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Abstract. Independence relations, which are ternary relations satisfying some
specific properties, have been studied in several different context, such as in o-
minimal theories, stable theories or simple theories, with forking for instance.
One of the aim of the article A Geometric Introduction To Forking and Thorn-
forking by Hans Adler is to study independence relations in a more general
context, and to find weak strict independence relations. This will lead us to
define thorn-forking.
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We will work in a "big" saturated model M, i.e. a model which is big enough for
the study and allows us to work only in itself. We will write (A1, ...,An) ≡C (B1, ...,Bn)
if there is an automorphism fixing C pointwise and mapping Ai to Bi for all i. AB
stands for A ∪B.

1. First step toward independence relations

1.1. What is an independence relation?

Definition 1.1. A ternary relation ⫝ between subsets of M is an independence
relation if it satisfies the following properties :

● Invariance :
If A ⫝C B and (A′,B′,C ′) ≡ (A,B,C), then A′ ⫝C′ B

′.
● Monotonicity :

If A ⫝C B, A′ ⊆ A and B′ ⊆ B, then A′ ⫝C B′.
● Base monotonicity :

If D ⊆ C ⊆ B and A ⫝D B, then A ⫝C B.
● Transitivity :

If D ⊆ C ⊆ B, B ⫝C A and C ⫝D A, then B ⫝D A.
● Normality :

If A ⫝C B then AC ⫝C B.
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● Extension :
If A ⫝C B and B ⊆ B̂, then there is A′ ≡BC A such that A′ ⫝C B̂.

● Finite character :
If A0 ⫝C B for all finite A0 ⊆ A, then A ⫝C B.

● Local character :
For every A, there is a cardinal κ(A) such that for any set B there is a

subset C ⊆ B of cardinality ∣C ∣ < κ(A) such that A ⫝C B.

Remark 1.2. For every relation ⫝ satisfying monotonicity, transitivity and nor-
mality, B ⫝CD A and C ⫝D A implies BC ⫝D A.

Proof. By normality, BCD ⫝CD A and CD ⫝D A. Then, by transitivity, BCD ⫝D

A so that BC ⫝D A by monotonicity. �

The trivial relation ⫝0 such that A ⫝C B holds for all A, B and C is an indepen-
dance relation. To compare the independence relations, we introduce the following
notion : a ternary relation ⫝ is weaker than a relation ⫝# if A ⫝#

C B implies A ⫝C B.
The trivial relation is always the weakest independence relation. However the study
of this relation does not bring any information. Therefore, we wish to study more
complex independence relations called strict.

Definition 1.3. Recalling that Aut(M/B) is the set of automorphisms of M fixing
B pointwise, the algebraic closure of B, acl(B), is the set of the tuples of M having
finite orbit under the action of Aut(M/B).

Definition 1.4. An independence relation ⫝ is strict if it satisfies anti-reflexivity:
If a ⫝B a then a ∈ acl(B).

The trivial relation is not strict.
Ternary relations can also satisfy the following useful properties :

● Full existence
For any A, B and C there is A′ ≡C A such that A′ ⫝C B.

● Symmetry
A ⫝C B is equivalent to B ⫝C A.

Remark 1.5. (1) Any relation satisfying invariance, extension and symmetry also
satisfies normality.
(2) Any relation satisfying invariance, monotonicity, transitivity, normality, full
existence and symmetry also satisfies extension.

Proof. (1) If A ⫝C B, then by symmetry B ⫝C A. However A ⊆ AC so there is
B′ ≡AC B so that B′ ⫝C AC by extension. As (AC,B,C) ≡ (AC,B′,C), B ⫝C AC
by invariance and finally, AC ⫝C B by symmetry. �

Theorem 1.6. Every independence relation ⫝ is symmetric.

Proof. The proof uses Morley sequences. �

Example 1.7. We consider T the theory of non-empty undirected forests that
branch infinitely in every node. In this theory, acl(A) is the set of all nodes on
a path between two nodes of A. The following relation is a strict independence
relation :
A ⫝C B⇔ every path from A to B meets acl(C).

We will try to find the weakest strict independence relation.
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1.2. Algebraic independence. To find an independence relation, we introduce
the following relation :

Definition 1.8. The relation A ⫝a
C B, which holds if and only if the equation

acl(AC) ∩ acl(BC) = acl(C) holds is called the algebraic independence.

Proposition 1.9. The relation A ⫝a
C B satisfies the full existence condition and

all axioms for strict independence relations except base monotonicity.
It satisfies base monotonicity if and only if for all algebraically closed sets A, B,

C such that C ⊆ B, the equation B ∩ acl(AC) = acl(B ∩AC) holds.

Proof. By compactness. �

2. Forking

To obtain independence relations, properties can be forced such as the extension
axiom with forking.

Definition 2.1. For any relation ⫝, we define the relation ⫝∗ of forking indepen-
dence : A ⫝∗C B holds if and only if for all B̂ ⊇ B there is A′ ≡BC A such that
A′ ⫝C B̂.

A ⫝∗C B implies A ⫝C B and ⫝=⫝∗ if and only if ⫝ satisfies the extension axiom.
From ⫝ to ⫝∗, only possibly finite character and local character can be lost but
extension is obtained.

Lemma 2.2. If ⫝ is a relation satisfying invariance and monotonicity, then ⫝∗
satisfies invariance, monotonicity and extension. If, moreover, ⫝ satisfies one of
the following property, then ⫝∗ also satisfies it : base monotonicity, transitivity,
normality, anti-reflexivity, full existence.

Definition 2.3. If M is a model, a n-type over B ⊂M is a maximal set of L(B)-
formulas such that all finite subsets of formulas are satisfied by M .
A type is complete if it contains ϕ or the negation of ϕ for all L(B)-formula ϕ.
S∗(B) is the class of complete types over B in arbitrarily long sequences of distinct
formal variables.

Definition 2.4. A model MS is κ-saturated if all 1-type over A ⊂MS such that
∣A∣ < κ is realised in MS , i.e. for all 1-type over A, p(x), there is a ∈MS such
thatMS satisfied p(a) (MS ⊧ p(a)).

Proof. ● Invariance
It comes directly from the invariance of ⫝.

● Monotonicity
If A ⫝∗C B, A0 ⊆ A and B0 ⊆ B, then, by definition of ⫝∗, for all B̂ ⊇ B
there is A′ ≡BC A such that A′ ⫝C B̂. Let A′

0 ⊆ A′ correspond to A0 ⊆ A.
Then, as (A′,B,C) ≡ (A,B,C), (A′

0,B0,C) ≡ (A0,B0,C) by restriction
and A′

0 ⫝C B′ for all B′ ⊆ B̂ by monotonicity of ⫝. Thus, for all B′ ⊇ B0,
there is B̂ ⊇ B and A′

0 ≡B0C A0 such that B′ ⊆ B̂ and A′
0 ⫝C B′ : A0 ⫝∗C B0.

● Extension
Suppose ā ⫝∗C B where ā is a possibly infinite tuple, and let B̂ ⊇ B be any
superset of B. We obtain that for all M ⊇ B̂ there is a′ ≡BC a such that
a′ ⫝C B̂.
We claim that there is a type p(x) ∈ S∗(B̂C), extending tp(ā/BC), such
that for all cardinal κ there is a κ-saturated model M ⊇ B̂ and ā′ ⊧ p(x̄)
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such that ā′ ⫝C M .
If not, then for each p(x̄) ∈ S∗(B̂C) extending tp(ā/BC) there is a cardinal
κ(p) such that no κ(p)-saturated model M ⊇ B̂ there is a tuple ā′ ⊧ p sat-
isfying ā′ ⫝C M . Let κ be the supremum of the cardinals κ(p) and M ⊇ B̂
be κ-saturated. Then there is no ā′ ≡BC ā such that ā′ ⫝C M : we have
found a contradiction with the definition of ⫝∗.
Choosing ā′ ⊧ p(x̄), where p(x̄) is as in the claim, clearly ā′ ≡BC ā since
p(x̄) is an extension of tp(ā/BC), and ā′ ⫝∗C B̂.

● Base monotonicity
If C ⊆ C ′ ⊆ B and A ⫝∗C B, then, by definition of ⫝∗, for all B̂ ⊆ B there is
A′ ≡BC A such that A′ ⫝C B̂. Applying base monotonicity for ⫝, we obtain
A′ ⫝C′ B̂ and finally A′ ⫝∗C′ B.

● Transitivity
By invariance of ⫝, we have the following equivalences :

A ⫝∗C B ⇔ (for all B̂ ⊇ B there is A′ ≡BC A such that A′ ⫝C B̂)
⇔ (for all B̂ ⊇ B there is an A′ and an automorphism f

fixing B and C pointwise such that f(A′) = A and A′ ⫝C B̂)

Consider B̂ ⊇ B and f such as in the previous equivalence.
Then (f(A), B̂, f(C)) ≡ (A; f−1(B̂),C), f fixes C pointwise and f(A) ⫝C

B̂ so by invariance of ⫝, A ⫝C f−1(B̂).

Thus, with B̂′ = f−1(B̂), we obtain :
A ⫝∗C B ⇔ (for all B̂ ⊇ B there is B̂′ ≡BC B̂ such that A ⫝C B̂′)

Suppose D ⊆ C ⊆ B, B ⫝∗C A and C ⫝∗D A hold, and Â ⊇ A. We need
to show that B ⫝D Â∗ for some Â∗ ≡AD Â. Let Â′ ≡AD Â be such that
C ⫝D Â′ and let Â∗ ≡AC Â′ be such that B ⫝C Â∗. Then Â∗ ≡AD Â and
C ⫝D Â∗. By transitivity of ⫝, we get B ⫝D Â∗.

● Normality
It comes directly from the normality of ⫝.

● Anti-reflexivity
a ⫝∗B a implies a ⫝B a, which implies a ∈ acl(B) by anti-reflexivity of ⫝.

● Full existence
Consider three subsets A,B,C. ⫝ satisfies full existence so A ⫝∗C ∅.Since ⫝∗
satisfies extension there is A′ ≡C A such that A′ ⫝∗C B.

�

Theorem 2.5. If ⫝ satisfies invariance, monotonicity, base monotonicity, transi-
tivity, normality and finite character and ⫝∗ satisfies local character, then ⫝∗ is an
independence relation.

Although there are natural examples in which local character can be lost, the
existence of a relation ⫝ satisfying invariance, monotonicity and finite character,
for which ⫝∗ does not have finite character is still an open question.
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3. Thorn-forking

The algebraic independence studied in the first part turns out to satisfy all
axioms for independence relations, except possibly monotonicity. As we succeeded
in forcing the extension axiom, we will try to force base monotonicity with what is
known as thorn-forking.

Definition 3.1. The relation ⫝M of M-dividing independence is defined by A ⫝M
C B

holds if and only if for any C ′ such that C ⊆ C ′ ⊆ acl(BC), the equation

acl(AC ′) ∩ acl(BC ′) = acl(C ′)
also holds.

Definition 3.2. The relation ⫝th of thorn-forking independence is defined by ⫝th=⫝M∗.
It means that A ⫝th

C B holds if and only if for all B̂ ⊇ B, there is A′ ≡BC A such
that A′ ⫝M

C B̂.

Definition 3.3. A complete theory is rosy if ⫝th is an independence relation.

Lemma 3.4. If ⫝ is any strict independence relation, then A ⫝C B implies A ⫝th
C B.

Proof. Suppose ⫝ is any strict independence relation, A ⫝C B and B̂ ⊇ B. By
definition of ⫝th, we need to show that there is A′ ≡BC A such that A′ ⫝M

C B̂. By
extension of ⫝ there is A′ ≡BC A such that A′ ⫝C acl(B̂C). For any D satisfying
C ⊆ D ⊆ acl(B̂C) base monotonicity of ⫝ gives A′ ⫝D acl(B̂C). By extension
and symmetry of ⫝ there is a set H ≡A′D acl(A′D) that satisfies H ⫝D acl(B̂C).
We obtain H = acl(A′D), so acl(A′D) ⫝D acl(B̂C). By anti-reflexivity of ⫝,
acl(A′D) ∩ acl(B̂CD) ⊆ acl(D), so acl(A′D) ∩ acl(B̂CD) = acl(D) and A′ ⫝M

C

B̂. �

Lemma 3.5. The relation ⫝M of M-dividing independence always satisfies invari-
ance, monotonicity, base monotonicity, transitivity, normality and finite character
(i.e. all the axioms for independence relations except extension and local character).
It also satisfies anti-reflexivity.

Theorem 3.6. The relation ⫝th of thorn-forking independence is a strict indepen-
dence relation if and only if it has local character, if and only if there is any strict
independence relation at all. If ⫝th is a strict independence relation, then it is the
weakest.

4. Satisfaction of the axioms for independence relations

Some of the axioms for independence relations, namely invariance, monotonic-
ity, base monotonicity, transitivity, normality and finite character, are satisfied by
⫝a, ⫝∗, ⫝M and ⫝th. Therefore, we will call them basic axioms for independence
relations. To study relations which can not be independence relation, it is crucial
to know the implications between the other axioms (extension, local character) and
full existence and symmetry.

Theorem 4.1. We consider relations ⫝ that satisfies basic axioms for independence
relations.

(1) If ⫝ satisfies extension and local character, then it also satisfies symmetry
and full existence.

(2) If ⫝ satisfies symmetry and full existence, then ⫝ also satisfies extension.
No other relations between extension, local character, symmetry and full
existence hold in general.
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The 11 possible situations are :
1 2 3 4 5 6 7 8 9 10 11

Extension × ○ × × ×
Symmetry ○ × × × × ×

Full existence ○ × × × × ×
Local character × × × ×

where × means that the axiom is assumed and ○ means that the axiom is implied
by assumption.

Conclusion

We have studied the implications between the axioms for independence relations
themselves, symmetry and full existence. As some axioms could break when trying
to define independence relations, we forced some of them, such as the extension
axiom with forking and base monotonicity with thorn-forking. The latter gave
the weakest independence relation when there is any. However some questions
still remain open : we still do not know whether there can really be a relation ⫝
satisfying invariance, monotonicity and finite character, for which ⫝∗ does not have
finite character for instance.


