dense in G and every finite index subgroup of Γ is
dense in G. Moreover, Γ is i.c.c. and non-solvable.

Proof. The first statement follows from the fact that for any normal
subgroup N ≤ Γ its closure N is, by density of Γ , normal in G. So either
N = {1} or N is dense in G. Moreover, any finite index subgroup Σ ≤ Γ has
a finite index subgroup N ≤ Σ which is normal in Γ and non-trivial since
it has to be infinite. It follows that any finite index subgroup of Γ is again
dense in G.

To prove the second statement, first observe that the center Z(Γ ) of a
dense subgroup Γ ≤ G must be trivial. Indeed, Z(Γ ) is a normal subgroup
of Γ which is abelian, but G is not, so the center of any dense subgroup of G
must be trivial.

Now suppose that γ ∈ Γ has a finite conjugacy class and denote by
C(γ) := {γ′ ∈ Γ : γγ′ = γ′γ} its centralizer. By definition C(γ) has finite
index in Γ , so by the first statement it is dense and thus has trivial center,
from which we deduce that γ is trivial since γ belongs to the center of C(γ).
We conclude Γ is i.c.c.

Finally, for a group Λ, let us denote by D(Λ) the subgroup of Λ generated
by all commutators. Recall that D(Λ) is normal in Λ. Now define Γ0 := Γ
and, for n ≥ 0, Γn+1 := D(Γn). We show by induction that for all n ≥ 0 the
subgroup Γn is dense in G, which implies that Γ is not solvable. The case
n = 0 is true by assumption. Suppose Γn is dense in G. Then Γn+1 is either
trivial or dense in G since it is normal in Γn. However, Γn+1 is not trivial
since Γn, being dense in G, cannot be abelian.

Corollary 2.17. If Γ ∈ H(US) for some distance set S then Γ is i.c.c.
and non-solvable. Furthermore, every finite index subgroup of Γ belongs to
H(US).

When S = {0, 1}, recall that H(US) is the class of highly transitive
groups. Hull and Osin have furthermore shown the following dichotomy:
a highly transitive group either contains a copy of the infinite alternating
group, or is mixed identity free, which has stronger implications than those
of the previous corollary (see [HO16, Sec. 5]).

Remark 2.18. We do not know whether in Proposition 2.16, for say
a Polish group G, one can remove the hypothesis that G is non-abelian.
Indeed, there may exist a topologically simple infinite Polish abelian group,
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in other words there may exist an infinite abelian Polish group with no
nontrivial proper closed subgroup (see [Hoo76, end of Section 2], where it is
also proved that there is an infinite Polish abelian group all of whose locally
compact subgroups are trivial).

3. Strongly free actions on the S-Urysohn space

3.1. Equivariant extension of partial isometries

Definition 3.1. A Γ -action by isometries on an S-metric space X has
the extension property if every finitely supported one-point extension over a
finite union of Γ -orbits is realized in X.

Let us make a few remarks about this definition. First, it is clear that
the following assertions are equivalent:

• X has the extension property.
• The trivial action on X of the trivial group has the extension property.
• The action of any finite group on X has the extension property.

Also, if Γ y X has the extension property, then for every Λ ≤ Γ the
Λ-action on X also has the extension property. Indeed if f is a finitely
supported one-point extension over ΛF where F b X, then the Katětov
extension of f to ΓF is also finitely supported (with the same support), and
hence realized in X. In particular, if there exists a group Γ acting on X such
that the action Γ y X has the extension property then X has the extension
property (since the action of the trivial subgroup of Γ has the extension
property).

Finally, note that any action with the extension property has infinitely
many orbits at distance 1 from each other because the one-point extension
f(x) = 1 is finitely supported.

Definition 3.2. LetΣ be a group, and for k = 1, 2 let πk : Σ y (Xk, dk).
A (π1, π2)-partial isometry is an isometry between π1(Σ)F1 and π2(Σ)F2

where F1 b X1 and F2 b X2 which is (π1, π2)-equivariant. A (π1, π2)-
isometry is a (π1, π2)-equivariant bijective isometry from X1 to X2.

Lemma 3.3. Suppose Γ y (X, d) is a mixing action and F is a finite
subset of X. Then for every x ∈ X, the function d(x, ·) is a finitely supported
one-point extension of ΓF .

Proof. Since the action is mixing, there are only finitely many points
y ∈ ΓF such that d(x, y) < 1. These points form a support for d(x, ·).

The next proposition is the key building block of most of our construc-
tions.
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Proposition 3.4. For k = 1, 2, let πk : Σ y US be actions of a countable
group Σ which are strongly free, mixing and have the extension property.
Then every (π1, π2)-partial isometry ϕ extends to a (π1, π2)-isometry of US.

Proof. A straightforward back-and-forth argument implies we only need
to show that for every (π1, π2)-partial isometry ϕ and every x ∈ US \domϕ,
there is a (π1, π2)-partial isometry ϕ̃ whose domain contains x and which
extends ϕ. Let f be the one-point extension of rngϕ defined by f(y) =
d(ϕ−1(y), x) for all y ∈ rngϕ.

Because π1 is mixing, Lemma 3.3 tell us that f is finitely supported. By
the extension property, there is z ∈ US such that for all y ∈ rngϕ we have
d(ϕ−1(y), x) = d(y, z).

Observe that the extension of ϕ obtained by sending x to z is by con-
struction a partial isometry. By freeness, we may extend ϕ further to a
(π1, π2)-equivariant partial isometry ϕ̃ : domϕ t π1(Σ)x → rngϕ t π2(Σ)z
by letting ϕ̃(π1(σ)x) = π2(σ)z.

Let us check that ϕ̃ is indeed a partial isometry. First, by strong freeness
its restriction to π1(Σ)x is isometric. Since ϕ was also isometric, we only
need to check that if x1 ∈ domϕ and x2 ∈ π1(Σ)x then d(ϕ(x1), ϕ̃(x2)) =
d(x1, x2).

Let σ ∈ Σ be such that x2 = π1(σ)x. Then

d(x1, x2) = d(π1(σ
−1)x1, x) = d(ϕ(π1(σ

−1)x1), z) = d(π2(σ
−1)ϕ(x1), z)

= d(ϕ(x1), π2(σ)z) = d(ϕ(x1), ϕ̃(x2)).

So ϕ̃ is indeed a (π1, π2)-partial isometry.

3.2. Extensions with parameters. Let (Y, dY ) be an S-metric space,
suppose X ⊆ Y and A is a set. Then we can consider the space Y × A
equipped with the pseudometric

d((y, a), (y′, a′)) =

min
(
1, inf
x∈X

(dY (y, x) + dY (x, y
′))
)

if a′ 6= a,

dY (y, y
′) if a′ = a.

Then the metric space obtained by identifying elements at distance 0 is
denoted by Y ×X A, and the induced metric still by d. Observe that for
x, x′ ∈ X and a, a′ ∈ A,

d((x, a), (x′, a′)) = inf
x′′∈X

(
dY (x, x

′′) + dY (x
′′, x′)

)
= dY (x, x

′)

so Y ×XA is the metric amalgam of |A| copies of Y over X and thus Y ×XA
is a S-metric space as soon as Y is a finitely supported extension of X.

We have the following inequality: for all (y, a) and (y′, a′) in Y ×X A,

(3.1) d((y, a), (y′, a′)) ≥ dY (y, y′)
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because by the triangle inequality for all x we have dY (y, x) + dY (x, y
′) ≥

dY (y, y
′).

We also have for each a ∈ A an isometry ia : Y → Y ×X A which takes
y to (y, a). In particular Y embeds in Y ×X A isometrically.

For all a 6= a′ and all x ∈ X we have ia(x) = ia′(x) and we thus let
i : X → Y ×X A be the common map.

Remark 3.5. Every isometry g of Y which preservesX naturally extends
to Y ×X A by letting g(y, a) = (gy, a). The construction we need is different,
however.

Proposition 3.6. Suppose that we have a group Γ acting on Y by isome-
tries which preserve the set X, and suppose moreover that Γ acts on A. Then
the diagonal action on Y × A defined by γ(y, a) = (γy, γa) induces an iso-
metric action on (Y ×X A, d) which extends the Γ -action on X.

Proof. Let us check that every γ ∈ Γ defines an isometry for the pseu-
dometric d. Let a, a′ ∈ A and y, y′ ∈ Y . If a = a′ then d(γ(y, a), γ(y′, a′)) =
dY (γy, γy

′) = d((y, a), (y′, a′)). If a 6= a′ then γa 6= γa′ and thus

d(γ(y, a), γ(y′, a′)) = min
(
1, inf
x∈X

(dY (γy, x) + dY (x, γy
′))
)

= min
(
1, inf
x∈X

(dY (γy, γx) + dY (γx, γy
′))
)

because X = γX. Now using the fact that γ is an isometry, we conclude

d(γ(y, a), γ(y′, a′)) = min
(
1, inf
x∈X

(dY (y, x) + dY (x, y
′))
)

= d((y, a), (y′, a′)).

Finally observe that the embedding i : X → Y ×X A is Γ -equivariant and
thus conjugates the Γ -action on X to the Γ -action on i(X).

We call the above action the diagonal action of Γ on Y ×X A.

Proposition 3.7. Let Γ be a group acting by isometries on (Y, dY ), let
X ⊆ Y be a Γ -invariant subset and let A be a set also acted upon by Γ .
Then:

(1) If the Γ -action on X is faithful then the Γ -action on Y ×X A is faithful.
(2) If the Γ -action on Y is mixing then the Γ -action on Y ×X A is mixing.
(3) If Σ ≤ Λ ≤ Γ and Σ is highly core-free for the Λ-action on Y then Σ

is also highly core-free for the Λ-action on Y ×X A.
(4) If the Γ -action on X is strongly free and the Γ -action on A is free then

the Γ -action on Y ×X A is strongly free.
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Proof. (1) is obvious since the isometry i : X → Y ×XA is Γ -equivariant.
(2) Suppose the Γ -action on Y is mixing. Let (y1, a1), (y2, a2) ∈ Y ×X A.

By assumption for all but finitely many γ ∈ Γ we have dY (γy1, y2) = 1, so by
inequality (3.1) for all but finitely γ ∈ Γ we have d(γ(y1, a1), (y2, a2)) = 1.

(3) Let Λ ≤ Γ ; let Σ ≤ Λ. Suppose Σ is highly core-free for the Λ-action
on Y . Let F b Y ×X A and write F = F1 × {a1} t · · · t Fn × {an}. Let
F̃ =

⋃n
i=1 Fi. Then there is λ ∈ Λ such that dY (λy, u) = 1 = dY (σλy, λy

′)
for all y, y′ ∈ F , u ∈ ΣF and all σ ∈ Σ \ {1}. As before by inequality (3.1)
we are done.

(4) Suppose the Γ -action on X is strongly free and the Γ -action on A is
free. Let (y, a) ∈ Y ×X A and let γ ∈ Γ \ {1}. Then γa 6= a, so

d((y, a), γ(y, a)) = inf
x∈X

(dY (y, x) + dY (x, γy))

= inf
x∈X

(dY (y, x) + dY (y, γ
−1x)) ≥ inf

x∈X
dY (x, γ

−1x).

By strong freeness for all x ∈ X we have dY (x, γ−1x) = 1. We see that
d((y, a), γ(y, a)) = 1 and the Γ -action on Y ×X A is thus strongly free.

Suppose now Γ is a countable group acting on an S-metric space (X, d) by
isometries. Then the Γ -action extends to ES(X), and we define the S-metric
space EΓS (X) = ES(X)×X Γ . Then the Γ -action by left translation on itself
provides us with a Γ -action on EΓS (X) which extends the Γ -action on X.
We have the following facts.

Proposition 3.8.

(1) If the Γ -action on X is faithful then so is the Γ -action on EΓS (X).
(2) If the Γ -action on X is mixing then so is the Γ -action on EΓS (X).
(3) If Σ ≤ Λ ≤ Γ and Σ is highly core-free for the Λ-action on X then Σ is

also highly core-free for the Λ-action on EΓS (X).
(4) If the Γ -action on X is strongly free then the Γ -action on EΓS (X) is

strongly free.

Proof. This is a straightforward application of the previous proposition
along with Proposition 2.15.

3.3. Induced actions on the S-Urysohn space. Let (X, d) be an S-
metric space on which Γ acts by isometries. Define the sequence of S-metric
spaces XΓ

0 = X and, for n ≥ 0, XΓ
n+1 = EΓS (X

Γ
n ). Consider the inductive

limit XΓ
∞ = lim

→
XΓ
n along with its natural Γ -action.

Proposition 3.9. With the notations above, the following hold:

(1) XΓ
∞ ' US.

(2) If the Γ -action on X is mixing then so is the Γ -action on XΓ
∞.
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(3) If Σ ≤ Λ ≤ Γ is highly core-free for the Λ-action on X then it is also
highly core-free for the Λ-action on XΓ

∞.
(4) If the Γ -action on X is strongly free then so is the Γ -action on XΓ

∞.
(5) The Γ -action on XΓ

∞ has the extension property.

Proof. Assertions (2) to (4) follow from Propositions 3.8 and the fact
that these conditions hold on XΓ

∞ if and only if they hold on XΓ
n for each

n ∈ N.
(5) Let F be a finite subset of XΓ

∞ and let f be a finitely supported
one-point extension of ΓF . Pick N large enough that F ⊆ XΓ

N . Since X
Γ
N

is Γ -invariant, we also have ΓF ⊆ XΓ
N . Let f̃ be the Katětov extension

of f to XΓ
N ; observe that f̃ is still finitely supported with the same support

as f and thus f̃ ∈ ES(XΓ
N ). For all x ∈ XΓ

N we have d(x, f̃) = f̃(x) where
d is the metric on ES(X

Γ
N ), in particular d(x, f̃) = f(x) for all x ∈ ΓF .

Since ES(XΓ
N ) embeds isometrically in XΓ

∞ via a Γ -equivariant map which
fixes XΓ

N , the proof of (5) is complete.
(1) It follows from (5) that XΓ

∞ itself has the extension property. Hence,
XΓ
∞ ' US .
Corollary 3.10. Every finite group admits a unique strongly free action

on US up to conjugacy.

Proof. Let Γ be a finite group. Consider the left action of Γ on itself
as an action by isometries where we put on Γ the discrete metric. This
action is clearly strongly free. By Proposition 3.9 we can extend this action
to a strongly free action of Γ on (US , d). Now observe that any Γ -action
on US is automatically mixing and has the extension property. Applying
Proposition 3.4 to the empty map, we see that our strongly free action is
unique up to conjugacy.

Corollary 3.11. Any infinite countable group Γ admits a unique (up
to conjugacy) strongly free mixing action with the extension property on US.
This action has the property that, for any subgroups Σ ≤ Λ ≤ Γ such that
Σ ≤ Λ is a highly core-free subgroup, Σ is highly core-free for Λy US.

Proof. Uniqueness follows from Proposition 3.4 applied to the empty
map. To prove existence of such an action, and that it has the property
mentioned above, start from Γ acting on X = Γ by left translation where
we equip X with the discrete metric d(x, y) = 1 for x 6= y and d(x, x) = 0. It
is clear that Γ y X is strongly free and mixing. Consider Γ y XΓ

∞. Then by
the previous proposition this action is a strongly free mixing action on the
S-Urysohn space with the extension property. Now fix subgroups Σ ≤ Λ ≤ Γ
and suppose that Σ ≤ Λ is a highly core-free subgroup. It is clear that Σ is
highly core-free for Λy X, since d is the discrete metric and Λy X is free.
It follows from Proposition 3.9(3) that Σ is highly core-free for Λy XΓ

∞.
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4. Actions of amalgamated free products on bounded Urysohn
spaces. Let Γ1, Γ2 be two countable groups with a common subgroup Σ
and define Γ = Γ1 ∗Σ Γ2. Suppose that we have a faithful action Γ y US
and view Γ as a subgroup of Iso(US).

Let
Z := {α ∈ Iso(US) : ∀σ ∈ Σ, ασ = σα}.

Note that Z is a closed subgroup of Iso(US), hence a Polish group. Moreover,
for all α ∈ Z, there exists a unique group homomorphism πα : Γ → Iso(US)
such that

πα(g) =

{
g if g ∈ Γ1,
α−1gα if g ∈ Γ2.

When Σ is trivial, we have Z = Iso(US). In this section we prove the
following result.

Theorem 4.1. If Γ y US is free with the extension property, Σ y US
is strongly free, mixing and Σ is highly core-free for Γ1, Γ2 y US then the
set

O = {α ∈ Z : πα is homogeneous and faithful}
is dense Gδ in Z.

Beforehand, we immediately deduce:

Corollary 4.2. Assume Γ1, Γ2 are two countable groups with a common
subgroup Σ, highly core-free in both Γ1, Γ2. Then Γ1 ∗Σ Γ2 belongs to H(US).
In particular:

• For any infinite countable groups Γ1, Γ2 we have Γ1 ∗ Γ2 ∈ H(US).
• For any i.c.c. groups Γ1, Γ2 with a common finite subgroup Σ we have
Γ1 ∗Σ Γ2 ∈ H(US).
• If Σg is a closed, orientable surface of genus g > 1, then π1(Σg) ∈ H(US).

Proof. The first two assertions are a direct consequence of Theorem 4.1,
Corollary 3.11 and the examples of highly core-free subgroups given in
[FMS15, Lem. 1.10]. Moreover, since in the free group over two generators
F2 = 〈a, b〉, the cyclic group generated by [a, b] is highly core-free [FMS15,
Ex. 1.11], we also see that π1(Σ2) belongs to H(US). By covering theory,
the latter admits every π1(Σg) for g ≥ 2 as a finite index subgroup, so by
Corollary 2.17 all such groups belong to H(US).

To prove the theorem, we establish two lemmas; the theorem follows by
applying the Baire category theorem.

Lemma 4.3. Assume Σ y US is strongly free, mixing, has the extension
property, and Σ is highly core-free for Γ1, Γ2 y US. Then the set U =
{α ∈ Z : πα is homogeneous} is dense Gδ in Z.
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Proof. For every finite partial isometry ϕ, consider the following open
set:

Uϕ := {α ∈ Z : ∃g ∈ Γ such that πα(g)�domϕ = ϕ}.

Then U =
⋂
ϕ∈Pf (US)

Uϕ so by the Baire category theorem it suffices to show
that Uϕ is dense for every finite partial isometry ϕ. Let ϕ ∈ Pf (US), α ∈ Z
and F b US . We need to prove that there are β ∈ Z and g ∈ Γ such that
β�F = α�F and πβ(g)�domϕ = ϕ.

Since Σ is highly core-free for Γ1 y US , there is g1 ∈ Γ1 such that

∀u ∈ ΣF ∀x, x′ ∈ domϕ ∀σ ∈ Σ \ {1}, d(g1x, u) = 1 = d(σg1x, g1x
′).

Define F ′ = F ∪ g1 domϕ. There exists h1 ∈ Γ1 such that

∀u ∈ ΣF ′ ∀y, y′ ∈ rngϕ ∀σ ∈ Σ \ {1}, d(h1y, u) = 1 = d(σh1y, h1y
′).

Since Σ is highly core-free for Γ2 y US , there is g2 ∈ Γ2 such that

∀u, v ∈ αF ′ ∀w ∈ ΣαF ′ ∀σ ∈ Σ \ {1}, d(σg2u, g2v) = 1 = d(g2u,w).

Define A = ΣF ′ tΣh1 rngϕ and B = α(ΣF ′) tΣg2α(g1 domϕ).
Note that ΣA = A, and since α ∈ Z, ΣB = B. Since the Σ-action is

free, we can define a Σ-equivariant map β0 : A→ B by setting

• ∀u ∈ ΣF ′, β0(u) = α(u);
• ∀x ∈ domϕ ∀σ ∈ Σ, β0(σh1ϕ(x)) = σg2α(g1x).

By careful choices of the elements g1, g2, h1 the map β0 is a Σ-equivariant
partial isometry. Since the Σ-action is strongly free and mixing with the
extension property, we may apply Proposition 3.4 to get an extension β ∈ Z
of β0. Note that β�F = α�F . Letting g = h−11 g2g1 ∈ Γ we have, for all
x ∈ domϕ,

πβ(g)x = h−11 β−1g2βg1x = h−11 β−1g2α(g1x) = h−11 h1ϕ(x) = ϕ(x)

as wanted.

Lemma 4.4. If Γ y US is free with the extension property, and Σ y US
is strongly free and mixing, then the set V = {α ∈ Z : πα is faithful} is dense
Gδ in Z.

Proof. We can write V as a countable intersection V =
⋂
g∈Γ\{1} Vg of

open sets, where Vg = {α ∈ Z : πα(g) 6= id}, so by the Baire category
theorem it suffices to show that Vg is dense for all g ∈ Γ \ {1}. Since the
action Γ y US is faithful, we have Vg = Z for all g ∈ (Γ1 ∪ Γ2) \ {1} and it
suffices to show that Vg is dense for all g reduced of length ≥ 2.

Let g = gin . . . gi1 , where n ≥ 2 and gik ∈ Γik \Σ. Fix α ∈ Z and F b US
and define F ′ = F ∪ α(F ) b US . Since Γ y US has the extension property,
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there exists x ∈ US such that d(x, u) = 1 for all u ∈ ΓF ′. Define

A := ΣF t
( n⊔
l=1

Σgil . . . gi1x
)
tΣx,

B := α(ΣF ) t
( n⊔
l=1

Σgil . . . gi1x
)
tΣx.

Note that ΣA = A, and since α ∈ Z, ΣB = B. Define a bijection γ0 : A→ B
by γ0�ΣF = α�ΣF and γ0�A\ΣF = id. Note that by definition of x, any
element of A \ (ΣF ) (resp. B \ α(ΣF )) is at distance 1 of any element of
ΣF (resp. α(ΣF )). It follows that γ0 is an isometry, and since α ∈ Z, we
have γ0σ = σγ0 for all σ ∈ Σ.

Our assumptions on the action of Σ enable us to apply Proposition 3.4,
and find an extension γ ∈ Z of γ0. Then γ�F = α�F and πγ(gin . . . gi1)x =
gin . . . gi1x 6= x, since g = gin . . . gi1 6= 1 and the Γ -action is free. Hence
γ ∈ Vg.

When one of the factors, say Γ2, is finite, then, as explained in [FMS15],
Γ2 has no highly core-free subgroups. However, we have a similar result in
that case.

Theorem 4.5. Suppose Γ2 is finite and [Γ2 : Σ] ≥ 2. If Γ y US is
strongly free with the extension property and Σ is highly core-free for Γ1 y US
then the set

O := {α ∈ Z : πα is homogeneous and faithful}
is dense Gδ in Z.

As before, we have a corollary following from Theorem 4.5, Corollary 3.11,
and from the examples of highly core-free subgroups given in [FMS15].

Corollary 4.6. For every infinite countable group Γ1 and every finite
group Γ2 with common subgroup Σ < Γ1, Γ2 such that Σ is highly core-free
in Γ1 and [Γ2 : Σ] ≥ 2, we have Γ1 ∗Σ Γ2 ∈ HUS

. In particular:

• If Γ1 is countably infinite and Γ2 is finite non-trivial then Γ1 ∗ Γ2 ∈ HUS
.

• If Γ1 is i.c.c., Γ2 is finite and [Γ2 : Σ] ≥ 2 then Γ1 ∗Σ Γ2 ∈ HUS
.

To prove Theorem 4.5, we prove the analogue of Lemma 4.3. The theorem
then follows as before from a combination of Lemmas 4.7 and 4.4.

Lemma 4.7. Assume Γ y US is strongly free with the extension property,
Σ is highly core-free for Γ1 y US, Γ2 is finite and [Γ2 : Σ] ≥ 2. Then the
set U := {α ∈ Z : πα is homogeneous} is dense Gδ in Z.

Proof. We again have to prove that, for ϕ ∈ Pf (US), α ∈ Z and F b US ,
we can find γ ∈ Z and g ∈ Γ such that γ�F = α�F and πγ(g)�domϕ = ϕ.
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Since Σ is highly core-free for Γ1 y US and Γ2 is finite, we may find
g1, h1 ∈ Γ1 such that

• ∀u ∈ Γ2F ∀x ∈ domϕ, d(g1x, u) = 1,
• ∀σ ∈ Σ \ {1} ∀x, y ∈ domϕ, d(σg1x, g1y) = 1,
• ∀u ∈ Γ2F t Γ2g1 domϕ ∀y ∈ rngϕ, d(h1y, u) = 1,
• ∀σ ∈ Σ \ {1} ∀x, y ∈ domϕ, d(σh1ϕ(x), h1ϕ(y)) = 1.

Using the fact that Γ2 is finite, acts strongly freely, and US has the
extension property, it is straightforward to build inductively a finite set A
and an isometry ψ : domϕ→ A such that

• ∀h ∈ Γ2 \ {1} ∀a, a′ ∈ A, d(ha, a′) = 1,
• ∀a ∈ A ∀u ∈ Γ2α(F ), d(u, a) = 1.

Take g2 ∈ Γ2 \ Σ. Then the sets α(ΣF ), ΣA, and Σg2A are pairwise
disjoint. Define

B = ΣF tΣg1 domϕ tΣh1 rngϕ and C = α(ΣF ) tΣA tΣg2A.
Note that ΣB = B, ΣC = C and the bijection γ0 : B → C defined by
γ0(u) = α(u) for u ∈ ΣF , γ0(σg1x) = σψ(x) and γ0(σh1ϕ(x)) = σg2ψ(x)
for all σ ∈ Σ and all x ∈ domϕ is, by construction, an isometry such that
γ0σ = σγ0 for all σ ∈ Σ. Since Σ is finite, Σ y US is mixing so we may
apply Proposition 3.4 to get an extension γ ∈ Z of γ0. Note that γ�F = α�F .
Moreover, with g = h−11 g2g1 ∈ Γ and x ∈ domϕ we have

πγ(g)(x) = h−11 γ−1g2γg1x = h−11 γ−1g2ψ(x) = h−11 γ−1γh1ϕ(x) = ϕ(x).

5. Actions of HNN extensions on bounded Urysohn spaces. Let
Σ < H be a finite subgroup of a countable group H and θ : Σ → H be
an injective group homomorphism. Define Γ = HNN(H,Σ, θ), the HNN-
extension, and let t ∈ Γ be the “stable letter”, i.e. Γ is the universal group
generated by H and t with the relations tσt−1 = θ(σ) for all σ ∈ Σ. For
ε ∈ {−1, 1}, we write

Σε :=

{
Σ if ε = 1,

θ(Σ) if ε = −1.

Suppose that we have a faithful action Γ y US and view Γ < Iso(US). De-
fine the closed subset (hence Polish space) Z = {α ∈ Iso(US) : θ(σ) = ασα−1

for all σ ∈ Σ} ⊆ Iso(US) and note that it is non-empty (since t ∈ Z). By
the universal property of Γ , for each α ∈ Z there exists a unique group
homomorphism πα : Γ → Iso(US) such that

πα�H = idH and πα(t) = α.

In this section we prove the following result.
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Theorem 5.1. Assume that Γ y US is free with the extension property,
Σε y US is strongly free, mixing, and Σε is highly core-free for H y US for
all ε ∈ {−1, 1}. Then the set

O = {α ∈ Iso(US) : πα is faithful and homogeneous}
is dense Gδ in Z.

Corollary 5.2. For any subgroup Σ of a countable group H and any
injective group homomorphism θ : Σ → H such that Σε < H is highly
core-free for all ε ∈ {−1, 1}, we have HNN(H,Σ, θ) ∈ HUS

.

As is by now customary, we separate the proof in two lemmas.

Lemma 5.3. Assume that for ε ∈ {−1, 1} the action Σε y US is strongly
free, mixing, with the extension property, and Σε is highly core-free for
H y US. Then U = {α ∈ Z : πα is homogeneous} is dense Gδ in Z.

Proof. We apply the Baire category theorem as before: given ϕ ∈ Pf (US),
α ∈ Z and F b US , we show that there exists γ ∈ Z and g ∈ Γ such that
γ�F = α�F and πγ(g)�domϕ = ϕ.

SinceΣ and θ(Σ) are highly core-free forH y US , we produce h1, h2 ∈ H
such that

• ∀u ∈ ΣF ∀x, x′ ∈ domϕ, ∀σ ∈ Σ \ {1}, d(h1x, u) = 1 = d(σh1x, h1x
′),

• ∀u ∈ α(ΣF tΣh1 domϕ) ∀y ∈ rngϕ, d(h2y, u) = 1,
• ∀y, y′ ∈ rngϕ ∀σ ∈ Σ \ {1}, d(θ(σ)h2y, h2y′) = 1.

Define Y = Σh1 domϕ tΣα−1(h2 rngϕ) tΣF and observe that
α(Y ) = θ(Σ)α(h1 domϕ) t θ(Σ)(h2 rngϕ) t (θ(Σ)α(F )).

Note that ΣY = Y and θ(Σ)α(Y ) = α(Y ). Define the bijection γ0 : Y →
α(Y ) by setting γ0�ΣF = α�ΣF and

∀x ∈ domϕ ∀σ ∈ Σ,
γ0(σh1x) = θ(σ)h2ϕ(x) and γ0(σα−1(h2ϕ(x))) = θ(σ)α(h1x).

By careful choices of elements h1, h2, the map γ0 is an isometry such that
γ0σ = θ(σ)γ0 for all σ ∈ Σ. By Proposition 3.4 there exists an extension
γ ∈ Z of γ0. Note that γ�F = α�F ; moreover, with g = h−12 th1 ∈ Γ , we have
for all x ∈ domϕ, πγ(g)x = h−12 γh1x = h−12 γ0(h1x) = h−12 h2ϕ(x) = ϕ(x).

Lemma 5.4. Assume Γ y US is free, has the extension property and
Σε y US is strongly free and mixing for all ε ∈ {−1, 1}. Then the set
V = {α ∈ Z : πα is faithful} is dense Gδ in Z.

Proof. Once again we prove that Vg = {α ∈ Z : πα(g) 6= id} is dense for
all g ∈ Γ \ {1}, and we only need to prove it for g /∈ H. Let hntεn . . . tε1h0
be a reduced expression for g, where n ≥ 1, hk ∈ H and εk ∈ {−1, 1}. Fix
α ∈ Z and F b US . For l ∈ {1, . . . , n} we define Hl ⊂ Γ by
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H1 =

{
Σh0 if ε1 = 1,

Σt−1h0 if ε1 = −1,
Hl =

{
Σhl−1t

εl−1 . . . tε1h0 if εl = 1,

Σt−1hl−1t
εl−1 . . . tε1h0 if εl = −1

for l ≥ 2. Observe that ΣHl = Hl for all l. Let F ′ := F ∪α(F ) b US and, for
l ∈ {1, . . . , n}, H ′l := tHl ⊂ Γ . Using the extension property, we find x ∈ US
such that d(x, u) = 1 for all u ∈ ΓF ′ and define

Y := ΣF t
n⊔
l=1

Hlx and Y ′ := θ(Σ)α(F ) t
n⊔
l=1

H ′lx.

We may then define an isometry γ0 : Y → Y ′ by setting γ0�ΣF = α�ΣF and,
for all l ∈ {1, . . . , n}, γ0�Hlx

= t�Hlx.
We have by construction ΣY = Y , θ(Σ)Y ′ = Y ′ and γ0σ = θ(σ)γ0 for

all σ ∈ Σ. Thus there exists, by Proposition 3.4, an extension γ ∈ Z. Then
γ satisfies γ�F = α�F and πγ(g)x = hnγ

εn . . . γε1h0x = hnt
εn . . . tε1h0x = gx

6= x since g 6= 1 and the Γ -action is free. It follows that γ ∈ Vg.

6. Actions of groups acting on trees on bounded Urysohn spaces.
We record here that, just as in [FMS15], the previous results apply to groups
acting on trees. The reasoning is exactly the same as in [FMS15], but since
the argument is short we kept it for the reader’s convenience.

Let Γ be a group acting without inversion on a non-trivial tree. By
[Ser77], the quotient graph G can be equipped with the structure of a graph
of groups (G, {Γp}p∈V(G), {Σe}e∈E(G)) where each Σe = Σe is isomorphic to
an edge stabilizer, each Γp is isomorphic to a vertex stabilizer, and such
that Γ is isomorphic to the fundamental group π1(Γ,G) of this graph of
groups i.e., given a fixed maximal subtree T ⊆ G, the group Γ is generated
by the groups Γp for p ∈ V(G) and the edges e ∈ E(G) with the relations

e = e−1, se(x) = ere(x)e
−1 for all x ∈ Σe and e = 1 for all e ∈ E(T ),

where se : Σe → Γs(e) and re = se : Σe → Γr(e) are respectively the source
and the range group monomorphisms.

Theorem 6.1. Assume Γp is countably infinite for all p ∈ V(G), and
se(Σe) is highly core-free in Γs(e) for all e ∈ E(G). Then Γ ∈ HUS

.

Proof. Let e0 be one edge of G, and G′ be the graph obtained from G by
removing the edges e0 and e0.

Case 1: G′ is connected. It follows from Bass–Serre theory that Γ =
HNN(H,Σ, θ) where H is the fundamental group of our graph of groups
restricted to G′, Σ = re0(Σe0) < H is a subgroup and θ : Σ → H is given by
θ = se0 ◦ r−1e0 . By hypothesis, H is countably infinite, and since Σ < Γr(e0)
(resp. θ(Σ) < Γs(e0)) is a highly core-free subgroup, Σ < H (resp. θ(Σ) < H)
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is also a highly core-free subgroup. Thus we may apply Theorem 5.1 to
conclude that Γ ∈ HUS

.

Case 2: G′ is not connected. Let G1 and G2 be the two connected com-
ponents of G′ such that s(e0) ∈ V(G1) and r(e0) ∈ V(G2). Bass–Serre theory
implies that Γ = Γ1 ∗Σe0 Γ2, where Γi is the fundamental group of our graph
of groups restricted to Gi, i = 1, 2, and Σe0 is viewed as a highly core-free
subgroup of Γ1 via the map se0 and as a highly core-free subgroup of Γ2
via the map re0 since se0(Σe0) is highly core-free in Γs(e0) and re0(Σe0) is
highly core-free in Γr(e0) by hypothesis. Since Γ1 and Γ2 are countably infi-
nite and Σe0 is highly core-free, we may apply Theorem 4.1 to conclude that
Γ ∈ HUS

.

7. The unbounded case. In this section we explain how to extend
some of the above results to the case of the Urysohn space UQ. While the
methods would apply to some other unbounded Urysohn spaces (for instance
they also work for UN), we chose to focus on the case of the rational Urysohn
space in order to improve the clarity of the exposition.

7.1. Strong disconnection

Definition 7.1. Let D be an unbounded subset of [0,+∞[. An isometric
action of Γ on an unbounded metric space (X, d) strongly D-disconnects
finite sets if

∀F b X ∃N ∈ N ∀K ∈ D∩ [N,+∞[ ∃γ ∈ Γ, d(x, γy) = K for all x, y ∈ F.

This definition might be a bit hard to grasp at first, as it involves many
quantifiers. It is meant to capture the idea that one can find γ ∈ Γ so that
γF and F are “independent enough”, and in the unbounded case a good
notion of independence is that all elements of F and γF are at the same
distance, and arbitrarily far away. We also need some freedom for the choice
of distance, and this is what the set D provides us with (we can pick any
distance in D, if it is large enough).

As in the bounded case, we need to produce sufficiently free actions of
a group G on the Urysohn space; and these actions are built by starting
from the left action of G on itself and then applying a Katětov-type tower
construction. A new feature here is that we first need to produce a suitable
metric on G before starting the tower construction.

Lemma 7.2. Every infinite countable group admits an unbounded left-
invariant metric which surjects onto N.

Proof. If Γ is finitely generated, let S be a finite generating set; then the
Cayley metric associated to S is as wanted.
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If Γ is not finitely generated, write Γ =
⋃
n Γn where Γ0 = {1} and each

Γn is properly contained in Γn+1, then consider the left-invariant metric
d(g, h) = min{n : g−1h ∈ Γn}.

Definition 7.3. Say that two metrics d1 and d2 on a set X coincide at
scale K if we have

∀l ≤ K ∀x, y ∈ X, d1(x, y) = l⇔ d2(x, y) = l.

Lemma 7.4. Suppose a countable group Γ acts on a metric space (X, d)
with an unbounded orbit, and suppose that d takes values in N. Then for
every N ∈ N there is a surjective function f : N → N such that if we let
d̃ = f ◦ d, then d̃ is a metric which coincides with d at scale N and the
Γ -action on (X, d̃) strongly N-disconnects finite sets.

Proof. Given a non-decreasing function ϕ : N \ {0} → N \ {0}, we can
associate to it a function fϕ : N→ N by defining

fϕ(m) = min
{
k : m ≤

k∑
i=1

ϕ(i)
}
.

It can be checked that fϕ is the unique non-decreasing function N→ N such
that f(0) = 0 and for every n ∈ N \ {0} we have |f−1ϕ ({n})| = ϕ(n). Using
the fact that ϕ is non-decreasing, it is straightforward to check that fϕ is
subadditive. We then see that fϕ ◦ d is still a metric as soon as d is a metric
with values in N. Also observe that if ϕ(n) = 1 for all n ≤ N , then fϕ(n) = n
for all n ≤ N . We then set dϕ := fϕ ◦ d.

We use this construction twice; begin by picking x0 with an unbounded
orbit. We first set ϕ(i) = 1 for all i ≤ N . Then we inductively define ϕ(N+j)
and find elements γk ∈ Γ in such a way that (defining the empty sum as
being equal to 0)

∀k ≥ 0, N +
k∑
j=1

ϕ(N + j) < d(x0, γkx0) < N +
k+1∑
j=1

ϕ(N + j).

Then d and dϕ coincide at scale N , and fϕ(d(x0, γkx0)) = N + k + 1 for
all k ≥ 0. In particular, for every n > N there exists some γ ∈ Γ such
that dϕ(x0, γx0) = n. So we may as well assume that d already satisfies this
surjectivity condition.

We then let ϕ(n) = 1 for n ≤ N and ϕ(n) = 2n for n ≥ N + 1. Let us
show why dϕ is now as wanted.

Pick F b Γ ; without loss of generality we assume x0 ∈ F . Let N ′ > N
be such that N ′ > 2diamd(F ). By our surjectivity assumption on d, there is
γ ∈ Γ such that

d(x0, γx0) = N ′ +

N ′−1∑
i=1

ϕ(i).
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Then for all x, y ∈ F we have

|d(x, γy)− d(x0, γx0)| ≤ |d(x, γy)− d(x, γx0)|+ |d(x, γx0)− d(x0, γx0)|
≤ d(γy, γx0) + d(x, x0) ≤ 2diam(F ) < N ′.

So since d(x0, γx0) = N ′ +
∑N ′−1

i=1 ϕ(i), we conclude that
N ′−1∑
i=1

ϕ(i) < d(x, γy) <

N ′−1∑
i=1

ϕ(i) + 2N ′ =
N ′∑
i=1

ϕ(i),

hence dϕ(x, γy) = N ′ as wanted.

Note that by rescaling, the above lemma applies for any metric taking
values in αN for some α > 0.

Proposition 7.5. Every countable group admits a free isometric action
on UQ which strongly N-disconnects finite sets.

In the proof we make the natural unbounded modification of extensions
with parameters (Section 3.2): if we are given a metric space (Y, d), a non-
empty subset X ⊆ Y and a set A, we let (Y ×X A, d) be the quotient metric
space obtained from the pseudometric on Y ×A given by

d((y, a), (y′, a′)) =

{
infx∈X(dY (y, x) + dY (x, y

′)) if a′ 6= a,

dY (y, y
′) if a′ = a.

Proof of Proposition 7.5. Start with Γ acting on itself by isometries for
an unbounded left-invariant metric provided by Lemma 7.2, denote itX0 and
observe that this action is free. Then consider the set E1/2(X0) of finitely
supported Katětov extensions of X0 taking values in 1

2N and equip it with
the amalgam distance d(f, g) = infx(f(x) + g(x)). Then let X1 = E1/2(X0)
×X0Γ . The diagonal action of Γ on (X1, d) is still free and has an unbounded
orbit since X0 embeds isometrically, but we may lose strong disconnection.

So we let d1 be a metric provided by the previous lemma with N = 2. At
stage n, (Xn, dn) being constructed, we consider Xn+1 = E1/n!(Xn) ×Xn Γ

with a metric dn+1 which is the same as dn at scale 2n+1 but for which the
diagonal Γ -action strongly N-disconnects finite sets, which is possible via
the previous lemma.

For x, y ∈
⋃
nXn =: X∞, since 2n+1 → ∞ and dn+1 coincides with dn

at scale 2n+1, the sequence dn(x, y) is stationary and we let d(x, y) be the
limit. It is easy to check that d is still a metric.

Furthermore, X∞ has the extension property for Q-valued metrics. In-
deed, if we have a Q-valued Katětov function on some finite F ⊆ X∞, we
take n large enough so that 2n ≥ max(diam(F ), ‖f‖∞), f takes values in 1

n!N
and F is contained in Xn. Then f is realized in the metric space E1/n!(Xn).
Since the latter embeds in Xn+1 in a way which preserves the metric at
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scale 2n+1, f is actually realized in Xn+1 and thus in X∞ since the inclusion
(Xn+1, dn+1) ⊆ (X∞, d) preserves the metric at scale 2n+1.

Let us finally show that the Γ -action on X∞ strongly N-disconnects finite
sets. Take F ⊆ X∞ finite, and let n ∈ N be such that F ⊆ Xn. Since the
Γ -action on (Xn, dn) strongly N-disconnects finite sets, we find N ∈ N such
that for any integer k ≥ N , there is γ ∈ Γ such that dn(x, γy) = k for all
x, y ∈ F . We may as well assume N ≥ 2n+1.

Now let k ≥ N . Observe that the definition of the metrics dk implies
that for every l ≥ N , there is γ ∈ Γ such that dl(x, γy) = k for all x, y ∈ F
(indeed their restrictions to Xn are obtained by composing dn with finitely
many surjective maps N→ N).

Let l be such that 2l+1 > k. There is γ ∈ Γ such that dl(x, γy) = k for
all x, y ∈ F . Since dl and the restriction of d to Xl coincide at scale 2l+1,
this implies that d(x, γy) = k for all x, y ∈ F , as wanted.

7.2. Dense free products. Let Γ and Λ be two countable infinite
groups acting faithfully on UQ and view Γ,Λ < Iso(UQ). Then, for all α ∈
Iso(UQ), there exists a unique group homomorphism πα : Γ ∗ Λ → Iso(UQ)
such that

πα(g) =

{
g if g ∈ Γ,
α−1gα if g ∈ Λ.

Theorem 7.6. Let Γ and Λ be two countable infinite groups acting freely
on UQ. Suppose both actions strongly N-disconnect finite sets. Then the set
of α ∈ Iso(UQ) such that πα is faithful and homogeneous is dense Gδ.

As usual we decompose the proof into two parts.

Lemma 7.7. Let Γ and Λ be two countable infinite groups acting on UQ;
suppose their actions strongly N-disconnect finite sets. Then the set of α ∈
Iso(UQ) such that πα is homogeneous is dense Gδ.

Proof. Let ϕ be a finite partial isometry, β ∈ Iso(UQ), and F a finite
subset of UQ. We must find α coinciding with β on F such that for some
g ∈ Γ ∗ Λ we have πα(g)�domϕ = ϕ.

We first find γ1 ∈ Γ such that every element of F ∪ βF is at fixed
distance K from every element of γ1 domϕ. Let F ′ = F ∪ βF ∪ γ1 domϕ.

We then find γ2 ∈ Γ and λ ∈ Λ such that every element of γ−12 rngϕ ∪
λγ1 domϕ is at distance K ′ from every element of F ′ (this is where we use
the fact that strong disconnection works for any large enough K ′ ∈ N: this
enables us to find γ2 and λ simultaneously).

Finally, define the finite partial isometry α with domain F t γ1 domϕ t
γ12 rngϕ by α(x) = β(x) for all x ∈ F , α(x) = x for all x ∈ γ1 domϕ, and
α(γ−12 ϕ(x)) = λγ1x for all x ∈ domϕ (see Fig. 1).



28 P. FIMA ET AL.
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β(F )

γ1domϕ γ−12 rngϕ

λγ1domϕγ1domϕ
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K

K ′

K ′
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K ′

β id λγ1ϕ
−1γ2

Fig. 1. α is a partial isometry.

We now extend α to an isometry of UQ, which we still denote by α.
By construction, α extends the restriction of β to F . Moreover, if we let
g = γ2λγ1, then for all x ∈ domϕ we have

πα(g)x = γ2α
−1λαγ1x = γ2α

−1λγ1x = γ2γ
−1
2 ϕ(x) = ϕ(x),

as wanted.

Lemma 7.8. Let Γ and Λ be two groups acting freely on UQ, and w be
an element of Γ ∗ Λ which does not belong to Γ . Then for any β ∈ Iso(UQ)
the set Wf = {α : πα(w) = β} does not contain 1 in its interior.

Proof. We use the fact that for any finite subset A b UQ, any α ∈ Iso(A)
such that α2 = 1, and any x 6∈ A, there exist infinitely many y ∈ UQ such
that one can extend α to an isometric involution of A ∪ {x, y} by setting
α(x) = y, α(y) = x.

Fix an open neighborhood U of 1, which we may assume is of the form

U = {α : ∀x ∈ F, α(x) = x}

for some finite subset F of UQ. Let w = λ1γ2 . . . γnλn be the reduced form
of w (one can obtain such a reduced form of w by multiplying β on the left
and/or the right by an element of Γ ). Below it will be useful to write γ1 = 1.

For α ∈ Iso(UQ), we write

w(α) = (αλ1α)γ2(αλ2α)γ3 . . . γn(αλnα)

Our aim is to find an involution α ∈ U such that w(α) 6= β, since this will
imply that U is not contained in the interior of Wf . We begin by picking
x ∈ UQ \F , and find y ∈ UQ \ (F ∪λ−1n (F )∪{x, λ−1n x, β(x), λ−1n β(x)}) such
that setting

∀z ∈ F, α(z) = z, α(x) = y, α(y) = x
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defines an isometric involution α of F ∪ {x, y}. We now proceed induc-
tively to extend α to a partial isometric involution such that the elements
αx, λnαx, αλnαx, γnαλnαx, . . . , αλ1αγ2 . . . γnαλnαx are all defined, pairwise
distinct, and do not belong to F ∪ {x, β(x)}. Then any extension of α to an
isometric involution of UQ is an element of U such that w(α) 6= β. During
the inductive process, we have to deal with two different cases:

(1) We want to define α(λk . . . λnαx) for some k ≥ 1 (note that our inductive
conditions ensure that λk . . . λnαx is not in the domain of α). Set

B = {x, αx, λnαx, αλnαx, γnαλnαx, . . . , λk . . . λnαx} ∪ {β(x)}.
Then we can find an element z which is not in F ∪B ∪γ−1k (B)∪γ−1k (F )
such that setting

α(λk . . . λnαx) = z, α(z) = λk . . . λnαx

we get our desired extension of α (note that in our inductive conditions
we also require γkz 6= z for k ≥ 2, but this is automatic since non-trivial
elements of Γ do not have any fixed points).

(2) We want to define α(γkαλk . . . λnαx) for some k ≥ 2. Apply the same
reasoning as above, replacing γk with λk−1 and B with

{x, αx, λnαx, αλnαx, γnαλnαx, . . . , γkαλk . . . λnαx} ∪ {β(x)} .
Lemma 7.9. Let Γ and Λ be two countable groups acting freely on UQ.

Then the set of α ∈ Iso(UQ) such that πα is faithful is dense Gδ.

Proof. Using the Baire category theorem, it is enough to show that for
any w ∈ Γ ∗ Λ \ {1}, the set {α : πα(w) = 1} has empty interior. This is
true by assumption if w belongs to either Γ or Λ; if this result is false for
some w, then we have some α ∈ Iso(UQ) and a neighborhood V of 1 such
that παβ(w) = 1 for any β ∈ V .

We can write w = γ1λ1 . . . γnλn, with at least one λi different from 1.
Since

παβ(w) = γ1λ
αβ
1 . . . γnλ

αβ
n = (γ1α)λ

β
1γ

α−1

2 λβ2 . . . γ
α−1

n λβnα
−1,

we see that λβ1γ
α−1

2 λβ2 . . . γ
α−1

n λβn = α−1γ−11 α for all β ∈ V and this contra-
dicts our previous lemma (since the conjugate of the action of Γ by α−1 is
a free action of Γ ).

Corollary 7.10. Every free product of infinite groups admits a faithful
homogeneous action on the rational Urysohn space.

8. An example: the group of finitely supported permutations.
Having spent quite some time building dense subgroups of isometry groups
of countable Urysohn spaces, we now are naturally led to the question: how
does the class of dense subgroups of Iso(US) depend on the distance set S?
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We know embarrassingly little about this problem, but we do know that the
case where Iso(US) = S∞ is different from the others.

Recall that S(∞) is the (countable) group of all permutations of N with
finite support. By studying its primitive actions, we will prove the following
result.

Theorem 8.1. Let S be a bounded or unbounded distance set. The group
S(∞) embeds densely in Iso(US) if and only if |S| = 2.

Of course when |S| = 2, Iso(US) is isomorphic to S∞ so only one impli-
cation above is interesting.

The above theorem shows that the classes of countable groups which are
isomorphic to a dense subgroup of S∞ and, say, the automorphism group
Aut(R) of the random graph are not the same; much remains to be investi-
gated. For instance, we do not know of a countable dense subgroup of Aut(R)
which is not isomorphic to a dense subgroup of S∞, though it seems likely
that such groups exist.

Our approach is fairly elementary: assume that S(∞) acts faithfully and
homogeneously on US . Pick x ∈ US , and consider the associated stabilizer
subgroup

∆ = {γ ∈ S(∞) : γx = x}.
Since Iso(US) acts transitively on US , we can identify S(∞)/∆ with US , and
the action of S(∞) on US is simply the left translation action of S(∞) on
S(∞)/∆. Moreover, since the action is faithful, the subgroup ∆ is core-free,
and since the action is homogeneous, the closure of S(∞) in the symmetric
group of S(∞)/∆ is isomorphic to Iso(US).

Conversely, if there is a core-free subgroup ∆ such that the closure of
S(∞) in the symmetric group of S(∞)/∆ is isomorphic to Iso(US), then
obviously S(∞) is isomorphic to a dense subgroup of US . Thus, we focus on
understanding what kind of subgroups ∆ can arise as point stabilizers.

8.1. Classification of point stabilizers for homogeneous actions.
We recall some facts and definitions from permutation group theory.

Definition 8.2. Let X be a countable set, and G be a group acting
transitively on X. A block for this action is a non-empty set A ⊆ X such
that for all g ∈ G one has either gA = A or gA∩A = ∅. A block is trivial if
it is either a singleton or the whole set X.

The action of G on X is primitive if all blocks for this action are trivial
(equivalently, there is no non-trivial G-invariant equivalence relation on X).

This property is particularly relevant to us because of the following two
facts (the first of which is a standard fact in permutation group theory,
while the second is probably well-known. We include the short proofs for the
reader’s convenience).
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Lemma 8.3. Assume that G is a group that acts transitively on X. Then
the action is primitive if and only if the stabilizer of some (any) x ∈ X is a
maximal proper subgroup.

Proof. Given x ∈ X, denote by H its stabilizer. We can identify the
action of G on X with the regular action of G on G/H. If there exists a
subgroup K of G such that H ( K ( G, then the K-cosets form a family
of non-trivial blocks for this action. Conversely, assume that A ⊆ G/H is a
block for this action, containingH (seen as an element ofG/H). By definition
of a block, we see that

K := {g ∈ G : gH ∈ A} = {g ∈ G : gA = A},
so K is a subgroup of G, and if A is non-trivial then H ( K ( G.

Lemma 8.4. The action of Iso(US) on US is transitive and primitive.

Proof. Transitivity of the action is obvious. As for primitivity, assume
that A is a block for this action, with two elements x, y such that d(x, y) =
r > 0. For any z such that d(y, z) = r, there exists an isometry α of US such
that α(y) = y and α(x) = z. Since A is a block, α(y) = y implies α(A) = A
so z belongs to A. Now, note that for any s ∈ S ∩ [0, 2r] there exists z ∈ US
with d(x, z) = s and d(y, z) = r, so A has an element z such that d(x, z) = s.
Switching the roles of x and y, we conclude that A contains all z such that
d(x, z) ∈ [0, 2r]. From this we deduce that A = US .

It is straightforward to check that transitivity and primitivity are inher-
ited by dense subgroups, so we have the following result.

Proposition 8.5. If Γ is a dense subgroup of Iso(US), then for any
x ∈ US its stabilizer Γx is a maximal proper subgroup of Γ .

In particular, if S(∞) acts faithfully homogeneously and ∆ is the stabi-
lizer of a point, then ∆ is a maximal proper subgroup of S(∞). We now turn
our attention towards understanding these maximal subgroups; probably the
description we obtain is well-known, but cannot indicate a reference.

Definition 8.6. Assume that H is a group that acts transitively and
not primitively on a set X. We say that H is almost primitive if there exists
a maximal non-trivial block, and totally imprimitive otherwise.

In the classification of maximal subgroups of S(∞), it is natural to dis-
tinguish groups with finite/infinite biindex, a notion that we introduce now.

Definition 8.7. The biindex of a subgroup H of a group G is the min-
imal cardinality of a set F such that HFH = G, that is, the number of
double cosets.

It is straightforward to check that the biindex of H corresponds to the
number of orbits for the H-action on G/H.
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Maximal subgroups of S(∞) which do not act transitively on N are easily
described.

Lemma 8.8. Let X be a subset of N different from ∅ and N. Then the
setwise stabilizer of X is a maximal proper subgroup of S(∞).

Proof. Since the setwise stabilizer of X is equal to the setwise stabilizer
of its complement, we may as well assume that X is infinite.

Given x0, x1 ∈ N the transposition (x0 x1) is the permutation σ defined
by σ(x0) = x1, σ(x1) = x0 and σ(x) = x for all x 6∈ {x0, x1}. We use the
fact that if G ⊆ N × N is a graph on N, then the set of transpositions of
the form (x y) with (x, y) ∈ G generates S(∞) if and only if the graph G is
connected.

Let ∆ be the setwise stabilizer of X, and let us show ∆ is a maximal
subgroup of S(∞). Observe that the graph of (x, y) such that (x y) ∈ ∆
contains both the complete graph on X and the complete graph on N \X.

Now let g ∈ S(∞) \∆. Then we find x ∈ X such that g(x) 6∈ X. Since g
has finite support and X is infinite, we find y ∈ X with x 6= y and g(y) = y.
Now g(x y)g−1 = (g(x) y). We conclude that the graph of (x, y) such that
(x y) ∈ 〈∆, g〉 is connected, which shows that 〈∆, g〉 = S(∞) as wanted.

Using a famous theorem of Wielandt, it is also not difficult to identify
maximal proper subgroups of S(∞) which act transitively on N.

Lemma 8.9. Let ∆ be a maximal proper subgroup of S(∞), and assume
that ∆ has infinite index and acts transitively on N. Then there is an equiv-
alence relation E on N, all of whose classes have the same cardinality k ≥ 2
(possibly infinite), and such that ∆ consists of all elements of S(∞) which
preserve E. These groups are indeed maximal, and have infinite biindex.

Proof. Suppose otherwise. If ∆ is primitive, ∆ must be either S(∞) or
the group of even permutations by Wielandt’s theorem [DM96, Thm. 3.3D],
contradicting the assumption on the index of ∆.

If ∆ is almost primitive, let A be a maximal non-trivial block for the
action ∆ on N. Note that all the maximal blocks are of the form δA, δ ∈ ∆,
and denote by E the equivalence relation defined by

∀i, j ∈ N, (iEj)⇔ (∃δ ∈ ∆, δi ∈ A and δj ∈ A).

Then all the E-equivalence classes have the same cardinality |A| ≥ 2. By
maximality, ∆ must coincide with the group of all elements of S(∞) which
are automorphisms of E.

Say that a block δA is perturbed by γ ∈ S(∞) if γδA is not equal to
any δ′A, δ′ ∈ ∆. Let N(γ) be the (finite) number of blocks δA which are
perturbed by γ. Since ∆ respects the equivalence relation E, any element of
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∆γ∆ must perturb as many blocks as γ; there are elements of S(∞) which
perturb an arbitrary number of blocks, so the biindex of∆ inS(∞) is infinite.

If ∆ is totally imprimitive, we get an increasing sequence of blocks
A1 ⊆ A2 ⊆ · · · whose union is equal to N . By maximality, each element
with support in some Ai must belong to ∆, so ∆ = S(∞), a contradiction
(i.e. there is no proper, maximal, transitive, totally imprimitive subgroup
of S(∞)).

It remains to prove that groups of finitary permutations which preserve
equivalence relations whose classes have fixed cardinality k ≥ 2 (k can be
equal to ℵ0 here) are indeed maximal. Let E be an equivalence relation all
of whose classes have fixed cardinality k ≥ 2; let ∆ be its automorphism
group. Pick σ ∈ S(∞) \ ∆ and consider the graph G of (x, y) such that
(x y) ∈ 〈∆,σ〉. As in the proof of the previous lemma, it suffices to show
that this graph is connected. First, note that each E-class is contained in
a connected component. Since σ 6∈ ∆, there exist x, y ∈ N with (x, y) ∈ E
such that (σ(x), σ(y)) 6∈ E. Now observe that for every z ∈ N \ [σ(x)]E
there is τ ∈ ∆ such that τ(σ(y)) = z and τ(σ(x)) = σ(x). Conjugating the
transposition (x y) by τσ, we conclude that (σ(x), z) ∈ G, which proves
that G is connected, as wanted.

We can now list the maximal proper subgroups of S(∞); from this de-
scription we will then be able to understand the corresponding Schlichting
completions.

Theorem 8.10. Assume that ∆ is a maximal proper subgroup of S(∞),
of infinite index. Then there are three possibilities:

(1) ∆ has finite biindex k+ 1; then ∆ is the setwise stabilizer of a finite set
of integers with cardinality k.

(2) ∆ has infinite biindex and does not act transitively; then it is the setwise
stabilizer of an infinite, coinfinite set of integers.

(3) ∆ has infinite biindex and acts transitively; then there exists an equiv-
alence relation E, all of whose classes have the same (possibly infinite)
cardinality k ≥ 2, such that ∆ consists of the elements of S(∞) which
are automorphisms of E.

All the groups described above are indeed maximal.

Proof. Assume first that∆ does not act transitively on N. By maximality,
we must have exactly two disjoint ∆-orbits, say X and Y ; at least one of
them (say Y ) is infinite. By maximality, ∆ is the setwise stabilizer of X,
which is indeed maximal by Lemma 8.8.

If X is infinite then ∆ is the stabilizer of a point for the action of S(∞)

on the set Ω of all infinite and coinfinite subsets of N. It follows that ∆ has
infinite biindex.
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If ∆ has finite biindex k + 1, then X is finite of cardinality K ∈ N and
∆ is the stabilizer of a point for the (transitive) action of S(∞) on the set
[N]K of all subsets of N whose cardinality is equal to K. Then the biindex
of ∆ is equal to K+1 (indeed the ∆-orbit of Y ∈ [N]K is determined by the
cardinality of its intersection with X) and we conclude k = K as wanted.

The case where ∆ acts transitively has already been described in the
previous lemma.

8.2. Associated Schlichting completions. As explained at the be-
ginning of this section, we want to understand the closure of S(∞) in the
symmetric group of S(∞))/∆ when ∆ is one of the subgroups from the above
theorem, in other words we want to understand possible Schlichting comple-
tions of S(∞) with respect to maximal subgroups (see the definition below).
It is not necessary to go into that much detail if one simply wants to prove
that S(∞) is not isomorphic to a dense subgroup of a nontrivial Urysohn
space, but it seems interesting to work out this example in complete detail.

Definition 8.11. Let ∆ be a subgroup of a countable group Γ . The
Schlichting completion of Γ with respect to ∆ is the closure of Γ in the
symmetric group of Γ/∆.

This notion was introduced by Schlichting when ∆ was commensurated
in Γ , and he proved that the completion is then a locally compact group
[Sch80].

Note that the Schlichting completion of a group Γ comes with a canonical
map from Γ with dense image. This map will always be clear from the
context, so we will not explicitly write it down.

We will now define concrete representations of the Schlichting comple-
tions of S(∞) with respect to the subgroups that we found in the above
section. We will often make use of the following fact without further men-
tion: if G and H are Polish groups and π : G → H is an embedding of
topological groups, then π has closed image (see [Gao09, Prop. 2.2.1]).

Let us start with item (1) from Theorem 8.10.

Proposition 8.12. Let ∆ be a maximal proper subgroup of S(∞), and
assume that ∆ has infinite index and biindex k + 1. Then the Schlichting
completion of S(∞) with respect to ∆ is S∞. In particular, S(∞) is a normal
subgroup of its Schlichting completion with respect to ∆.

Proof. By Theorem 8.10 we know that ∆ is the stabilizer of a subset of
N of cardinality k. Denote by [N]k the set of subsets of N of cardinality k.
Then S(∞) acts transitively on [N]k, so we can identify S(∞)/∆ with [N]k,
and the S(∞)-action on S(∞)/∆ extends to the natural S∞-action on [N]k.
Denote by πk : S∞ → S([N]k) the associated continuous group morphism.
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Let us show πk is a homeomorphism onto its image. Suppose πk(σn)
→ id[N]k , and let x ∈ N. We find A,B ∈ [N]k such that A ∩ B = {x}, so for
large enough n we have σn(A) ∩ σn(B) = A ∩B = {x} and thus σn(x) = x.
Hence σn → idN, so πk is indeed a homeomorphism onto its image.

We conclude that πk(S∞) is a closed subgroup of S([N]k) and thus the
Schlichting completion of S(∞) with respect to ∆ is S∞.

Let us make explicit the reasoning we used in the above proposition so
as to identify a Schlichting completion.

Lemma 8.13. Let A be a countable set; let G ≤ S(A) be a closed subgroup
acting transitively on A. Suppose Γ is a countable dense subgroup of G.
Then for every x ∈ A, the Schlichting completion of Γ with respect to Γx
is isomorphic to G as a topological group.

Proof. We have a natural identification of A with Γ/Γx which induces an
isomorphism Φ : S(A)→ S(Γ/Γx). Notice that Φ(Γ ) is then dense in Φ(G),
and since the closure of Φ(Γ ) is the Schlichting completion of Γ with respect
to Γx, we find that Φ(G) is the Schlichting completion of Γ over Γx.

We now move on to case (2) from Theorem 8.10. As it turns out, the
study of this group as a Polish group was initiated by Cornulier [dC]. We
need a few preliminary definitions.

Definition 8.14. Let X be an infinite, coinfinite subset of N. The com-
mensurating subgroup of X is the groupS(N, X) of all permutations σ ∈ S∞
such that σ(X)4X is finite.

The commensurating subgroup is a Polish non-archimedean group for
the topology of pointwise convergence on the countable set CommX(N) of
subsets Y of N commensurated to X, i.e. such that X 4 Y is finite. Note
that S(N, X) acts transitively on CommX(N).

Define the transfer character tr on S(N, X) by

tr(σ) = |σX \X| − |X \ σX|.
It can be shown that tr is a continuous homomorphism S(N, X) → Z (see
[dC, Prop. 4.H.1]). Its kernel is denoted by S0(N, X); it contains S(∞) as
a dense subgroup [dC, Prop. 4.H.3, Prop. 4.H.4]. Moreover, S0(N, X) acts
transitively on Comm0

X(N) := {Y ∈ CommX(N) : |X \ Y | = |Y \ X|}. We
have the following basic lemma on the relationship between Comm0

X(N) and
CommX(N).

Lemma 8.15. Every element of CommX(N) can be written either as the
reunion or the intersection of two elements of Comm0

X(N).

Proof. Let Y ∈ CommX(N). Write Y = (X \ F1) t F2 with F1 b X and
F2 b N\X. If |F1| > |F2|, we find F3 ⊆ N\(XtF2) such that |F3| = |F1|−|F2|
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and F4 ⊆ F1 such that |F4| = |F2|. Let Y1 = (X \ F1) t (F2 t F3) and
Y2 = (X \F4)tF2. Then both Y1 and Y2 are in Comm0

X(N), and Y = Y1∩Y2.
The case |F1| ≥ |F2| is similar, and one sees that Y can be obtained as the
union of two elements of Comm0

X(N).
Proposition 8.16. Let X be an infinite coinfinite subset of N. Denote

by ∆ the group of finitely supported permutations σ such that σ(X) = X.
Then the Schlichting completion of S(∞) with respect to ∆ is S0(N, X).
In particular, S(∞) is a normal subgroup of its Schlichting completion with
respect to ∆.

Proof. Let π be the continuous morphism obtained by restricting the
S0(N, X)-action to Comm0

X(N). By the previous lemma, if π(σn) →
idComm0

X(N) then σn → idCommX(N), so π is an embedding. Hence S0(N, X)

may be viewed as a closed subgroup of S(Comm0
X(N)). Its action on

Comm0
X(N) is moreover clearly transitive. Since S0(N, X) contains S(∞) as

a dense subgroup, the action of S(∞) on Comm0
X(N) is also transitive, and

the stabilizer ofX for this action is our subgroup∆. SinceS0(N, X) contains
S(∞) as a dense subgroup, the desired conclusion follows from Lemma 8.13.

Our third and last possible Schlichting completion (case (3) from The-
orem 8.10) arises as follows. Let us say that an enumerated partition of
N is a sequence P = (Ai)i∈N of disjoint subsets of N which cover N. Let
k ∈ N∪{ℵ0} with k ≥ 2, and consider an enumerated partition P = (Ai)i∈N
of N where each Ai has cardinality k. We then define the almost full group
of the enumerated partition P as the group

A[P] = {σ ∈ S∞ : σ(Ai) = Ai for all but finitely many i ∈ N}.
The topology on A[P] is obtained by declaring that a basis of neighbor-

hoods of the identity is made up of the neighborhoods of the identity of the
full group of P,

[P] = {σ ∈ S∞ : σ(Ai) = Ai for all i ∈ N},
equipped with the topology induced by S∞. In particular, [P] is an open
subgroup of A[P].

Lemma 8.17. The topology obtained by declaring that a basis of neighbor-
hoods of the identity in A[P] is formed by the neighborhoods of the identity
in [P] does define a group topology on A[P], which is Polish and moreover
locally compact when k is finite.

Proof. To prove that we have a group topology, it suffices to show that
for every g ∈ A[P] and every neighborhood V of the identity in [P], the set
gV g−1 ∩ V is still a neighborhood of the identity in [P]. We may assume
that V is the pointwise stabilizer in [P] of a finite set Bi1 t · · · tBil , where
Bij b Aij for all j. In other words, V is the set of all permutations which fix
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every point in Bi1 t · · · t Bil and leave every Ai invariant. It is clear that
gV g−1 is the set of all permutations which fix every point in gBi1 t· · ·tgBil
and leave every gAi invariant. But g ∈ A[P] so there are only finitely many
Ai’s such that gAi 6= Ai. In particular, we can find F b N containing
{i1, . . . , il} such that gAi = Ai for all i ∈ N \ F and gBi1 t · · · t gBil
⊆
⊔
i∈F Ai. Then gV g

−1 ∩ V contains the set W of all permutations which
fix pointwise every element of Bi1 t · · · t Bil t gBi1 t · · · t gBil and leave
every Ai invariant. Since W is a neighborhood of the identity in [P], this
ends the proof that gV g−1 ∩ V is still a neighborhood of the identity in [P],
and we conclude that our topology is a group topology.

Now observe that since [P] is open of countable index in A[P], the asso-
ciated topology is Polish because A[P] is homeomorphic to the Polish space
N× [P]. The fact that the topology is locally compact when k is finite follows
from the fact that in this case [P] is compact, since it is a closed permutation
group and all of its orbits are finite.

We now consider a more concrete way to view the topology we defined
above so as to apply Lemma 8.13.

Given a (possibly infinite, countable) k ≥ 2 and P = (Ai)i∈N an enumer-
ated partition of N into subsets of cardinality k, we denote by O(P) the orbit
of P under S(∞) (for the natural action of S∞ on the set Ek of enumerated
partitions of N into subsets of cardinality k).

When k is finite, one has σ(O(P)) = O(P) for any σ ∈ A[P]; indeed,
in that case O(P) is simply the set of all enumerated partitions of N whose
elements all have cardinality k, and with only finitely many elements not
equal to an element of P. When k is infinite, this is no longer true, as the
orbit of P under the action of A[P] is uncountable. We denote

Ã[P] = {σ ∈ A[P] : σ(O(P)) = O(P)}.

When k is finite, we simply have Ã[P] = A[P]

Proposition 8.18. Ã[P] is closed in A[P].

Hence Ã[P] is a Polish group in its own right. Before giving the proof,
we would like to note that our original argument was flawed; the correct
proof below is due to the referee. The proof itself is fairly routine, but we
feel like it is worth mentioning the unusual level of care and precision of the
referee’s work (which we could also have pointed out in several other places)
and express our gratitude again.

Proof of Proposition 8.18. When k is finite, there is nothing to prove.
Assume k = ℵ0, and let O′(P) denote the orbit of P under the action
of A[P]; explicitly, O′(P) consists of all enumerated partitions Q = (Bi)i∈N
with |Bi| = ℵ0 for all i, and Bi = Ai for all but finitely many i.
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Since [P] is the stabilizer of P for the action of A[P] on O′(P), and [P] is
an open subgroup of A[P], the morphism π : Ã[P]→ S(O′(P)) is continuous
(as usual S(O′(P)) is endowed with the topology of pointwise convergence
for the discrete topology on O′(P); one should perhaps note here that O′(P)
is not countable, but that does not affect the argument).

Observe that Ã[P] = {σ ∈ A[P] : σ(O(P)) = O(P)}, which proves that
Ã[P] is closed in A[P].

Proposition 8.19. S(∞) is dense in Ã[P].

Proof. Pick g ∈ Ã[P]. We may find σ ∈ S(∞) such that σ(P) = g(P),
hence σ−1g ∈ [P]. The desired result now follows from the density in [P] of
the group of finitely supported elements of [P].

Proposition 8.20. The topology on Ã[P] coincides with the topology of
pointwise convergence on O(P).

Proof. The natural map π : Ã[P] → S(O(P)) is continuous (as above,
this follows from the fact that [P] is the stabilizer of P for the action of S∞
on Ek and [P] ∩ Ã[P] is open in Ã[P]).

Next, π is injective. To see this, observe that any element of the kernel
of π must belong to [Q] for any Q ∈ O(P). Pick such a σ ∈ Ã[P].

Then let x ∈ N, write again P = (Ai)i∈N and let i0 ∈ N be such that
x ∈ Ai0 . Let j0 6= i0, and fix y ∈ Aj0 . Define a new enumerated partition
Q = (Bi)i∈N by letting

Bi =


{x} ∪ (Aj0 \ {y}) if i = i0,

{y} ∪ (Ai0 \ {x}) if i = j0,

Ai otherwise.

Observe that Q ∈ O(P), and since σ belongs to both [Q] and [P], it must fix
Ai0 ∩Bi0 = {x}, so σ(x) = x. We conclude that σ = 1, so that π is injective
as promised.

Suppose that (σn) ∈ Ã[P] is such that π(σn) converges to 1 in S(O(P));
pick x ∈ N and define Q ∈ O(P) in the same way as above. For n large
enough, one must have σ(P) = P and σ(Q) = Q, hence σ(x) = x. This
proves that π is a topological group embedding.

Corollary 8.21. Let Hk be the group of finitely supported bijections
which fix an enumerated partition Pk of N into sets of (possibly infinite)
cardinality k. Recall that Ã[Pk] denotes the closure of S(∞) in A[Pk]. Then
the Schlichting completion of S(∞) with respect to Hk is equal to Ã[Pk].
In particular, S(∞) is a normal subgroup of its Schlichting completion with
respect to Hk.
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Proof. This follows from the previous two propositions, combined with
Lemma 8.13.

8.3. Proof of Theorem 8.1. Combining Propositions 8.12 and 8.16
and Corollary 8.21 with the classification of the maximal proper subgroups
of S(∞) of infinite index, we obtain the following result.

Proposition 8.22. Let ∆ ≤ S(∞) be a maximal proper subgroup of
S(∞) of infinite index. Then S(∞) is a normal subgroup of its Schlichting
completion with respect to ∆.

Question. Is there a way to establish that result more directly, without
first having to describe the maximal proper subgroups? In the case of S(∞)

this was not hard to do (and is sufficient to establish the result above, since
then the homogeneous spaces S(∞)/∆ are easy to understand) but that sort
of hands-on approach seems unlikely to work in more general settings.

Recall from Proposition 8.5 that if S(∞) ≤ Iso(US) is dense, then the
S(∞)-stabilizer of any point in US is a maximal proper subgroup of infi-
nite index. As we observed before, Iso(US) must then be isomorphic to the
Schlichting completion of S(∞) with respect to that subgroup. To finish the
proof of Theorem 8.1, it is thus enough to prove the following fact.

Proposition 8.23. Assume that |S| ≥ 3. Then the conjugacy class of
any non-identity element of Iso(US) is uncountable. In particular, Iso(US)
does not admit a non-trivial countable normal subgroup.

Proof. Assume that g ∈ Iso(US) has a countable conjugacy class; then
its centralizer C(g) is a closed subgroup with countable index, so it is clopen.
Hence, there must exist a finite subset F of US such that g commutes with
any element h satisfying h(x) = x for all x ∈ F . We want to prove that
g = id and assume for a contradiction that this is not the case.

We first claim that there must exist x 6∈ F such that g(x) 6= x. To see
this, pick y such that g(y) 6= y. Since |S| ≥ 3, we can find s1 6= s2 ∈ S such
that the map f : {y, g(y)} → R defined by setting f(y) = s1, f(g(y)) = s2 is
Katětov. Thus there exist infinitely many x ∈ US such that d(x, y) = s1 and
d(x, g(y)) = s2; in particular there exists such an x which does not belong
to F , and since d(x, y) 6= d(x, g(y)) we have g(x) 6= x.

Next, pick h ∈ Iso(US) such that h coincides with the identity on F ∪{x}
yet h(g(x)) 6= g(x). Then hg(x) 6= gh(x), so h does not commute with g,
a contradiction. Hence g = id.

Another nice consequence of Theorem 8.10 is that S(∞) has only one
2-transitive action on N up to conjugacy.

Proposition 8.24. Let S(∞) y N be a 2-transitive action. Then the
action is conjugate to the natural action of S(∞) on N.
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Proof. Let ∆ = StabS(∞)
(0). Then ∆ has infinite index and by 2-transit-

ivity its biindex is 2. This implies that ∆ is maximal proper: if ∆ < Γ then
Γ must contain a ∆-double coset distinct from ∆ and is thus equal to S(∞).
The desired conclusion now follows from Theorem 8.10.

Remark 8.25. In [LM18], the second author defines a transitive action
of a countable group Γ on a countable set X to be highly faithful if for every
F b Γ there is x ∈ X such that for all distinct f1, f2 ∈ F , f1 · x 6= f2 · x.
The natural action of S(∞) on N is highly transitive but not highly faithful,
so the above proposition implies that S(∞) has no highly transitive highly
faithful action, answering a question raised in [LM18].
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