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Abstract

This short text was written for the Séminaire bleu of the ENS Lyon which is a part
of the Master of Mathematics; I had to pick some sections of Rosendal’s article Automatic
continuity of group homomorphisms [3] and present them to an audience of professors and
students. Here is what I intended to talk about.

Introduction

It is a classical exercise to find all the continuous homomorphisms from (R,+) onto itself: these
are the R-linear applications. Are there any other homomorphisms? The axiom of choice gives us
an example through the existence of a Hamel basis of R seen as a Q vector space. So if we want to
have automatic continuity, we must ask stronger conditions on the homomorphism: for instance
(see section 1) measurability implies continuity. But we can also change the domain and the range
of the homomorphisms. One way to do this is to consider R as a Polish group and thus extend
the question to this class of groups:

Question. Let φ : G→ H be a group homomorphism, where G and H are actually Polish groups.
What conditions could make φ continuous?

The first section is dedicated to regularity conditions for the homomorphism and the second to
counterexamples, while the two last sections respectively deal with the range and the domain of
the homomorphism.

1 Baire measurability and continuity

Let us first recall some definitions:

Definition 1.1. A Polish space is a separable topological space (X, τ) which has a compatible
complete metric. A Polish group is a topological group whose topology is Polish.

Definition 1.2. Let G be a subset of a topological space (X, τ). We say that G is meager if it
is included in a countable union of nowhere dense subsets of X (i.e. G is a subset of a countable
union of closed sets, each of them having an empty interior). Taking the complementary, we say
that G is comeager if it contains a countable union of dense open sets.

We also recall the two following fundamental theorems:
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Theorem 1.3. If (X, τ) is a Polish space and (Uα)α∈A is a family of open subsets of X, then there
exists countably many αi ∈ A so that ⋃

α∈A

Uα =
⋃
i∈N

Uαi

Theorem 1.4 (Baire). If (X, τ) is a Polish space, then every comeager subset of X is dense in
X(equivalently, every meager subset is of empty interior).

In particular, this implies that in a Polish space (X, τ), a subset A ⊆ X cannot be meager and
comeager at the same time, for its complementary would also be comeager and hence A∩X \A = ∅
would be comeager too, a contradiction.

So, in a Polish space we can see meager sets as “small” sets, hence the following definition,
which will encompass every set “not too far from being nice”:

Definition 1.5. Let (X, τ) be a Polish space. A subset A ⊆ X is called Baire-measurable if
there exists an open set U so that U∆A is meager.

Note that A is then comeager in U . Using theorem 1.4, one can prove that the set of Baire-
measurable subsets of X is a σ-algebra, and thus that every Borel set is Baire-measurable. Before
considering the question of the existence of non Baire-measurable sets, let us jump to the main
result of this section, which uses the following definition:

Definition 1.6. Let (X, τ) and (Y, τ ′) be Polish spaces. An application f : X → Y is Baire-
measurable if for every open set U ⊆ Y , f−1(U) is Baire-measurable in X.

Theorem 1.7. Let (G, τ) and (H, τ ′) be Polish groups. Then every Baire-measurable homomor-
phism between them is continuous.

The proof uses the following definition and lemmas :

Definition 1.8. If A is any subset of a Polish space (X, τ), we note U(A) the greatest open set in
which A is comeager (it exists by taking the union of open sets in which A is comeager, and using
theorems 1.3 and 1.4).

Lemma 1.9 (Pettis [2]). Let (G, τ) be a Polish group, A and B be Baire-measurable subsets of G,
then:

U(A) · U(B) ⊆ A ·B

Proof. Let us first notice that, as the multiplication by a fixed element and the inversion are
homeomorphisms, we have g · U(A) = U(g · A) and U(A−1) = U(A)−1. Now, if A and B are
subsets of X, let x ∈ U(A) · U(B). Then x · U(B)−1 ∩ U(B) = U(xB−1) ∩ U(B) is a nonempty
open subset of G in which xA−1 ∩B is comeager, thus nonempty by theorem 1.4. But this means
exactly that x ∈ A ·B.

Lemma 1.10. Let (G, τ) and (H, τ ′) be Polish groups, and φ : G → H a homomorphism. Then
the inverse image of any open subset is either non-meager or empty.

Proof. Suppose it were not the case: let V ⊆ H be an open subset so that φ−1(V ) is meager and
not empty. We have G =

⋃
g∈G

g · φ−1(V ) so that

φ(G) =
⋃
g∈G

φ(g) · φ(φ−1(V )) ⊆
⋃
g∈G

φ(g) · V
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Using theorem 1.3 in H, we find (gn)n∈N so that φ(G) ⊆
⋃
n∈N φ(gn) · V , and then

G = φ−1(φ(G)

=
⋃
n∈N

φ−1(φ(gn) · V )

G =
⋃
n∈N

gn · φ−1(V )

But as φ−1(V ) is meager, G would be meager, a contradiction to theorem 1.4.

We are now ready to prove theorem 1.7:

Proof. Let (G, τ) and (H, τ ′) be Polish groups, and φ : G→ H a Baire-measurable homomorphism.
We wish to prove that the inverse image of any open set is open; by homogeneity it suffices to
prove that the inverse image of any open neighborhood of 1H is a neighborhood of 1G. So let V be
an open set containing 1H ; by the continuity of group operations we find an open neighborhood W
of 1H so that W ·W−1 ⊆ V . By lemma 1.10, φ−1(W ) cannot be meager; as it is Baire-measurable,
U(φ−1(W )) 6= ∅. But then

1H ∈ U(φ−1(W )) · U(φ−1(W ))−1 = U(φ−1(W )) · U(φ−1(W )−1)

But by lemma 1.9, U(φ−1(W )) · U(φ−1(W )−1) ⊆ φ−1(W ) · φ−1(W )−1 ⊆ φ−1(W ·W−1) ⊆ φ−1(V ),
which is thus a neighborhood of 1G.

This result strongly restricts the class of possible noncontinuous homomorphisms between Pol-
ish groups: it excludes in particular many definable homomorphisms, e.g. the Borel ones. Fur-
thermore, extending Solovay’s ideas in [5], Shelah has proven in [4] that it is consistent with ZF to
suppose that every subset of the reals is Baire-measurable. As this implies that every subset of a
Polish space is Baire-measurable, it is thus consistent with ZF that every homomorphism between
Polish groups is continuous. So in order to find non-continuous homomorphisms, we will have to
use the full ZFC. Let us now see some of those counterexamples.

2 Non-continuous homomorphisms

Counterexample 2.1. There exists discontinuous functionals φ on any separable infinite-dimensional
Banach space X.

Proof. Let us first find a basis (xi)i∈I of X as an R-vector space so that {xi/i ∈ I} is dense in X.
We start by enumerating a countable open ball basis (Bn)n∈N of X; and then we build by induction
on N a free family (xn)n∈N such that xn ∈ Bn. Such a construction is possible as the linear span of
finitely many vectors is of empty interior, thus cannot cover entirely an open subset of X. Then
we just have to complete (xn)n∈N in order to obtain an R-basis (xi)i∈I of X. Now if j ∈ I, φj is
defined as the unique functional so that φj(xi) = δj,i. It is discontinuous as by density we can find
a sequence (xin) with in 6= j so that xin → xj.

Counterexample 2.2. There exists a discontinuous group isomorphism between (R,+) and (R2,+).

Proof. Seeing both R and R2 as vector spaces over Q, each of them has a basis whose cardinality
is the continuum. So there is a bijection between those basis, which can be extended to a Q-
isomorphism of R and R2. This isomorphism is in particular a group isomorphism, and it cannot
be a homeomorphism by a standard connectedness argument.
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Let now G be a Polish group, and H a subgroup of countable index of G. If H is open, then
it is closed as its complementary is the union of open cosets. Conversely, suppose H is closed.
By Baire’s theorem (cf. theorem 1.4) it cannot be meager, but it still is Baire-measurable so
U(H) is not empty, and hence 1G ∈ U(H) · U(H)−1 ⊆ H by Pettis theorem (cf. lemma 1.9). So
1G ∈ Int(H), and by homogeneity H must be open.

Proposition 2.3. If G is a Polish group with a non open/closed subgroup H of countable index,
then there exists a non-continuous homomorphism of domain G.

Proof. Let φ : G→ S(G/H) be the action of G on G/H by left translation. If H is of finite index,
we equip S(G/H) with the discrete topology, else S(G/H) is group isomorphic to S∞ which has a
natural Polish topology. Either way, {σ ∈ S(G/H)/σ(1H) = 1H} is an open subset of S(G/H),
and its inverse image by φ is H which is not open: φ is thus non-continuous.

Using this, we have the :

Counterexample 2.4. If F is any finite group equipped with the discrete topology, there exists
discontinuous homomorphisms whose domain is FN.

Proof. Let U be a non-principal ultrafilter on N, and let H = {(fn)n∈N, {n/fn = 1F} ∈ U}. As U
is a filter, one can easily see that H is a subgroup of FN; its index is |F | because if (gn)n∈N ∈ FN,
there exists f ∈ F so that {n ∈ N/f = gn} ∈ U . In fact, if it were not the case, for all f ∈ F ,
Af = {n ∈ N/f 6= gn} would be in U , and thus so would ∩Af = ∅, a contradiction.

Also, H is dense in FN because U is not principal, and so H cannot be closed. By the preceding
proposition 2.3, we are done.

Now that we are convinced that the theory of automatic continuity for Polish groups is rich,
let us see some of its content.

3 Conditions on the range

Definition 3.1. Let G be a group. We say it is normed if there exists a norm on it, i.e. an
application || · || : G→ N satisfying the following properties for every g, h ∈ G:

(1) ||g · h|| 6 ||g||+ ||h||

(2) ||1G|| = 0

(3) ||g|| = ||g−1||

(4) ∀n ∈ N, g 6= 1G ⇒ ||gn|| > max{n, ||g||}

Examples: Z, any free group, any free abelian group. (To show this, equip Z with the usual norm,
and then show that the class of normed groups is stable by free product and direct sum)

Theorem 3.2 (Dudley [1]). Let G be a Polish group, d a compatible complete metric and H a
normed group equipped with the discrete topology. Then if φ : G → H is a group morphism, φ is
continuous.

Proof. Let us suppose the contrary: then φ is not continuous at 1G. We define by induction
sequences (xm,n)n,m∈N∗ , (gn)n∈N∗ of elements of G, and (kn)n∈N∗ of natural integers such that :
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• For all n ∈ N∗ and 0 < m < n, xn,m = gmx
km
n,m+1

• For all n ∈ N∗, kn = n+
∑n

i=1‖φ(gi)‖, xn,n = 1 and φ(gn) 6= 1H

• For all m,n ∈ N∗, d(xn+1,m, xn,m) < 2−n

We start with any g1 such that φ(g1) 6= 1H , then if we have g1, ..., gn we let kn = n+
∑n

i=1‖φ(gi)‖.
Note that we have, for 1 ≤ m ≤ n,

xn,m = gm

(
gm+1

(
gm+2 · · · (gn−1(gn)kn−1)kn−2 · · ·

)km−1
)km

Now, to build every xn+1,m, we wish to replace gn by gn ·gkn
n+1 so that the new expression is not to far

away from the old one. But as there are finitely manym, and as g 7→ gm

(
gm+1

(
gm+2 · · · (gn−1(gn · gkn)kn−1)kn−2 · · ·

)km−1
)km

is continuous, it is always possible to do so, and to have φ(gn+1) 6= 1H by non-continuity of φ at
1G.

Now, if m is fixed, the sequence (xn,m) is Cauchy, let ym be its limit. Then by continuity we
have for all m ∈ N∗, ym = gm(ym+1)

km . Applying this formula, we get

y1 = g1

(
g2

(
· · · (gmykm

m+1) · · ·
)k2)k1

Let us remark that, if φ(ym+1) = 1H , we have

‖φ(ykm−1
m )‖ = ‖φ(gm)km−1‖ > km−1

while if φ(ym+1) 6= 1H ,

‖φ(ykm−1
m )‖ > ‖φ(ym)|| = ||φ(gm)φ(ym+1)

km‖ > km − ‖φ(gm)‖ = km−1 + 1

So either way, ‖φ(ykm−1
m )‖ > km−1. Now, we write

‖φ(y1)‖ >

∥∥∥∥φ [(g2 (g3 · · · )k2
)k1]∥∥∥∥− ‖φ(g1)‖

>
∥∥∥φ [g2 (g3 · · · )k2

]∥∥∥− ‖φ(g1)‖

>
∥∥∥φ [(g3 · · · )k2

]∥∥∥− ‖φ(g2)‖ − ‖φ(g1)‖
> · · ·
>

∥∥φ [(gmym+1)
km−1

]∥∥− ‖φ(gm−1)‖ − · · · − ‖φ(g1)‖
||φ(y1)|| > km−1 − ‖φ(gm−1)‖ − · · · − ‖φ(g1)‖ = m− 1

But as this holds for all m, we have a contradiction.

Corollary 3.3. There is no Polish topology on F2ω (the free group on a continuum of generators).

Proof. Suppose it where the case, then using the preceding theorem, the identity from F2ω equipped
with its Polish topology into F2ω with the discrete topology is continuous, so the Polish topology
we have is discrete, but as it is separable we have a contradiction.

Corollary 3.4. Any homomorphism from a Polish group into (F2)
ω is continuous (where F2 is

the free group on two generators equipped with the discrete topology, and (F2)
ω has the product

topology).

Proof. Let φ be such a homomorphism. By definition of the product topology, we only need to
show that φ ◦ π is continuous for every projection π : Fω

2 → F2, but then theorem 3.2 applies.
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4 Conditions on the domain

We begin with two definitions:

Definition 4.1. Let G be a Polish group. A subset A of X is said to be σ-syndetic if there exists
(gn)n∈N ∈ GN so that G = ∪gn · A, i.e. G can be covered by countably many left translates of A.

Example: Open subsets of G.

Definition 4.2. Let G be a Polish group. We say that G is Steinhaus if there exists k ∈ N such
that every symmetric, σ-syndetic subset A ⊆ G containing 1G verifies the following property:

1G ∈ Int(Ak)

In this case G is called Steinhaus with exponent k.

We now prove the main theorem of this section:

Theorem 4.3. Let G be a Steinhaus Polish group; then if H is a Polish group, any homomorphism
φ : G→ H is continuous.

Proof. Suppose G is Steinhaus of exponent k. Let V be an open neighborhood of 1H , by continuity
of group operations we can find an open symmetric neighborhood W of 1H so that W 2k ⊆ V . Now
W is σ-syndetic; let (hn)n∈N be so that (hn ·W )n∈N covers H. Then for each n so that hn ·W
intersects φ(G), take gn satisfying φ(gn) ∈ hn · W . Then hn ∈ φ(gn) · W−1, but by symmetry
W−1 = W so hn ·W ⊆ φ(gn) ·W 2. But then G is covered by countably many left translates of
φ−1(W 2), which is thus σ-syndetic. As it is symmetric, we have 1G ∈ Int(φ−1(W 2))k ⊆ φ−1(V ).

One example of such groups is the groups having ample generics, unfortunately we don’t have
the time to go deeper into this subject.
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