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Exercice 1 (Une caractérisation des extensions élémentaires.) Soient M et N deux L-
structures. Montrer que M ≼ N si, et seulement si, pour tout k-uplet a extrait de Mk, tpM(a) =
tpN (a).

Exercice 2 (Les types dans la théorie des châınes denses sans extrémités.) On définit
L = {<}, langage avec un symbole de relation binaire. Soit T la théorie des châınes denses sans
extrémités dans ce langage. On sait que cette théorie est complète.

1. Montrer que deux k-uplets (a1, . . . , ak) et (b1, . . . , bk) extraits de deux modèles M et N respec-
tivement de T ont même type si, et seulement si, ils satisfont les conditions suivantes :

• pour tous 1 ≤ i, j ≤ k, ai = aj si, et seulement si, bi = bj ;

• pour tous 1 ≤ i, j ≤ k, ai < aj si, et seulement si, bi < bj .

2. On fixe Q comme ensemble de paramètres. Montrer que les ensembles suivants déterminent tous
les 1-types possibles. En d’autres termes, ils axiomatisent des théories complètes deux à deux
distinctes dans le langage L({x} ∪Q).

(a) T ∪ {x = q} pour chaque q ∈ Q fixé ;

(b) T ∪ {q < x ∧ x < q′ | q′ ∈ Q , q < q′} pour chaque q ∈ Q fixé ;

(c) T ∪ {q′ < x ∧ x < q | q′ ∈ Q , q′ < q} pour chaque q ∈ Q fixé ;

(d) T ∪ {q < x ∧ x < q′ | q, q′ ∈ Q , q < r < q′} pour chaque r ∈ R \Q fixé ;

(e) T ∪ {x < q | q ∈ Q} ;
(f) T ∪ {q < x | q ∈ Q}.

3. Déterminer pour tout n ∈ N, |S1({q1, . . . , qn})| où q1, . . . , qn des rationnels distincts. Déterminer
|S1(Q)|.

Exercice 3 (Les types dans la théorie des châınes discrètes sans extrémités.) On définit
L = {<}, langage avec un symbole de relation binaire. Soit T la théorie des châınes discrètes sans
extrémités dans ce langage. On sait que cette théorie est complète.

1. Montrer que deux k-uplets (a1, . . . , ak) et (b1, . . . , bk) extraits de deux modèles M et N respec-
tivement de T ont même type si, et seulement si, ils satisfont la condition suivante :

• pour tous 1 ≤ i, j ≤ k, ai < aj si, et seulement si, bi < bj ;

• pour tous 1 ≤ i, j ≤ k, ai = aj si, et seulement si, bi = bj ;

• pour tous 1 ≤ i, j ≤ k, pour tout n ∈ N il existe exactement n éléments extraits de M entre
ai et aj si, et seulement si, il en est de même pour bi et bj .

2. Est-ce que les injections suivantes sont des plongements élémentaires ?

i1 : Z −→ {0, 1} × Z
m 7−→ (0,m)

,
i2 : Z −→ {0, 1} × Z

m 7−→
{

(0,m) si m < 0
(1,m) sinon

,

i3 : Z −→ Z
m 7−→ a.m

où a ∈ N∗ ,
i4 : (Q× Z) ∪ ((R \Q)× 2Z) −→ R× Z

(r,m) 7−→ (r,m)
.
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Exercice 4 (Corps algébriquement clos.) Soit L = {+, .,−, −1, 0, 1} le langage des corps.

1. Écrire dans ce langage les énoncés qui disent “je suis un corps algébriquement clos”. Y ajouter
ensuite les énoncés nécessaires pour déterminer uniquement la caractéristique.

Les deux ensembles d’énoncés du premier point ont des modèles. On notera les théories formées
par leurs conséquences CAC et CACp (p premier ou 0) respectivement.

2. Montrer que tout corps algébriquement clos a une extension élémentaire de degré de transcen-
dance infini sur la clôture algébrique du corps premier.

3. Soient K et L deux corps algébriquement clos de même caractéristique et de degrés de transcen-
dance infinis sur la clôture algébrique du corps premier. Montrer que les isomorphismes entres
les sous-corps de type fini de K et L forment une famille karpienne. En déduire que CACp est
une théorie complète.

4. Utiliser le point précédent pour montrer que si (a1, . . . , ak) et (b1, . . . , bk) sont deux k-uplets
(k ≥ 1) extraits respectivement de K et L, alors ils satisfont les mêmes formules dans leurs
structures respectives si, et seulement si, ils satisfont les mêmes formules sans quanteurs.

5. Déduire du point précédent que pour p, 0 ou premier, fixé, CACp est modèle-complète : si K ⊆ L
sont modèles de CACp, alors K ≼ L.

6. Soit S un système fini d’équations et d’inéquations à plusieurs inconnues, dans un corps k.
Montrer que si S a une solution dans une extension de k, il en a une dans toute extension
algébriquement close de k.

7. (Le théorème des zeros de Hilbert) SoitK un corps algébriquement clos, I un idéal deK[X1, . . . , Xn]
et P ∈ K[X1, . . . , Xn]. On considère la variété V (I) = {a ∈ Kn|Q(a) = 0 pour tout Q ∈ I}.
Montrer que si P ∈ K[X1, . . . , Xn] s’annule sur tout point de V (I), alors il existe m ∈ N tel que
Pm ∈ I.

8. (Principe de transfert) Soit ϕ un énoncé dans L. Montrer que les conclusions suivantes sont
équivalentes :

(a) ϕ est vrai dans un corps algébriquement clos de caractéristique nulle ;

(b) ϕ est vrai dans tout corps algébriquement clos caractéristique p > 0 pour tout p sauf un
nombre fini de premiers ;

(c) ϕ est vrai dans un corps algébriquement clos de caractéristique p > 0 pour une infinité de
nombres premiers p.

9. (Principe de surjectivité) Si f est une application polynomiale de Cm vers Cm (m ∈ N∗), et que
f est injective, montrer alors que f est surjective.
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