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Abstract

This is a comment on the article by Vladimir Pestov, which presents
two classes of countable discrete groups : sophic and hyperlinear
groups, which can be defined in very similar terms while their ori-
gins are really different.

1 Preliminary Definitions
The definitions we will use at first for our two classes of groups, though really
different from the original ones, are based on ultrafilters and ultraproducts
which we will define here, but will only serve our definitions.

1.1 Ultrafilters
Definition 1. An ultrafilter U on a set X is a subset of P(X)
with the following properties:

1. ∅ /∈ U

2. if A is a subset of X, then either A ∈ U or X\A ∈ U

3. if A, B are subsets of X, with A ⊂ B and A ∈ U , then B ∈ U

4. if A, B are subsets of X, with A and B ∈ U , then A ∩B ∈ U
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1.2 Ultraproducts
First we will give two definitions of ultraproducts, in case of groups, and
normed spaces. Then we see how to define it properly on metric groups,
based on the other two definitions.

Definition 2. The algebraic ultraproduct of a family of groups
(Gi)i∈X through an ultrafilter U on X is the quotient group of
their cartesian product ∏ (Gi)i∈X by the normal subgroup NU =
{(gi)i∈X | {i | gi = ei} ∈ U}.

Definition 3. The normed spaces ultraproduct of a family of
normed spaces (Ei, Ni)i∈X through an ultrafilter U on X is the
quotient of a proper subspace of their cartesian product E = {u ∈∏ (Ei)i∈X | supi∈X (Ni(ui)) < ∞} by the closed linear subspace
N = {u | ∀ε > 0, {i | Ni(ui) < ε} ∈ U}.

Here the quotient is on a subspace of the cartesian product where we can
still define a norm, quotiented by a subspace we can call infinitesimals. We
can even think of it as threads u whose limit along U is 0, meaning for every
ε > 0, {i | Ni(ui) < ε} ∈ U .

Given a definition of ultraproducts of groups, and a definition of ultra-
products of normed spaces, it is natural to wonder if it gives us a definition
of ultraproducts of metric groups. But then we have to consider bi-invariant
metrics on our groups, or in general the spaceN by which we want to quotient
will not be a normal subgroup and thus we will not have a group structure
on the quotient. Here is the good definition :

Definition 4. The ultraproduct of a family of metric groups with
bi-invariant metrics (Gi, di)i∈X through an ultrafilter U on X
is the quotient of the subspace of their cartesian product G =
{g ∈ ∏ (Gi)i∈X | supi∈X (di(gi, ei)) < ∞} by the subgroup N =
{(gi)i∈X | ∀ε > 0, {i | di(gi, ei) < ε} ∈ U}. It is a metric group
with the metric d(gN , hN ) = limi→U di(gi, hi).

We can see the link with both definitions given for groups or metric spaces.
Though not all metric groups admit bi-invariant metrics, there are lots of

examples two of which will be used in our definitions of sofic and hyperlinear
groups:

Example 1. The symmetric group of finite rank, Sn, with the bi-invariant
metric given by its Hamming distance dH(σ, τ) = 1

n
#{i | σ(i) 6= τ(i)}.
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Example 2. The unitary group of rank n, Un (matrices in GLn(C) such that
U∗U = In), with its Hilbert-Schmidt distance which is bi-invariant :

dHS(u, v) = ||u− v||2 = sup
X∈Cn,||X||2<1

||(U − V )X||2

2 Sofic and Hyperlinear Groups

2.1 First definition using ultraproducts
Though it is not the first way they were introduced, sofic and hyperlinear
groups can be defined using ultraproducts:

Definition 5. A group G is sofic if it is isomorphic to a subgroup
of a metric ultraproduct of symmetric groups of finite rank with
their normalized Hamming distance.

Definition 6. A group G is hyperlinear if it is isomorphic to a
subgroup of a metric ultraproduct of unitary groups of finite rank
with their normalized Hilbert-Schmidt distance.

Remark. A group is linear if it is isomorphic to a subgroup of a unitary group
of finite rank, thus hyperlinear is a generalization of linear. The term sofic
was introduced by Benjy Weiss, whereas their first use is due to Gromov.

We know that Sn embeds as a subgroup in Un with permutation matrices.
Does it allow us to deduce that every sofic group is hyperlinear?

Theorem 1. [Elek and Szabò] Every sofic group is hyperlinear.

The proof uses the fact that dHam(σ, τ) = 1
2(dHS(Aσ, Aτ )2, which gives

us enough links between the metrics to identify an ultraproduct of symmet-
ric groups with its Hamming distance with the ultraproduct of the same
symmetric groups embedded in the ultraproduct of unitary groups with the
metric induced by the Hilbert-Schmidt distance.

The converse of this theorem is an open question: we do not know if there
exist hyperlinear groups that are not sofic.

2.2 Definition without Ultraproducts
One might wonder whether the ultrafilter really influences the definition or
not. In fact we can give a definition of sofic (and hyperfinite) groups without
mentioning any ultraproduct.
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Theorem 2. [Elek and Szabò] A group G is sofic if and only if
for every finite subset F ⊂ G and for each ε > 0, there exists a
n ∈ N and a map θ : F → Sn such that :

1. if g, h, gh ∈ F , then dHam(θ(g)θ(h), θ(gh)) < ε

2. if e ∈ F then dHam(θ(e), Id) < ε

3. for all x,y ∈ F , x 6= y implies dHam(x, y) > 1
4

A map θ satisfying 1 and 2 is called a (F, ε)-almost homomorphism.
We can define hyperlinear groups in the same fashion, with almost ho-

momorphisms. And it fact it has been done before the definition in case of
sofic groups:

Theorem 3. [Radulescu] A group G is hyperlinear if and only if
for every finite subset F ⊂ G and for each ε > 0, there exists a
n ∈ N and a map θ : F → Un such that :

1. if g, h, gh ∈ F , then dHS(θ(g)θ(h), θ(gh)) < ε

2. if e ∈ F then dHS(θ(e), Id) < ε

3. for all x,y ∈ F , x 6= y implies dHS(x, y) > 1
4

Those two definitions are easier to manipulate than the one with ultrafil-
ters, and one can easily prove some groups are sofic (and hyperlinear) with
them:

Example 3 (Finite groups are sofic). Indeed, every finite group of rank n can
be seen as a subgroup of Sn, and the morphism given by the usual embedding
(Cayley homomorphism CG defined by: CG(gi) = σi such that for every j,
σi(j) = k where gk = gigj) satisfies 3 because dHam(σi, σj) = 1

n
#{k | gigk 6=

gjgk} = 1 if i 6= j.

2.3 Definition with graphs
The first definition of a sofic group (without the name) is due to Gromov,
and was stated in terms of graphs in an attempt to solve this conjecture:

Conjecture 1 (Gottschalk Surjunctivity Conjecture). For every countable
group G and every finite set A, the shift system AG contains no proper closed
G-invariant subset X isomorphic to AG itself (as a compact G-space).
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The shift is the action of G on AG, where A is a finite set with its discrete
topology, given by (g · x)h = xg−1h.

Gromov solved the conjecture in the case of sofic groups:

Theorem 4. [Gromov] The Gottschalk surjunctivity conjecture is
true for sofic groups.

Here is the definition he used:

Theorem 5. [Elek and Szabò] A group G with a finite set of
generators V is sofic if and only if it satisfies the following Gromov
condition:

For every N ∈ N, ans every ε > 0, there is a finite graph Γ
V -edge coloured such that for at least (1 − ε)|Γ| vertices x of Γ,
the N-ball around x is isomorphic to the N-ball in G.

A subgraph of the Cayley graph does not work in general (does not work
with free groups in particular, because of border effects), but it does with
amenable groups, using Folner condition, and thus every amenable group is
sofic.

2.4 Yet another definition
We can also give another definition, in terms of group actions and dynamical
systems.

Definition 7. If X is a space with a finitely additive measure
µ, a near action of a group G on (X,µ) is a map from G to
measure preserving maps defined almost-everywhere on X, with
θ(g)θ(h) = θ(gh) almost everywhere. Such an action is essentially
free if for every g ∈ G, θ(g) has almost no fixed point.

Theorem 6. [Elek and Szabò] A group G is sofic if and only if it
admits an essentially free near-action on a set X equipped with a
finitely additive measure µ defined on the algebra of sets P(X).

Remark. Every countable discrete group admit an essentially free near-action
on a Cantor space with a sigma-additive measure, but defined only on its
Borel subsets.
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3 Examples, Open questions

3.1 Known sofic groups
• finite groups. See example 3

• residually finite groups
Using definition of theorem 2 and knowing that for every finite part A of
a residually finite group G we can find an homomorphism θ : G→ H to
a finite group injective on A, we can show that CH ◦θ is a (F, ε)-almost
homomorphism on F .

• non abelian free groups
They are residually finite.

• amenable groups
Using Folner condition and definition of theorem 2, we can build an
almost-homomorphism:
Let G be an amenable group, ε > 0 and A ⊂ G finite. Folner con-
dition assure that there exist B ⊂ G finite such that for all a ∈ A,
#{aB∆B} < ε#(B)

#(A) .
Then we consider the map Φ defined by, if a ∈ A, g ∈ B: Φ(a)(g) = ag
if ag ∈ B, extended on B arbitrarily to be a bijection. CB ◦ Φ is a
(A, ε)-almost homomorphism of G into S#(B).

• initially subamenable groups (LEA : Locally embeddable into amenable
groups)
A group G is initially subamenable if looking at finite parts of G one
can not assure it is not amenable. Meaning for every finite part A of
G, there is an amenable group F with a finite subset B that has the
same partial multiplication than A.
One can define in the same fashion LEF groups (locally embeddable
into finite groups).
Using either definition in theorem 2 or 5 one can see that we only need
to look at finite parts of a group to assure its soficity, thus the result.

Remark. There are non LEA groups, LEA groups not LEF.
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3.2 Open questions
However, even among non-LEA groups, we don’t know if there are non-sofic
groups.

finite ⇒ residually finite ⇒ LEF
⇓ ⇓ ⇓

amenable ⇒ residually amenable ⇒ LEA ⇒ sofic ⇒ hyperlinear

Many open questions remain:

• Is every hyperlinear group sofic?

• Is every group hyperlinear?

• Is every group sofic?

A positive answer to the last question, along with theorem 5, would be a
mean to solve Gottschalk surjonctivity conjecture.

Conversely, hyperlinear groups are the only groups on which Connes’
embedding conjecture for groups (related to tracial ultraproducts and Von
Neumann algebra) is true. An answer (either positive or negative) to the
second question would solve this part of Connes’ embedding conjecture.

References
[Pestov] V. Pestov : Hyperlinear and sofic groups: a brief guide, arXiv.

7


