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Imagine that two people want to build a structure together, as a game. There are basically
two ways of doing so : a first method consists in progressively defining the properties the final
structure is to satisfy, and at the end, in seeing what kind of structures satisfy them all. In the
dual approach, the players start with a structure, and extend it as the game goes by; it is only for
the final structure that the problem of which properties are satisfied is addressed. Here we deal
with games of both kinds : Ziegler’s and Fräıssé’s games.

Each player wants the final structure to satisfy some properties, but has to stick with what has
already been chosen. Is it always possible for one of the player to achieve his/her ends, regardless
of what the other plays?

We develop our analysis following the central line: the duality between two styles of playing
games, equivalently of building models. In the first section, we introduce formally what a game is
and go over the basic properties of our setting. The second section is devoted to construction of
models as limits of conditions, namely the Ziegler game. In the third section, which is our last,
the dual construction is presented. There, we construct models as limits of their substructures.

1 Games and determinacy

We must first define exactly what a game is:

Definition 1. A set of instructions for playing a game is called a pre-game. A game is a
pre-game with a criterion for deciding which player wins.

We consider two-player pre-games played by Hélöıse and Abélard, who we call respectively
∃(loise) and ∀(belard). The pre-games consist of a non-empty set C of conditions, ordered by
inclusion. Player ∀ begins by choosing a condition p0, then ∃ chooses a condition p1 such that
p0 ⊆ p1, and so on. Thus they form a chain (pn)n<ω of conditions. The player whose turn it is to
choose a condition is allowed to know what has been played since the beginning of the game.

At the end of the play, pω =
⋃
n<ω pn determines a structure A called the compiled structure.

We will decide who the winner is depending on the properties of this compiled structure. Let us
precise what kind of properties we study :

Definition 2. A property ϕ is a class of structures which is closed under isomorphism. A
structure is thus said to satisfy or to have ϕ if it lies in the class ϕ. By extension, we will
consider sentences as properties too.

We are now ready to play a full game :

Definition 3. Let G be a pre-game and ϕ a property. We define the game G(ϕ)G(ϕ)G(ϕ) as the pre-game
G in which ∃ wins if the compiled structure satisfies ϕ and ∀ wins otherwise.
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Now that we have all the rules, let us consider the different tactics the players can use. As
most model theorists do, we will support Hélöıse and wonder if she can play in such a way that
whatever Abélard plays, she manages to win. We begin by introducing the notion of strategy :

Definition 4. An ∃∃∃-strategy is a family {σn|n odd , σn : Cn → C} of functions which tells ∃
how to play : more precisely, if p0, ..., pn−1 are the conditions chosen at the first n steps, ∃ will
choose pn to be σn(p0, ..., pn−1). Likewise, we define an ∀∀∀-strategy.

Definition 5. An ∃-strategy in a game is said to be winning if, when ∃ uses it, she wins the
game regardless of what ∀ plays. Likewise, we define a winning ∀-strategy.

Definition 6. Let ϕ be a property and G a game. We say that ϕ is determined with respect to
G if one of the players has a winning strategy for the game G(ϕ).

If every property is determined with respect to G, we say that G is wholly determined.

When ∃ has a winning strategy for the game G(ϕ), we can deem the associated property ϕ
nice, hence the following definition:

Definition 7. Let ϕ be a property. We say that ϕ is enforceable when ∃ has a winning strategy
for the game G(ϕ). It is called coenforceable when, almost as nice, ∀ has a winning strategy for
the game G(¬ϕ). Finally, we say that a condition p forces ϕ if ∃ has a strategy which is winning
whenever ∀ chooses a condition p0 ⊇ p as his first move.

Let us now prove an elementary lemma which establishes a link between those notions :

Lemma 1. i) A property ϕ is enforceable if and only if every condition forces ϕ.
ii) A property ϕ is coenforceable if and only if some condition forces ϕ.
iii) Every enforceable property is coenforceable.

Proof. i) It is immediate from the definition.
ii) Suppose that ϕ is coenforceable and let σ be a winning ∀-strategy for G(¬ϕ). Then the

condition σ0 forces ϕ. For suppose that, in the game G(ϕ), ∀ plays p0 ⊇ σ0; ∃ can win by choosing
p2n to be σ2n+1(σ0, p0, p1, ..., p2n−1) for each n < ω.

Conversely, suppose that a condition p forces ϕ and let σ be an ∃-strategy which is winning
whenever ∀ chooses a first condition containing p. Then ∀ has a winning strategy for G(¬ϕ) which
consists in playing p as his first move and then using σ.

iii) It follows from the two previous points.

In the next two sections, we will present two particular games and study their determinacy.

2 The Ziegler pre-game

Let us begin with an example to introduce the principle of the game:

Example. We work in the language L = {1, ·,−1 } of groups. We define a condition to be a finite
set of equations and inequations of L∪W , where W is a countable set of new constants. The set of
conditions is ordered by natural inclusion. At the end of a game, the compiled group is the group
presented by W and the set of all equations in pω.
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The particular case of groups illustrates well this game and the construction it yields. Remark-
ably, the general discussion follows the same lines and shows that the setting is far more general
than that of group theory.

The Ziegler’s pre-game. Let L be a countable language and T a consistent L-theory. Let W be
a countable set of constants we call witnesses.

A condition for the pre-game is a finite set of atomic and negated atomic sentences of L(W ).
The set of conditions is naturally ordered by inclusion.

At the end of a play, let U be the set of all atomic sentences deducible from T ∪ pω. As U
is =-closed, there is, up to isomorphism, a unique L(W )-structure A′ such that Diag+(A′) = U
: the canonical model of U (see [Hod93]). Then the compiled structure A is obtained by
considering A′ as an L-structure.

We now wish to establish a criterion for the Ziegler pre-game on a theory to be wholly deter-
mined. We will need the following theorem [Hod85]:

Dichotomy theorem. In the Ziegler pre-game on any theory T , exactly one of the following
holds:

• There is a countable set X of structures such that :
i) the property “The compiled structure A is isomorphic to some structure in X” is enforceable
ii) for any structure B in X, the property “A is isomorphic to B” is coenforceable

• For every enforceable property ϕ, there are continuum many non-isomorphic structures which
have ϕ.

Theorem 1. The Ziegler pre-game on a theory T is wholly determined if and only if T is good.

Proof. ⇐] Suppose that T is a good theory. Let X be a set as in the dichotomy theorem and ϕ
be a property.

• Suppose there is a structure B in X which fails to have property ϕ. Since it is coenforceable
to have A isomorphic to B, it is also coenforceable to have ¬ϕ (using the same strategy).

• Conversely, if every structure in X has property ϕ, then condition i) gives ∃ a winning
strategy for the property “A is isomorphic to some structure in X” thus for the property ϕ.

⇒] Suppose now that T is a bad theory. It follows that, since the property “A is a countable
model of Diag+(T )” is always true, and thus enforceable, there are 2ω non-isomorphic countable
models of Diag+(T ), which we enumerate as {Cα|α < 2ω}.

Let us call an ordinal α < 2ω constrainable when some condition forces the property “ A
is isomorphic to Cα”, that is when it is coenforceable. Since L ∪W is countable, there are only
countably many conditions and thus countably many constrainable ordinals.

In order to show that the pre-game is not wholly determined, we will build a property ϕ
which defeats every strategy the players could use. Hence let us list all the ∀- and ∃-strategies as
{σβ|β < 2ω}.

By induction on β, we will build chains {Xβ|β < 2ω} and {Yβ|β < 2ω} of subsets of 2ω to define
ϕ as “ A is isomorphic to some Cα with α ∈

⋃
β<2ω Yβ”.

We will ask that,∀β < 2ω :

• Xβ ∩ Yβ = ∅
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• |Xβ| < 2ω and |Yβ| < 2ω

• |Xβ+1 \Xβ| 6 1 and |Yβ+1 \ Yβ| 6 1

Let us put X0 = ∅ and take Y0 to bet the set of all constrainable ordinals. We take unions at
limit ordinals. Suppose that Xβ and Yβ have been chosen. We consider the two following cases :

• Suppose σβ is a ∃-strategy.

Put Z = {α < 2ω| when ∃ uses σβ, it is possible for A to be isomorphic to Cα}.
Since we want to prevent σβ from being a winning strategy for G(ϕ), we have to make sure
that ∀ is able to play against σβ, that is to ensure that Z 6⊆

⋃
β<2ω Yβ. Since the Xγ and Yγ

are disjoint, it suffices to ensure that Z ∩Xβ+1 6= ∅.
But now, let us notice that σβ is a winning strategy for the property “ A is isomorphic to
some Cα, with α ∈ Z”. No matter what the players do, A must indeed be isomorphic to
some Cγ, with γ < 2ω, since the compiled structure is a model of Diag+(T ). And, by the
choice of Z, this γ is necessarily in Z. Thus, since T is bad, there are continuum many
non-isomorphic countable structures which have this (enforceable) property. In particular,
|Z| = 2ω.

Hence, since the induction hypothesis guarantees that |Xβ ∪ Yβ| < 2ω, we can choose xβ in
Z \ (Xβ ∪ Yβ) and we put Xβ+1 = Xβ ∪ {xβ} and Yβ+1 = Yβ.

• Now suppose σβ is a ∀-strategy.

As before, we put Z = {α < 2ω| when ∀ uses σβ, it is possible for A to be isomorphic to Cα}.
We shall ensure that Z ∩

⋃
β<2ω Yβ 6= ∅, and more precisely, that Z meets Yβ+1.

But in this case, Z is not necessarily of cardinality 2ω. If it is the case, then we can simply
choose yβ in Z \ (Xβ ∪ Yβ) and put Xβ+1 = Xβ and Yβ+1 = Yβ ∪ {yβ}.
If not, we will see that Z already meets Yβ, by exhibiting a good theory which extends T : let
T ′ = T ∪ σ0

β. We will show that T ′ fails to satisfy the second part of the dichotomy theorem
and is thus the good theory we are looking for.

By definition of Z, the condition σ0
β forces the property “A is isomorphic to some Cα, with

α ∈ Z”. Hence it is enforceable with respect to T ′, for if σ is the strategy that enables ∃
to win whenever ∀ chooses a first condition which contains σ0

β, and if, in the game on T ′, ∀
plays p0 as his first move, ∃ can play p0 ∪ σ0

β which is still a condition for T ′. And from that
point on, ∃ can use σ to win.

Since |Z| < 2ω, there are less than continuum many non-isomorphic structures which satisfy
this (enforceable) property. This proves that T ′ is good. Then by the dichotomy theorem,
there exists a set X of structures such that, for any B ∈ X, it is coenforceable, with respect
to T ′, that “A is isomorphic to B”.

Since the compiled structure is necessarily isomorphic to some model of Diag+(T ′) which
also happens to be a model of Diag+(T ), it is necessarily isomorphic to some Cα. Thus, X
must contain at least one structure B which is isomorphic to some Cγ. So there is a condition
p which, with respect to T ′, forces the property ψ : “A is isomorphic to Cγ”, by lemma 1.
It follows that in the initial game on T , the condition p ∪ σ0

β forces ψ. That means exactly
that γ is constrainable so we have γ ∈ Y0 ⊆ Yβ.
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But γ is also in Z, for if ∀ plays σ0
β, ∃ can choose the condition p ∪ σ0

β and then use the
previous strategy so that ψ holds.

Finally, we have proved that Z already meets Yβ, so in this last case, we can leave Xβ and
Yβ unchanged.

The construction of our two chains is now complete, and by the choice of ϕ, none of the σβ is
a winning strategy for G(ϕ). Thus, ϕ is not determined and neither is the Ziegler pre-game on T .

Let us now switch to the other game, in which the compiled structure is obtained a completely
different way since it takes actual structures as starting points.

3 The Fräıssé’s pre-game

In this section we will analyze the dual game to that of Ziegler. The main idea is to construct
structures as limits of their substructures. Indeed, the rules are based on a well-known method of
in model theory: the Fräıssé’s construction. As before, groups form a nice intuitive class although
the discussion is not limited to them at all. It in fact was motivated by rational numbers with
their usual order, which is nothing but the limit of finite ordered sets.

Example. Let us call condition any finitely generated group. We order the set of conditions by
the relation “is a subgroup of”. At the end of a play, the compiled structure is simply the union pω
of all the groups that had been chosen during the game, which is a group too.

To define the pre-game, we need the following definition:

Definition 8. Let L be language and K a class of L-structures. Let Kfg be the class of all finitely
generated structures of K. We say that K is a Fräıssé class if it satisfies the following properties:

• K is closed under unions of countable chains.

• If B ∈ K and C is embeddable in B, then C ∈ K.

• If C1 and C2 are in Kfg, then there exists D ∈ Kfg such that both C1 and C2 are embeddable
in D.

• If B, C1 and C2 are in Kfg and B is embeddable in both C1 and C2, then there exists D ∈ Kfg

and embeddings of C1 and C2 in D which agree on B (when B is seen as a substructure of
C1 and C2).

The Fräıssé’s pre-game. Let L be a countable language and K be a Fräıssé class of L-structures.
A condition for the pre-game is a structure in Kfg. We order the set of conditions by the relation
“ is a substructure of”. The compiled structure is then the union of the chain of structures of
Kfg that have been chosen by the players, and is thus in K by the first requirement in the definition
of a Fräıssé class.

As in the Ziegler’s pre-game, we want to know when the Fräıssé’s pre-game is wholly determined.
We first see how Fräıssé’s construction gives us a sufficient condition; we will see in a second section
that the latter is in fact a necessary condition too.
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3.1 Fräıssé’s construction

We will need the following definitions:

Definition 9. • An equivalence class of structures under the relation of isomorphism is called
an isomorphism type. Let F be the set of all the isomorphism types of structures of Kfg.

• Let B be a structure. The age of B is the set of all elements of F which are the isomorphism
types of substructures of B. We write it age(B).

• Let B be a structure. We say that B is weakly homogeneous if for every pair of structures
C and D such that C ⊆ B, C is embeddable in D and whose isomorphism types are in
age(B), there is an embedding from D to B which is the identity on the image of C in D.

Remarks. - The cardinality of F is at most 2ω.
An isomorphism type in Kfg indeed corresponds to the L-type of a finite tuple : if two tuples have

the same type, the structures they generate are isomorphic. Hence, as the language is countable,
there are at most 2ω types and |F| 6 2ω too.

- If a structure is countable, then its age is countable too.
- If two countable weakly homogeneous structures have the same age, they are isomorphic.

Fräıssé’s theorem. Let L be a countable language and J be a non-empty countable set of finitely
generated L-structures. Suppose that J satisfies the following properties :

(HP) If B ∈ J and C is a finitely generated substructure of B, then C is isomorphic to some
structure in J.

(JEP) If B and C are in J, then there is D ∈ J such that both B and C are embeddable in D.
(AP) If B,C1 and C2 are in J, and B is embeddable in both C1 and C2, then there is a structure

D ∈ J and embeddings of C1 and C2 in D which agree on B.
Then there exists a countable weakly homogeneous L-structure D such that age(D) = J. More-

over, D is unique up to isomorphism. It is called the Fräıssé limit of the class J.

Example. The Fräıssé limit of finite linear orderings is the rationals, with their usual order.

Proof. The last remark guarantees the uniqueness of the Fräıssé limit.
Without loss of generality, we can suppose that J is closed under isomorphism.
We shall build a chain (Di)i<ω of structures of J so that for every B and C in J such that

B ⊆ C and f embeds B in some Di , then there are j > i and an embedding g of C in Dj which
extends f .

Suppose that we have built such a chain. Then the union D of the Di is the structure we are
looking for. It is indeed weakly homogeneous by the previous property. Besides, the age of D is
included in J since the age of each Di is (by the hereditary property (HP)). To show that age(D)
is in fact equal to the whole J, let us take B in J. Then (JEP) gives us a structure C ∈ J such
that both B and D0 are embeddable in C. By choice of the Dis, the identity map on D0 extends
to an embedding of C in some Dj. Hence, B is a isomorphic to a substructure of Dj and of D,
and lies in the age of D.

Let us now construct that chain. We first choose any structure D0 in J and build the rest of the
sequence by induction: suppose thatDk has been chosen. Let us enumerate as ((fij, Bij, Cij))i6k,j<ω
all the triples (f,B,C) where B ⊆ C and f is an embedding from B to C. Let us also choose a
bijection π between N2 and N so that for every i, j ∈ N, π(i, j) > i. Thus there exists a unique
couple (i, j) such that k = π(i, j), and we have i 6 k. We then build Dk+1 by the amalgamation

6



property (AP) such that there is an embedding gij of Cij into Dk+1 which extends fij, and the
chain satisfies the wanted property.

3.2 Fräıssé’s pre-game determined, a sufficient condition

The previous construction allows us to state the first determinacy result about Fräıssé’s pre-game:

Theorem 2. If F is countable, then the Fräıssé’s pre-game on the class K is wholly determined.

Proof. Since K is a Fräıssé class, Kfg satisfies the condition of Fräıssé’s theorem. Thus, there is a
countable weakly homogeneous structure D of age Kfg. Besides, D is unique up to isomorphism,
so, if ∃ follows the method of construction given in the proof of Fräıssé’s theorem, she can make
the compiled structure A isomorphic to D. So, if ϕ is a property satisfied by D, ∃ has a winning
strategy for G(ϕ). If D does not have the property ϕ, then ¬ϕ is enforceable, and also coenforceable
by lemma 1, so that ∀ has a winning strategy for G(ϕ).

Let us now study the converse:

3.3 The uncountable case

Suppose that F is uncountable.

Definition 10. Let X be a set. By Pω(X), we denote the set of all countable subsets of X. Let
W be a subset of Pω(X).

• W is closed unbounded in Pω(X) if :

i) W is closed under unions of countable chains.

ii) For every Y ∈ Pω(X), there exists Z ∈ W such that Y ⊆ Z.

• We say that W is fat if it contains a closed unbounded set.

Lemma 2. If X is uncountable, the intersection of two closed unbounded sets in Pω(X) is itself
closed unbounded.

Let now S be the set of all subsets W of F for which there exists a countable weakly homoge-
neous structure B in K such that W = age(B). By the remark in the previous section, such W
are countable and thus S ⊆ Pω(F).

Lemma 3. S is closed unbounded in Pω(F).

Let us now define a collection of properties whose enforceability we will establish a criterion
for : for every W ⊆ Pω(F), let ϕW be the property “ age(A) ∈ W”.

Proposition 1. The property ϕW is enforceable if and only if W is fat.

Proof. ⇐] It suffices to show that if W is closed unbounded in Pω(F), then ϕW is enforceable.
Thus, let W be closed unbounded.

Let (Xi)i<ω be a partition of ω into strictly countable subsets.
Let i ∈ ω, and suppose that ∀ chooses a condition p2i. Since W is unbounded, there is an

element s2i of W such that the isomorphism type of p2i is in s2i. If such an element has been found
for p2i−2, it is possible to choose s2i such that s2i−2 ⊆ s2i.
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∃ has to ensure that age(A) ∈ W . By definition of the s2i, she already knows that age(A) ⊆⋃
i<ω s2i. But

⋃
i<ω s2i ∈ W since W is closed under unions of countable chains. So she shall try

to have age(A) =
⋃
i<ω s2i to win the game G(ϕW ).

For every t in s2i, ∃ has to make sure that t is the isomorphism type of some substructure of
A. Since s2i is countable, we can enumerate s2i by {tn|n ∈ ω}. Thus, if n ∈ Xi, then ∃ can choose
p2n+1 to be p2n ∪ Tn, where Tn is a structure of type tn. Thus, Tn will be a substructure of A and
we will have tn ∈ age(A).
⇒] Suppose now that ϕW is enforceable and let σ be a winning ∃-strategy for G(ϕW ). We shall
build a closed unbounded set which is contained in W .

Let Y be the set of all countable subsets of F which are closed under every function σn : P ∈ Y
if and only if P ∈ Pω(F) and for all n ∈ ω , if the isomorphism types of p0, ..., pn−1 are in P , then
the isomorphism type of σn(p0, ..., pn−1) is in P too.

Then Y is closed unbounded in F. Closure is clear from the definition, and if P ∈ Pω(F), then
it is included in its closure by the functions of σ (which is in Y because there are countably many
functions in σ). Since F is uncountable, Y ∩S is closed unbounded. Let us show that Y ∩S ⊆ W .
Suppose that s ∈ Y ∩ S.

Let J be the class of structures in K with age included in s.
J is a Fräıssé class: if C ∈ J and D is embeddable in C, then age(D) ⊆ age(C) ⊆ s and

D ∈ J. J is clearly closed under unions of countable chains. Since s ∈ S, there is a countable
weakly homogeneous structure B ∈ K such that s = age(B). If C,D1 and D2 are in Jfg, then their
isomorphism types are in age(B) (their age is included in s and they are finitely generated so their
types is in F too). Suppose now that e1 and e2 are embeddings of C in D1 and D2 respectively.
The weak homogeneity of B gives us two embeddings f1 and f2 of D1 and D2 in B such that
f1 ◦ e1 = f2 ◦ e2. Then the union f1(D1) ∪ f2(D2) is in Jfg and satisfies the joint embedding
property.

Hence, we can consider the Fräıssé’s pre-game G′ on the class J. Since s is countable, by
theorem 2 and Fräıssé’s construction, the property “ A is weakly homogeneous and age(A) = s”
is enforceable (in G′). By lemma 1, it is also coenforceable.

Besides, as s ∈ Y , s is closed under the functions of σ, which allows ∃ to use σ in G′. Let us
consider a particular play of G′ where ∃ plays by σ and ∀ plays so that A is weakly homogeneous
with age s.

But J ⊆ K, so G′ is only a restriction of the game G. Thus we can play the same game on K.
Then σ is a winning strategy for G(ϕW ) so age(A) ∈ W , that is, s ∈ W , and W is fat.

We are now ready to state the converse of theorem 2:

Theorem 3. If F is uncountable, then the Fräıssé’s pre-game on K is not wholly determined.

Proof. Let us simply sketch out the proof. Let F be the set of fat subsets of F. F is then a filter
by lemma 2. It suffices to show that F is not an ultrafilter on Pω(F), for then we would have
some countable subset W of F such that neither W nor Pω(F) \W is fat. By proposition 1, it
follows that neither ϕW nor ϕPω(F)\W is enforceable, that is nor ∃ nor ∀ has a winning strategy
for G(ϕW ) (because in a Fräıssé’s pre-game, the joint embedding property of the class guarantees
that enforceability and coenforceability are equivalent notions), and thus ϕW is not determined.
F is non-principal filter on F, with the property that any countable intersection of members of

F is still in F . Besides, |Pω(F)| 6 2ω. But we can show ([JH99]) that if there exists a non-principal
ultrafilter with the previous property on a set X, then |X| must be strongly inaccessible, that is,
for every β < |X| then 2β < |X| too. So F cannot be an ultrafilter.
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