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Vincent van Gogh, les Oliviers (1889).

National Gallery of Scotland, Édimbourg, Écosse.

Andaluces de Jaén,

aceituneros altivos,

decidme en el alma: ¿quién,

quién levantó los olivos?

No los levantó la nada,

ni el dinero, ni el señor,

sino la tierra callada,

el trabajo y el sudor.

Unidos al agua pura

y a los planetas unidos,

los tres dieron la hermosura

de los troncos retorcidos.

Levántate, olivo cano,

dijeron al pie del viento.

Y el olivo alzó una mano

poderosa de cimiento.

Andaluces de Jaén,

aceituneros altivos,

decidme en el alma: ¿quién

amamantó los olivos?

Vuestra sangre, vuestra vida,

no la del explotador

que se enriqueció en la herida

generosa del sudor.

No la del terrateniente

que os sepultó en la pobreza,

que os pisoteó la frente,

que os redujo la cabeza.

Árboles que vuestro afán

consagró al centro del d́ıa

eran principio de un pan

que sólo el otro comı́a.

¡Cuántos siglos de aceituna,

los pies y las manos presos,

sol a sol y luna a luna,

pesan sobre vuestros huesos!

Andaluces de Jaén,

aceituneros altivos,

pregunta mi alma: ¿de quién,

de quién son estos olivos?

Jaén, levántate brava

sobre tus piedras lunares,

no vayas a ser esclava

con todos tus olivares.

Dentro de la claridad

del aceite y sus aromas,

indican tu libertad

la libertad de tus lomas.

Miguel Hernández, Aceituneros (1937).

3





Contents
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1
Synthèse de mon parcours scientifique

Ce mémoire d’habilitation à diriger des recherches synthétise mes travaux qui s’inscrivent à

l’interface de la théorie des valeurs extrêmes, de l’analyse de sensibilité et de l’inférence non

paramétrique. Les liens entre les deux premiers thèmes ne sont pas évidents mais leur combi-

naison s’est révélée féconde. Avant de les exposer plus largement dans ce manuscrit, j’ai choisi

de raconter mon parcours fait de nombreuses collaborations. Mes publications sont rappelées

pages 53-54 et apparaissent dans le texte sous la forme [Mn]. Les autres références, numérotées

simplement [n], sont listées à la fin de ce document.

Toulouse - Paris

J’ai effectué ma thèse au sein du laboratoire de Statistique et Probabilités de l’université Paul

Sabatier, Toulouse 3, sous la direction de Jean-Marc Azäıs. Elle était intitulée Extrema de pro-

cessus stochastiques. Propriétés asymptotiques de tests d’hypothèses, [M9]. Les recherches dans

ce domaine sont parfois motivées par la modélisation des états de la mer comme la hauteur signi-

ficative des vagues et la période de ces dernières afin de comprendre les risques qu’encourent les

structures des navires. On peut consulter [141], [121] et [42] par exemple et plus généralement

les nombreuses publications de Igor Rychlik ou Georg Lindgren à ce sujet. Pendant ma thèse,

mes recherches étaient consacrées à l’étude de la distribution des extrema des processus stochas-

tiques, parfois gaussiens, dépendant de un ou plusieurs paramètres. Elle comprenait également

l’application de ces résultats pour l’étude de la statistique de test du rapport de vraisemblance, en

collaboration avec Elisabeth Gassiat et Jean-Marc Azäıs, voir [M1] qui conduira plus tard aussi

à [M2]. Pour la partie processus, j’ai obtenu des résultats de nature asymptotique (en temps)

et des résultats non-asymptotiques, en introduisant des hypothèses de régularité dans un con-

texte non nécessairement gaussien. Les expériences numériques et la mise à disposition d’une

boite à outils ont permis d’évaluer la pertinence des bornes proposées. Ces recherches m’ont,

entre autres, amené à participer à la conférence internationale EVA organisée cette année-là à

Gotheborg. Lors de ces journées, j’avais eu énormément de plaisir à présenter ce qui deviendrait

[M10]. J’ai un souvenir très précis de la présence dans la salle de Robert Adler. Il est l’un des

fondateurs de l’analyse géométrique des processus stochastiques, tout comme mon directeur de

thèse et notre regretté Mario Wschebor, voir [2] et [4]. J’ai aussi le souvenir d’avoir été piquée

par les exposés auxquels j’avais assisté. Je découvrais à Gotheborg tout ce que la théorie des

valeurs extrêmes pouvait englober. L’ambiance de cette conférence était vraiment bonne, et

je me promettais de reprendre largement la bibliographie associée, dès que la situation me le

permettrait.

L’année suivante, je découvrais l’Histoire des mouvements étudiants à l’université Paris-Nanterre

en plein CPE. L’équipe de Modal’X, qui comprenait déjà Patrice Bertail et Philippe Soulier,

m’a recruté sur un poste d’ATER à temps plein. J’avais donc beaucoup d’heures de cours à

assurer, sauf pendant les huit semaines de mobilisation aigüe. Pendant ces mois parisiens, j’étais

parvenue à répondre à une question posée par Bernard Bercu lors de ma soutenance de thèse.

Il s’agissait de prouver la convergence presque sûre des extrêmes d’un processus Gaussien non

stationnaire, faiblement dépendant. Ce travail est resté un preprint... la concurrence ayant été

plus rapide.
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La Statistique dans mon laboratoire de recherche

Je suis recrutée comme MCF à Lyon 1, et son Institut Camille Jordan fraichement renommé

et restructuré. A l’époque, mon chef d’équipe est mon collègue Stéphane Attal. L’inititulé du

poste associé à mon recrutement n’est d’ailleurs pas Statistique mais Probabilités Appliquées,

démontrant que la Statistique dans ce laboratoire de mathématiques n’avait pas fait sa place

jusque-là. Ce changement était aussi lancé par le fait que l’ICJ intègrait désormais les membres

du laboratoire du sud de Lyon dont André Goldman assurait la direction et qui comptait parmi

ses membres Gabriela Ciuperca par exemple. Nous collaborons pour estimer le paramètre dit

de second ordre dans [M4] permettant d’appréhender la vitesse de convergence en théorie des

valeurs extrêmes univariées.

Au moment de mon recrutement, on m’annonce que l’équipe de Statistique de l’ICJ sera ren-

forcée, à commencer par le recrutement d’un poste de Professeur peu de temps après, et les

promesses sont tenues. Dans l’ordre d’arrivée à l’Institut Camille Jordan, la Statistique se

trouve au fil du temps représentée par : Anne-Laure Fougères, Irène Gannaz, Samuela Leoni-

Aubin, Marianne Clausel-Lesourd, Jean-Baptiste Aubin, Céline Vial, Thibaut Espinasse, Céline

Helbert, François Wahl, Mathieu Sart, Clément Marteau, Yohann De Castro et Gilles Cohen.

En parallèle de ces recrutements, Véronique Maume-Deschamps, Esterina Masiello et Pierre

Ribereau ont changé d’affiliation et ont rejoint l’ICJ. Ne m’autorisant pas à produire davan-

tage de noms dans ce paragraphe, j’associe ici les collègues de la région qui participent à notre

séminaire RSL.

Des recherches inspirées par des thèmes appliqués

Il est fréquent de croiser des repères de niveaux d’eau historiques le long des rivières. Lorsqu’on

se pose la question de savoir quelle était la probabilité de dépasser cette hauteur, ou de la hau-

teur associée à une probabilité très faible d’être dépassée, on évoque ici la notion de niveau

retour, introduite historiquement par les hydrologues. Plusieurs modèles permettent de fournir

une estimation. Parmi eux, le modèle de Weibull qui caractérise la queue de distribution par une

fonction à variations lentes et un paramètre appelé indice de queue de Weibull. Dans [M16], aux

côtés de Philippe Soulier, la vitesse de convergence, au sens minimax, d’un estimateur à noyaux

de ce paramètre est obtenue en prouvant que les bornes supérieure et inférieure cöıncident. On

fournit également un choix automatique de la fraction de données, considérées comme extrêmes,

sur laquelle repose notre estimateur.

En dehors de l’hydrologie, ce sont aussi les domaines de l’assurance, de la finance et de la gestion

des risques qui ont apporté de nombreuses questions à la théorie des valeurs extrêmes. Voir [58] et

[13]. Les produits d’assurance et financiers reposent sur des modèles complexes ayant des entrées

dépendantes et des queues de distributions plus ou moins lourdes. On se demande alors si la

dépendance est gommée ou non asymptotiquement par la présence d’un facteur dominant. Dans

[M6], nous avons progressé avec Anne-Laure Fougères sur la caractérisation des comportements

asymptotiques de ces combinaisons pondérées. Dans [M8], et en collaboration avec Laurens de

Haan et Chen Zhou, nous revenons à un cadre univarié et traitons deux problèmes majeurs dans

l’application de l’analyse des valeurs extrêmes aux séries chronologiques financières, à savoir la

correction du biais et le traitement de la dépendance temporelle.

De façon plus surprenante, c’est l’industrie automobile qui m’apportera plus tard une nouvelle

collaboration. Certains de ses défis majeurs sont la réduction des émissions de gaz à effet de

serre, la dépendance aux combustibles fossiles et la pollution locale. La calibration d’un moteur

consiste à déterminer expérimentalement son réglage optimal. Afin de visiter les états possibles,

une stratégie consiste à répartir les points uniformément dans toute la région expérimentale pour

couvrir tout l’espace d’entrée. Cette technique s’appelle le space-filling design. C’est dans [M18]

que mes deux collègues Céline Helbert et François Wahl me permettront d’apporter quelques

considérations, basées sur la théorie des valeurs extrêmes univariées, sur le comportement asymp-
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totique de leur indice renormalisé.

Les contrats de recherche

Je mentionne ci-dessous les projets de recherche auxquels j’ai pris part :

- Projet européen SEAMOCS 2005-2009 porté par Georg Lindgren de l’Université de Lund,

Applied stochastic models for ocean engineering, climate and safe transportation.

- Projet Université Toulouse 3-CNES-Thalès SA 2008-2010Outils de mesure d’intégrité. Coordon-

né par Jean-Marc Azäıs (Toulouse 3), Jean-Christophe Levy (THALES) et Suard Norbert

(CNES). Collaboration scientifique avec Sébastien Gadat et Agnès Lagnoux.

- Projet ANR 2009-2011 Approches Spatio-temporelles pour la modélisation du risque porté par

Véronique Maume-Deschamps.

- Co-responsable avec Anne-Laure Fougères du Contrat de Collaboration avec Secteur R&D

d’EDF Chatou, avec Marta Nogaj à la tête du projet côté partenaire industriel finançant un

post-doc et deux stagiaires de M2 entre 2011 et 2012.

- Co-responsable avec Anne-Laure Fougères du Contrat de Collaboration avec Secteur R&D

d’EDF Clamart, avec Marie Gallois, Anne Dutfoy et Sylvie Parey côté partenaire industriel,

finançant une thèse entre 2013 et 2016.

- Projet LEFE-MANU (MULTIRISK) entre 2014 et 2016. Coordonné par Clémentine Prieur.

Les deux contrats avec EDF susmentionnés m’ont permis de co-encadrer, avec Anne-Laure

Fougères, le travail de Juan-Juan Cai en postdoc et la thèse de Quentin Sebille. La première

était motivée par l’analyse du risque d’inondation d’une centrale nucléaire implantée sur le lit-

toral français. Nos données journalières étaient extraites d’un atlas de houle et consistaient

en la surcote maximale et la force du vent maximale. Quelques mois plus tard, Gilles Nico-

let y intègrera une covariable circulaire, la direction du vent, pendant son stage de M2. Dans

[M3], nous nous sommes intéressées à deux variables quantitatives mesurées au cours du temps,

formant ainsi une série temporelle bivariée supposée stationnaire. Nous devions estimer une

probabilité de défaillance, définie comme la probabilité que les deux variables soient grandes

simultanément. Nous avons mis en concurrence trois méthodes basées sur la théorie univariée

des valeurs extrêmes pour appréhender la valeur des niveaux retour. De son côté, la théorie

multivariée fournira des estimateurs prenant ou non en compte la dépendance asymptotique.

De nouveau, nous avons mis en concurrence plusieurs méthodes d’estimation. Dans [M17], nous

avons accompagné Quentin à modéliser les précipitations extrêmes en France à l’aide de modèles

spatiaux de valeurs extrêmes permettant d’inclure la dépendance spatiale de nos données. De

façon concrète, il a entrepris durant sa thèse de répondre aux questions qu’on peut formuler

sous la forme : 1) Quel est la probablilité que sur un ensemble de stations météorologiques un

événement soit observé dont l’intensité dépasse celle du niveau retour centennal ? 2) Quelle

est la probabilité conditionnelle pour qu’une ou plusieurs positions connaissent un dépassement

du niveau retour centennal sur un jour donné, sachant que c’est le cas sur une autre partie du

réseau de stations météorologiques ? Pour répondre au premier point, il s’est approprié la notion

de processus max-stables, en portant une attention toute particulière à un modèle hiérarchique

qu’il implémentera sous la forme d’un package R. Pour le second, il a apporté une réponse grâce

aux processus de Pareto.

Un aperçu rapide du contenu de ce manuscrit

Tout ce que je viens de mentionner n’apparâıt pas davantage dans ce mémoire. J’ai choisi d’y

présenter ce qui compte parmi mes publications les plus récentes,
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[M14] C. Mercadier and O. Roustant. “The tail dependograph”. In: Extremes 22.2 (2019)

[M13] C. Mercadier and P. Ressel. “Hoeffding–Sobol decomposition of homogeneous co-survival

functions: from Choquet representation to extreme value theory application”. In: Dependence

Modeling 9.1 (2021)

[M15] C. Mercadier, O. Roustant, and C. Genest. “Linking the Hoeffding–Sobol and Möbius

formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski”. In: Statis-

tics and Probability Letters 185 (2022)

[M12] C. Mercadier. “Testing copula-based dependence hypotheses: a proofreading based on

functional decompositions”. In Review. 2023

[M11] C. Mercadier. Sensitivity Analysis Tools for Dependence and Asymptotic Dependence.

(2023). url: https://CRAN.R-project.org/package=satdad

ou qui s’inscrivaient très facilement dans cette histoire globale,

[M7] A.-L. Fougères, C. Mercadier, and J. P. Nolan. “Dense classes of multivariate extreme

value distributions”. In: Journal of Multivariate Analysis 116.C (2013)

[M5] A.-L. Fougères, L. De Haan, and C. Mercadier. “Bias correction in multivariate extremes”.

In: The Annals of Statistics 43.2 (2015)

afin d’assurer une certaine continuité dans la lecture.

Au centre de ce texte se trouve la stable tail dependence function qui caractérise la dépendance

asymptotique dans les modèles multivariés. J’ai entrepris son étude aux côtés de Anne-Laure

Fougères, Laurens de Haan, John Nolan et Paul Ressel . Elle dispose de propriétés mathématiques

intéressantes et non triviales, rappelées dans le Chapitre 3. Cette fonction, à valeurs réelles

positives, est définie sur un espace de dimension égale au nombre de variables conjointement

étudiées. Elle devient additive sur les composantes asymptotiquement indépendantes. Or cette

recherche de structure additive est aussi obtenue en analyse globale de sensibilité via les indices

d’importance superset. C’est la raison pour laquelle j’ai commencé à m’intéresser avec Olivier

Roustant à ce champ de recherche. Rapidement, on a espéré pouvoir l’appliquer à la notion

d’indépendance, travail initié avec Christian Genest. Après quelques tentatives, nous avons fi-

nalement essayé de comprendre les points communs et les différences entre deux décompositions

fonctionnelles phares. Munie de cet éclaicissement, je me suis rendue compte que je pouvais

dégager un cadre très général permettant de traiter divers tests d’hypothèses sur les copules,

cadre qui s’appuierait sur la décomposition fonctionnelle la plus adéquate à l’hypothèse testée.

Ces éléments sont décrits dans le Chapitre 4. Plusieurs notions étudiées et présentées dans ce

manuscrit le sont également d’un point de vue inférentiel, à l’aide de mesures principalement non

paramétriques. C’est l’objet du Chapitre 5. Je termine ce document avec quelques perspectives

de recherche.
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2
A synopsis of my scientific career

This habilitation thesis summarizes my work at the interface of extreme value theory, sensitivity

analysis, and non-parametric inference. The connections between the first two themes are not

obvious, but their combination has proven fruitful. Before presenting them in more detail in

this manuscript, I would like to share my collaborative experiences. My publications are listed

on pages 53-54 and are referenced in the text as [Mn]. Other references, simply numbered [n],

are listed at the end of this document.

Toulouse - Paris

I completed my thesis within the Statistics and Probability Laboratory of Paul Sabatier Univer-

sity, Toulouse 3, under the supervision of Jean-Marc Azäıs. Its title was Extrema de processus

stochastiques. Propriétés asymptotiques de tests d’hypothèses, [M9]. Research in this field is

sometimes motivated by modeling the states of the sea, such as the significant wave height and

period, in order to understand the risks that ships’ structures face. For example, see [141], [121]

et [42], as well as the numerous publications by Igor Rychlik and Georg Lindgren on this topic.

During my thesis, my research was devoted to studying the distribution of extrema of stochastic

processes, sometimes Gaussian, depending on one or several parameters. It also included the

application of these results to the study of the likelihood ratio test statistic, in collaboration

with Elisabeth Gassiat and Jean-Marc Azäıs, see [M1], which later also led to [M2]. For the pro-

cess part, I obtained asymptotic (in time) and non-asymptotic results by introducing regularity

hypotheses in a non-necessarily Gaussian context. Numerical experiments and the publication

of a toolbox helped evaluate the relevance of the proposed bounds. These studies, among other

things, led me to participate in the EVA international conference held this year in Gothenburg.

During these days, I had great pleasure in presenting what would become [M10]. I have a very

precise memory of the presence of Robert Adler in the room. He is one of the founders of

the geometric analysis of stochastic processes, just like my thesis director and our late Mario

Wschebor, see [2] and [4]. I also remember being intrigued by the presentations I attended.

In Gothenburg, I discovered everything the theory of extreme values could encompass. The

atmosphere of this conference was really good, and I promised myself to extensively review the

associated bibliography as soon as possible.

The following year, I discovered the History of Student Movements at Paris-Nanterre Univer-

sity during the CPE protests. The Modal’X team, which already included Patrice Bertail and

Philippe Soulier, recruited me for a full-time ATER position. So I had a lot of teaching hours

to cover, except during the eight weeks of acute mobilization. During those months in Paris, I

managed to answer a question asked by Bernard Bercu during my thesis defense. It was about

proving the almost sure convergence of extremes of a non-stationary, weakly dependent Gaus-

sian process. This work remained as a preprint... another submission was published before your

work.

Statistics in my research laboratory

I was hired as an associate professor at Lyon 1, and its newly renamed and restructured Camille

Jordan Institute (ICJ). At that time, my team leader was my colleague Stéphane Attal. Inter-

estingly, the title of the position associated with my recruitment was not Statistics but Applied
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Probability, demonstrating that Statistics had not yet found its place in this mathematics lab-

oratory. This change was also felt by the fact that the ICJ now encompassed members of the

laboratory from the south of Lyon, whose director was André Goldman and whose members

included Gabriela Ciuperca, for example. We collaborate to estimate the so-called second-order

parameter in [M4]. This index is involved in the rate of convergence associated with extrapola-

tions in univariate extreme value theory.

At the time of my recruitment, I was informed that the Statistics team at ICJ would be strength-

ened, starting with a Professor position shortly thereafter, and the promises were kept. In the or-

der of arrival at the Camille Jordan Institute, Statistics is over time being represented by: Anne-

Laure Fougères, Irène Gannaz, Samuela Leoni-Aubin, Marianne Clausel-Lesourd, Jean-Baptiste

Aubin, Céline Vial, Thibaut Espinasse, Céline Helbert, François Wahl, Mathieu Sart, Clément

Marteau, Yohann De Castro et Gilles Cohen. In addition to these recruitments, Véronique

Maume-Deschamps, Esterina Masiello, and Pierre Ribereau changed their affiliation and joined

the ICJ. Without allowing me to produce more names in this paragraph, I mention here col-

leagues from the region who participate in our RSL seminar.

Researches inspired by applied topics

It is common to come across historical water level markers along rivers. When one asks what the

probability was of exceeding this threshold, or the height associated with a very low probability

of being exceeded, one refers here to the notion of a return level, historically introduced by

hydrologists. Several models could be used to estimate it. Among them, the Weibull model

characterizes the tail distribution by a slowly varying function and a parameter called the Weibull

tail index. In [M16], with Philippe Souiler, the convergence rate, in the minimax sense, of a

kernel estimator of this parameter is obtained by proving that the upper and lower bounds

coincide. An automatic choice of the fraction of data, considered as extreme, on which our

estimator is based is also provided.

In addition to hydrology, the fields of insurance, finance, and risk management have brought

numerous questions to extreme value theory, as illustrated in [58] and [13]. Insurance and

financial products rely on complex models with dependent inputs and distributions with more

or less heavy tails. One then wonders if the dependence is asymptotically erased by the presence

of a dominant factor. In [M6], we made progress with Anne-Laure Fougères on characterizing

the asymptotic behaviors of these weighted combinations. In [M8], in collaboration with Laurens

de Haan and Chen Zhou, we go back to a univariate framework and address two major problems

in the application of extreme value analysis to financial time series, namely the correction of

bias and the treatment of serial dependence.

More surprisingly, it is the automotive industry that will later bring me a new collaboration.

Some of its major challenges are the reduction of greenhouse gas emissions, dependence on fossil

fuels, and local pollution. The calibration of an engine consists of experimentally determining

its optimal settings. In order to explore possible states, one strategy is to evenly distribute

points throughout the experimental region to cover the entire input space. This technique is

called the space-filling design. It is in [M18] that my two colleagues Céline Helbert and François

Wahl allowed me to bring some considerations, based on univariate extreme value theory, on

the asymptotic behavior of their renormalized index.

Research contracts

Below are the research projects in which I have participated:

- European project SEAMOCS 2005-2009 led by Georg Lindgren from Lund University, Applied

stochastic models for ocean engineering, climate and safe transportation.

- University of Toulouse 3-CNES-Thalès SA project 2008-2010 Integrity measurement tools.

Coordinated by Jean-Marc Azäıs (Toulouse 3), Jean-Christophe Levy (THALES) and Suard
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Norbert (CNES). Scientific collaboration with Sébastien Gadat and Agnès Lagnoux.

- ANR project 2009-2011 Spatio-temporal approaches for risk modeling led by Véronique Maume-

Deschamps.

- Co-responsible with Anne-Laure Fougères for the Collaboration Contract with EDF Chatou

R&D Sector, with Marta Nogaj leading the project on the industry partner side financing a

post-doc and two M2 interns between 2011 and 2012.

- Co-responsible with Anne-Laure Fougères for the Collaboration Contract with EDF Clamart

R&D Sector, with Marie Gallois, Anne Dutfoy and Sylvie Parey on the industry partner side

financing a PhD thesis between 2013 and 2016.

- LEFE-MANU (MULTIRISK) project 2014-2016. Coordinated by Clémentine Prieur.

The two contracts with EDF mentioned above allowed me to co-supervise, with Anne-Laure

Fougères, the work of Juan-Juan Cai in postdoc and the thesis of Quentin Sebille. The first was

motivated by the analysis of the flooding risk of a nuclear power plant located on the French

coast. Our daily data were extracted from a wave atlas and consisted of the maximum surge

and maximum wind force. A few months later, Gilles Nicolet integrated a circular covariate,

the wind direction, during his M2 internship. In [M3], we were interested in two quantitative

variables measured over time, forming a stationary bivariate time series. We had to estimate a

probability of failure, defined as the probability that the two variables are simultaneously large.

We compared three methods based on univariate extreme value theory to estimate the value of

return levels. On the other hand, multivariate theory provided estimators taking into account or

not the asymptotic dependence. Again, we compared several estimation methods. In [M17], we

assisted Quentin in modeling extreme precipitation in France using spatial models of extreme

values that allowed for including the spatial dependence of our data. In concrete terms, during

his thesis, he set out to answer questions that can be formulated as following: 1) What is the

probability that an event with an intensity exceeding that of the centennial return level will be

observed in a set of meteorological stations? 2) What is the conditional probability that one

or more positions will experience an exceedance of the centennial return level on a given day,

given that this is the case in another part of the meteorological station network? To answer the

first point, he appropriated the notion of max-stable processes, paying particular attention to a

hierarchical model that he implemented in the form of an R package. For the second point, he

provided an answer through the use of Pareto processes.

A quick overview of the contents of this manuscript

This manuscript does not include the content mentioned earlier. I decided to present the most

recent publications,

[M14] C. Mercadier and O. Roustant. “The tail dependograph”. In: Extremes 22.2 (2019)

[M13] C. Mercadier and P. Ressel. “Hoeffding–Sobol decomposition of homogeneous co-survival

functions: from Choquet representation to extreme value theory application”. In: Dependence

Modeling 9.1 (2021)

[M15] C. Mercadier, O. Roustant, and C. Genest. “Linking the Hoeffding–Sobol and Möbius

formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski”. In: Statis-

tics and Probability Letters 185 (2022)

[M12] C. Mercadier. “Testing copula-based dependence hypotheses: a proofreading based on

functional decompositions”. In Review. 2023

[M11] C. Mercadier. Sensitivity Analysis Tools for Dependence and Asymptotic Dependence.

(2023). url: https://CRAN.R-project.org/package=satdad

or the publications that easily fit into this overall story,
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[M7] A.-L. Fougères, C. Mercadier, and J. P. Nolan. “Dense classes of multivariate extreme

value distributions”. In: Journal of Multivariate Analysis 116.C (2013)

[M5] A.-L. Fougères, L. De Haan, and C. Mercadier. “Bias correction in multivariate extremes”.

In: The Annals of Statistics 43.2 (2015)

in order to ensure a certain continuity in the reading.

At the core of this text is the stable tail dependence function that characterizes the asymp-

totic dependence in multivariate models. I studied it alongside Anne-Laure Fougères, Laurens de

Haan, John Nolan, and Paul Ressel. It has interesting and non-trivial mathematical properties,

which are recalled in Chapter 3. This function, taking non-negative real values, is defined on

a space of dimension equal to the number of jointly studied variables. It becomes additive on

asymptotically independent components. This search for additive structure is also obtained in

global sensitivity analysis through superset importance indices. This is why I started to take

an interest in this research field with Olivier Roustant. We hoped to apply it to the notion of

independence, a task initiated with Christian Genest. After several attempts, we finally tried to

understand the similarities and differences between two well-known functional decompositions.

Equipped with this clarification, I realized that I could develop a very general theory for treating

various testing hypotheses on copulas, a framework based on the most appropriate functional

decomposition for the hypothesis under study. These elements are described in Chapter 4. Sev-

eral notions studied and presented in this manuscript are also examined from an inferential

perspective using mainly non-parametric measures. This is the subject of Chapter 5. I conclude

this document with some research perspectives.
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3
The stable tail dependence function

Stable tail dependence functions (stdf) play a central role to describe the asymptotic dependence

between components of a random vector. Modeling the tail dependence remains a main challenge

in multivariate extreme value theory. This chapter focuses on theoretical considerations and

results obtained on the stdf in [M5], [M13], [M7] and [M11]. Before handling its empirical

treatment, that is postponed to Chapter 5, the first part below recalls the main assumptions. The

latter will thus ensure existence of the stdf, consistency within estimation and characterization

of the associated asymptotic behavior including bias identification. The second part presents

four bivariate settings under which calculations have been taken as far as possible. This list,

fully transcribed here, is still used as simulation models, see [170] and the references therein. In

the third part, the main characteristics of the stdf are presented: multivariate monotonicity and

homogeneity. By playing with a change of norm and a change in the measure of reference, the

stdf is linked in the last part to the concept of the scale function. The latter has allowed us to

construct a new model, as well as to prove that certain classes of distributions are dense among

multivariate extreme value models.

3.1 Notation and assumptions

The extremal dependence structure can be described via the stdf ℓ, firstly introduced by [96]. For

any arbitrary dimension d, consider a multivariate vector X = (X(1), . . . , X(d)) with continuous

marginal cumulative distribution functions (cdf) F1, . . . , Fd. The stdf is defined for each positive

reals x1, . . . , xd as

lim
t→∞

tP{1− F1(X
(1)) ≤ t−1x1 or . . . or 1− Fd(X

(d)) ≤ t−1xd} = ℓ(x1, . . . , xd) .

The previous limit can be rewritten as

lim
t→∞

t [1− F{F−1
1 (1− t−1x1), . . . , F

−1
d (1− t−1xd)}] = ℓ(x1, . . . , xd) , (3.1)

where F denotes the multivariate cdf of the vector X, and F−1
j (t) = inf{z ∈ R : Fj(z) ≥ t} for

any j = 1, . . . , d. The limit (3.1) exists and is non degenerate is an assumption equivalent to the

classical assumption of existence of a multivariate domain of attraction for the componentwise

maxima. We recall that the assumption F is in the domain of attraction of an extreme value

distribution with cdf G supposes the existence for j = 1, . . . , d of sequences a
(j)
n > 0, b

(j)
n of real

numbers and a cdf G with nondegenerate marginals such that

lim
n→∞

P(max{X(1)
1 , . . . , X(1)

n } ≤ a(1)n x1 + b(1)n , . . . ,max{X(d)
1 , . . . , X(d)

n } ≤ a(d)n xd + b(d)n ) = G(x)

for all points x where G is continuous. Denote by Gj the jth marginal cdf of G. It is possible

to show that the domain of attraction condition can be expressed as the condition (3.1) along

with the convergence of the marginal distributions to the Gj ’s, and that

ℓ(x) = − logG
(
{− logG1}−1(x1), . . . , {− logGd}−1(xd)

)
. (3.2)

The stdf is not the unique tool for capturing the asymptotic dependence. One can refer for

instance to the Pickands function (see [61], [169] and [21]), the spectral measure ν, the exponent
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measure µ⋆ (see Section 3.3.3 for their links with ℓ or [50] and [56] for first results on their

estimation), the extreme value copula CG (see Section 4.4.1 for its relation to ℓ, see also [61]

and [33]), the tail dependence function that would be defined using and instead of or in the first

probability above (denoted by R in [49], [45] or [30] under a bivariate setting and by TX
upper in

[90] under a multivariate framework). More details on multivariate extreme value theory can be

found in [86], [46], [62], [6] and [156]. Several conditions are now described. The first two have

been introduced by [85] whereas the third one comes from ([M5], Section 2).

- the first order condition consists of assuming that the limit given in (3.1) exists, and that

the convergence is uniform on any [0, T ]d, for T > 0. Note that pointwise convergence

in (3.1) entails uniform convergence on the square [0, T ]d. See for instance of [84].

- the second order condition consists of assuming the existence of a positive function α, such

that α(t) → 0 as t → ∞, and a non null function M such that for all x with positive

coordinates,

lim
t→∞

1

α(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F
−1
d (1− t−1xd)}]− ℓ(x)

}
=M(x) , (3.3)

uniformly on any [0, T ]d, for T > 0.

- the third order condition consists of assuming the existence of a positive function β, such

that β(t) → 0 as t → ∞, and a non null function N such that for all x with positive

coordinates,

lim
t→∞

1

β(t)

{
t [1− F{F−1

1 (1− t−1x1), . . . , F
−1
d (1− t−1xd)}]− ℓ(x)

α(t)
−M(x)

}
= N(x) ,

(3.4)

uniformly on any [0, T ]d, for T > 0. It implicitly requires that N is not a multiple of the

function M .

The functionsM and N involved in the second and third order conditions satisfy some usual

properties, see e.g. [85]. More specifically, one can show that there exists non positive reals ρ and

ρ′ such that α (resp. β) is a regularly varying function of order ρ (resp. ρ′), i.e. α(tz)/α(t) → zρ

and β(tz)/β(t) → zρ
′
when t→ ∞, for each positive z.

The framework described in this section is especially relevant for a situation of asymptotic

dependence. It is therefore useful to distinguish this context from that of asymptotic indepen-

dence, for which we would have ℓ(x) =
∑d

i=1 xi in (3.1) or equivalently G(x) =
∏

i=1Gi(xi) in

(3.2). In this case, the function M is the limit of the joint tail of the distribution, and in dimen-

sion 2, the coefficient of tail dependence η introduced by [119] and [118] equals 1/(1−ρ), where ρ
is defined above. This distinction is still an ongoing challenge, as exemplified by recent research

on automatic recognition between these two regimes using convolutional neural networks in [3].

Tests for asymptotic independence might also be derived from the statements of Section 5.2.2.

It is important that the assumptions above are checked in real-data applications. The pi-

oneering work was proposed by [77] and studied in [9] through the notion of extreme value

copula. Actually, such assumptions are also close to the notion of multivariate regular variation,

see the equivalent statements in [147]. Testing methods for such hypothesis have been recently

developed in [57] or [53] for instance.
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3.2 Theoretical bivariate examples

The aim of ([M5], Section 4) is to furnish several bivariate distributions that satisfy the third

order condition (3.4). As already mentioned, these examples and our codes are still used in the

recent literature as data generating processes. We start by focusing on heavy tailed margins.

In this case, a first possible step to get the pointwise convergence is to obtain, for well chosen

positive reals p and q, an expansion (for t tending to infinity) of the form

tP(X > tpx orY > tqy) = T1(x, y) + α(t)T2(x, y) + α(t)β(t)T3(x, y) + o(α(t)β(t)) ,

with T1(1, 1) > 0. One can then identify each term involved in (3.4) as follows

ℓ(x, y) = T1(a(x), b(y)), M(x, y) = T2(a(x), b(y)), and N(x, y) = T3(a(x), b(y)),

where

a(x) = x−p{T1(1,+∞)}p, b(x) = x−q{T1(+∞, 1)}q .
Applying Corollary 5.18 in [148], one can check that in such a framework a form of the bivariate

extreme value distribution G is given by

G(x, y) = exp

(
−T1(x, y)
T1(1, 1)

)
.

3.2.1 Powered norm densities

Following the idea of ([148], p. 276 and 286), consider first a norm ∥ · ∥, and a cone D of R2,

that is to say a set such that if (x, y) ∈ D, then (tx, ty) ∈ D for every positive t. Without loss

of generality, suppose that (1, 1) ∈ D. Let (X,Y ) be a bivariate random vector with probability

density function given by

f(x, y) :=
c1D(x, y)

(1 + ∥(x, y)T ∥α)β ,

where c is a normalizing positive constant and where α and β are some positive real numbers

such that αβ > 2. Set AD(x, y) := {(u, v) ∈ D : u > x or v > y} and define p := (αβ − 2)−1.

One can check that, for j = 1, 2, 3,

Tj(x, y) =

∫∫

AD(x,y)

c cj dudv

∥(u, v)T ∥α(β+j−1)
,

where c1 = 1, c2 = −β and c3 = β(β + 1)/2. The functions M and N are homogeneous with

order given through ρ = ρ′ = −αp.
Let us discuss some particular choices of the norm:

- For the L1-norm and α = 1, the model coincides with the bivariate Pareto of type II

distribution, denoted by BPII(β), and referred to as MP(2)(II)(0, 1, β − 2) in ([113], p.

604). In this case, p = q = (β − 2)−1, and ℓ(x, y) = x + y − (x−p + y−p)−1/p. The latter

stdf is known as the negative logistic model, introduced by [101], see also ([8], p. 307).

- When the Euclidean norm is chosen, one recovers the bivariate Cauchy distribution for

α = 2, β = 3/2 and p = 1. On the positive quadrant, that means for D = R2
+, we have

c = 2/π, T1(u, v) = c(u−2 + v−2)1/2 and a(x) = b(x) = c/x. On the whole plane, which

means that D = R2, we get c = 1/(2π), T1(u, v) = c
{
u−1 + v−1 + (u−2 + v−2)1/2

}
and

a(x) = b(x) = 2c/x. This can also be seen as a particular case of the following item.

- The Student distributions with Pearson correlation coefficient θ arise choosing the norm
∥(x, y)T ∥ = ν−1/2(x2 − 2θxy + y2)1/2, for a positive real number ν, α = 2, β = (ν + 2)/2
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and p = ν−1. In this case, the integral form of the function T1 can not be totally simplified,
and one classically writes the stdf as

ℓ(x, y) = (x+ y)

[
y

x+ y
Fν+1

{
(y/x)1/ν − θ√

1− θ2

√
ν + 1

}
+

x

x+ y
Fν+1

{
(x/y)1/ν − θ√

1− θ2

√
ν + 1

}]
,

where Fν+1 is the cdf of the univariate Student distribution with ν+1 degrees of freedom.

This dependence structure is also obtained for some elliptical models. See for instance

[107], ([115], p. 1813) and next paragraph.

- Other choices for the norm would lead to other distributions. Note that one can also relax

the symmetry condition, considering for instance the Mahalanobis pseudo-norm defined

by ∥(x, y)T ∥2 = (x/σ)2 − 2ρ(x/σ)(y/τ) + (y/τ)2 for a real number ρ such that |ρ| < 1 and

some positive real numbers σ and τ .

3.2.2 Elliptical distributions

Consider the usual representation of the centered elliptical distribution (X,Y )T = RAU, in

terms of a positive random variable R, a 2×2 matrix A such that Σ = AAT is of full rank, and

a bivariate random vector U independent of R, uniformly distributed on the unit circle of the

plane. Assume that R has a probability density function denoted by gR. One can then express

the probability density function of (X,Y ) as

f(x, y) :=
1

|detA|gR
{
(x, y)Σ−1(x, y)T

}
.

A sufficient condition to satisfy (3.4) is to assume that the distribution of R belongs to the Hall

and Welsch class [88], viz.

P(R > r) = cr−1/γ
{
1 +D1r

ρ/γ +D2r
(ρ+ρ1)/γ + o(r(ρ+ρ1)/γ)

}
,

with positive real c, non null reals D1 and D2, and negative reals ρ and ρ1. One can check that,

for j = 1, 2, 3,

Tj(x, y) =
c

2πγ|detA|

∫∫

{(u,v):u>x or v>y}

dudv

{(u, v)Σ−1(u, v)T }1+1/(2γ)+pj
,

where p1 = 0, p2 = −ρ/(2γ) and p3 = −(ρ+ ρ1)/(2γ).

Assuming for simplicity that Σ =

(
1 θ

θ 1

)
, the stdf can be written as

ℓ(x, y) = (x+ y)

[
y

x+ y
F1/γ+1

{
(y/x)γ − θ√

1− θ2

√
1/γ + 1

}
+

x

x+ y
F1/γ+1

{
(x/y)γ − θ√

1− θ2

√
1/γ + 1

}]
,

which is the form already obtained for the Student distribution in Section 3.2.1 for ν = 1/γ.

See [44]. Note finally that for a general matrix Σ and the special case gR(r) = c(1 + rα)−β, one

recovers the Mahalanobis pseudo-norm already mentioned in the previous section.

When dealing with margins that are not heavy tailed, the calculus are done directly from (3.3).

The last two examples of bivariate distributions have short and light tailed margins respectively.

3.2.3 Archimax distributions

Consider the bivariate cdf defined for each 0 ≤ u, v ≤ 1 by F (u, v) =
{
1 + ℓ(u−1 − 1, v−1 − 1)

}−1

given in terms of a stdf ℓ. This distribution has standard uniform univariate margins and

corresponds to a particular case of Archimax bivariate copulas introduced in [32], in which the
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function ϕ(t) = t−1 − 1 is the Clayton Archimedean generator with index 1. Expanding the

left-hand side term of (3.3) leads to, as t tends to infinity,

t
{
1− F

(
1− t−1x, 1− t−1y

)}
= ℓ(x, y) + t−1M(x, y) + t−2N(x, y) + o

(
t−2
)
,

where, when the notation ∂ijℓ stands for ∂
2ℓ/(∂xi∂xj),

M(x, y) := x2∂1ℓ(x, y) + y2∂2ℓ(x, y)− ℓ2(x, y)

N(x, y) := x4/2∂211ℓ(x, y) + x2y2∂212ℓ(x, y) + y4/2∂222ℓ(x, y)

+ ℓ3(x, y) +
(
x3 − 2x2ℓ(x, y)

)
∂1ℓ(x, y) +

(
y3 − 2y2ℓ(x, y)

)
∂2ℓ(x, y) .

This allows to identify ρ = ρ′ = −1. For multivariate extensions, see [34], [36] and [M11].

3.2.4 Symmetric logistic distributions

Consider the cdf defined by F (x, y) = exp
{
−
(
e−x/r + e−y/r

)r}
for each x, y ∈ R, which cor-

responds to the bivariate extreme value distribution with Gumbel univariate margins F1(x) =

F2(x) = exp{−e−x} and symmetric logistic stdf ℓ(x, y) = (x1/r + y1/r)r, where 0 < r ≤ 1. This

distribution has been introduced in [164], see e.g. ([8], p. 304).

Expanding the left hand term of (3.1) leads to ℓ(x, y)+ t−1M(x, y)+ t−2N(x, y)+ o
(
t−2
)
where

M(x, y) :=
1

2
(xx1/r + yy1/r){ℓ(x, y)}1−1/r − 1

2
{ℓ(x, y)}2

N(x, y) :=
1

3
(x2x1/r + y2y1/r){ℓ(x, y)}1−1/r +

1− r

8r
(xy)1/r(x− y)2{ℓ(x, y)}1−2/r

+
1

3!
{ℓ(x, y)}3 − 1

2
(xx1/r + yy1/r){ℓ(x, y)}2−1/r .

This allows to identify ρ = ρ′ = −1. The identification of second and third order terms has

previously been derived by [118].

3.3 Homogeneous co-survival functions

Now that initial distributions F and associated stdf ℓ have been identified on specific examples,

let us turn back to a general multivariate framework. The idea here is to present the two main

properties that characterize a stdf. This section mainly relies on the developments of [147], [86],

[151] and ([M13], Section 2.1), the writing of which was motivated so that each argument finds

its place with the greatest clarity as well as rigor.

3.3.1 Multivariate monotonicity property

Consider f : Rd
+ → R+ and let µ denote a non-negative Radon measure on [0,∞]d \ {∞}. If for

any x ∈ Rd
+,

f(x) = µ([x,∞]c) ,

then f is said the co-survival function of µ. One should only keep in mind that the notion of

Radon measures ensures that f is well defined and finite for any x ∈ Rd
+.

Similar to distribution functions, also co-survival functions are essentially characterized by

a special multivariate monotonicity property. First, we introduce a notation. Let V1, . . . , Vd be

non-empty sets, V = V1 × · · · × Vd, and let f : V → R be any function. Then for x, z ∈ V set

Dx
z f :=

∑

A⊆{1,...,d}

(−1)|A|f(zA,x−A) , (3.5)
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where (zA,x−A) stands for the concatenated vector with values from z (resp. x) at coordinates

in A (resp. −A = {1, . . . , d} \ A). Moreover, for a non-empty subset B ⊊ {1, . . . , d} and for

y−B ∈∏j∈−B Vj , let us define on
∏

j∈B Vj

f(·,y−B)(zB) := f(zB,y−B) .

If Vj ⊆ R for all j, the function f is called 1d−alternating, if Dx
z f ≤ 0 for x ≤ z (both in V ),

and if this inequality also holds whenever some of the variables are fixed, for the function of the

remaining variables, i.e. if for each non-empty subset B ⊊ {1, . . . , d}, for each y−B ∈ ∏j∈−B Vj
and any xB ≤ zB both in

∏
j∈B Vj , we have

DxB
zB f(·,y−B) ≤ 0 .

See [149] or [152] for a detailed presentation of this concept, that has been first introduced in

[150] under the name fully d-max-decreasing.

By Theorem 3 in [151] one knows that f is the co-survival function of µ is equivalent to

assuming f 1d-alternating, left continuous, and f(0) = 0. Moreover, for any 0 ≤ x < z in Rd
+

Dx
z f = −µ([x, z[)

by an application of the inclusion/exclusion principle.

3.3.2 Homogeneity assumption

Let φ : Rd
+ → R+ be a homogeneous function, that is φ(tx) = tφ(x) for any positive t and vec-

tor x. Assume now that φ is the co-survival function of µ. Then the measure µ is homogeneous:

µ(tA) = tµ(A) for any positive t and measurable subset A (and reciprocally). Note that any

homogeneous 1d-alternating function φ : Rd
+ → R is automatically continuous, non-negative,

with φ(0) = 0, see ([151], Corollary 1). Classical examples of homogeneous co-survival functions

to keep in mind are the power mean values, defined for 0 < r ≤ 1 by x 7→
(∑d

i=1 x
1/r
i

)r
for

x ∈ [0,∞[d. The latter have been already encountered in the bivariate setting, see Section 3.2.4.

We consider the unit cube C = {w = (w1, . . . , wd) ∈ [0, 1]d|max(w1, . . . , wd) = 1}. An

important example of a homogeneous measure is given by the image λw of the Lebesgue measure

λ on R+ under the mapping s 7→ s/w, where w ∈ C. The co-survival function of λw is then

λw([x,∞]c) = λ({s ∈ R+|s/w ̸≥ x}) = λ({s ∈ R+|s < max
i=1,...,d

(xiwi)}) = max(x ·w) .

These functions play a decisive role in the following, since they are the building stones of all

homogeneous co-survival functions. More precisely, consider the set of all normalized functions

discussed above

K := {ψ : Rd
+ → R|ψ is 1d-alternating, homogeneous and ψ(1) = 1} .

Then K is obviously convex and compact (with respect to pointwise convergence). It turns out

that K is even a simplex, with

{x 7→ max(x ·w)|w ∈ C} = ex(K)

as its set of extreme points, and this set is closed (so compact as well) ; see ([151], Theorem 4 (ii)).

In other words, K is a so-called Bauer simplex, i.e. for each ψ ∈ K the representing probability

measure on ex(K) guaranteed by Krein–Milman’s theorem, is unique. The resulting integral

representation is also called Choquet representation. See ([151], Theorem 2) for the original

statement of this spectral representation and next part for its explicit formula for stdf.
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3.3.3 Stdf Choquet representation and choice of the norm

A homogeneous co-survival function ℓ with Choquet representation

ℓ(x) = ℓ(1)

∫

C
max(x ·w)dν(w), x ∈ Rd

+ (3.6)

is a stable tail dependence function iff its associated (and unique) probability measure ν on C

satisfies the d constraints
∫

C
widν(w) = 1/ℓ(1) ∀ i = 1, . . . , d .

It is easily seen that ℓ is the co-survival function of the measure µ := ℓ(1)
∫
C λwdν(w). Recall

that it means that ℓ(x) = µ([x,∞]c). This measure µ is for instance denoted by Λ in [49]. It

is closely related to the so-called exponent measure µ⋆ introduced in ([147], Section 5.4.1) for

instance. In fact, for any x ∈ Rd
+

µ([x,∞]c) = µ⋆([0, 1/x]
c) .

This means that µ⋆ is the image of µ under the mapping x 7→ 1/x, so that µ is directly

homogeneous (as is ℓ) when µ⋆ is inversely homogeneous: µ⋆(tA) = t−1µ⋆(A) for any positive t

and any measurable set A of [0,∞]d \ {0}.
Whereas the characterization of stdfs was shown relatively late ([151], Theorem 6), their

integral representation was known long before: it goes back essentially to [86] and [104]. Most of

the use of their integral representation has been done under the L1 or L2-norm on Rd
+. But as

emphasized by de Haan and Resnick, it is an arbitrary choice. As seen in the previous section,

the extreme points of K (functions x 7→ max(x ·w) for w ∈ C) combined with the max-norm

is also a convenient choice. In particular, it is really helpful for proving results from ([M13],

Section 3.2), presented here in Chapter 4.

3.4 Multivariate Fréchet distributions

The stdf ℓ characterizes the dependence structure of the limiting distribution G, also referred

to as the max-attractor of F . See (3.2) and above display there. The focus in [M7] is on

parametric and semiparametric models of extreme value distributions G. This topic has been

initiated by [82], [166], [66] and [164]. Different reviews of parametric multivariate extreme value

models are given by [37], [102], [114] and ([8], Section 9.2.2), among others. Our presentation is

done in terms of Fréchet margins, but other choices are possible and would lead to equivalent

expressions. To illustrate these choices through the literature, one can refer e.g. to [166] or [63],

who worked with Gumbel marginal distributions, whereas [87] or [108] chose Fréchet margins,

and [140] or [164] studied exponential margins.

3.4.1 The scale function

Consider multivariate extreme value distribution functions with Fréchet margins and a common

shape parameter. We keep ℓ to denote the stdf. As a consequence,

G(x) = exp

(
−ℓ
({

σ

x− µ

}ξ
))

∀x > µ

where the shape ξ and the scales σi are some positive real numbers, and where the locations µi
are real numbers. In particular, for any i = 1, . . . , d and xi > µi, the ith marginal is

G(xi,∞−i) = exp

(
− σξi
(xi − µi)ξ

)
.
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From (3.6), one knows the Choquet representation of ℓ in terms of the measure ν and the max-

norm. Let us proceed to a change of measure (ν becomes H) with respect to another norm

(∥ · ∥∞ becomes ∥ · ∥1). Set W = {w ∈ Rd
+, w1 + . . . + wd = 1} as the simplex associated with

the L1-norm. Let us define a positive Radon measure H on W by

H(B) := ℓ(1)

∫

C
1{ σξ ·w
w1 + . . .+ wd

∈ B}(w1 + . . .+ wd)dν(w)

for any borel set B of W , so that

∫

W
widH(w) = σξi .

We define in ([M7], Section 2.2) on Rd
+ the scale function as follows

σ(u) =

(∫

W+

max(w · uξ)H(dw)

)1/ξ

,

which allows to write the distribution function as G(x) = exp
(
−σξ((x− µ)−1)

)
, for any x > µ.

We write G = Fr(ξ,µ, σ(·)).

The main difference between the stdf and the scale function is that some information from

the margins Gi is contained in the scale function. For instance, the stable tail dependence

function evaluated at each unit basis vector is equal to one, whereas the scale function at the

unit basis vectors equals the corresponding margin scale. As a consequence, one may see the

scale function as an unnormalized version of the stable tail dependence function. At first glance,

the notion of scale function would seem perhaps unnatural. However, we had three reasons

to work with this representation. The first one is that it makes it easier to construct classes

of multivariate extreme value distributions by combining other ones ; see ([M7], Section 2.3).

Renormalizing complicates these constructions and masks the essential structure. The second

reason comes from the estimation point of view. When one constrains the search to guarantee a

(normalized) stable tail dependence function, we force exact agreement at each unit axis vector.

This is somewhat artificial, since in any practical problem, the marginals are normalized based

on a sample, and thus the scaling of components is inexact. This enforced match at the margins

might cause a poorer fit globally. The third reason is based on the result of [83], see also ([M7],

Remark 1), who proved that for any vector following such an extreme value distribution, its

max-projection along any direction is univariate Fréchet, and conversely. More precisely, one

can check that the scale of the univariate max-projection is given by the scale function evaluated

at this direction. As a consequence, the estimation of the dependence is reduced to a sequence

of univariate estimations through the estimation of max-projection scales. Note that such a

method was previously used (with min-projections and under exponential margins) by [140] and

several other authors.

3.4.2 Generalized logistic mixtures

Recall that a positive multivariate stable distribution with index α is the law of a positive

random vector S = (S1, . . . , Sd)
T with Laplace transform

E[e−<u,S>] = exp(−cαγα(u)) ,u ∈ Rd
+

where cα = sec(πα/2) and

γα(u) =

∫

S+
< u, s >α Λ(ds) . (3.7)

In the previous display, α ∈ (0, 1) and S+ is the first orthant of the unit sphere in the Euclidean

norm, and Λ denotes a positive and finite measure on S+. We will say that S = (S1, . . . , Sd)
T is

a positive α-stable random vector with sum-stable spectral measure Λ.
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Theorem 1 ([M7], Theorem 1) Let α ∈ (0, 1) and S = (S1, . . . , Sd)
T be a positive α-stable

random vector with sum-stable spectral measure Λ. Let Z1, . . . , Zd be independent and identically

distributed univariate Fréchet (ξ/α, µ = 0, σ = 1) and Z = (Z1, . . . , Zd)
T . Assume that S and

Z are independent. Then the random vector

X := Sα/ξ · Z = (S
α/ξ
1 Z1, . . . , S

α/ξ
d Zd)

T

is Fr(ξ,µ = 0, σ(·)) with scale function for u ∈ Rd
+

σξ(u) = cαγ
α(uξ/α),

where the right hand side is given by (3.7).

Several models have been defined combining positive stable distributions and extreme value

distributions. For earlier results, see ([37], Section 4.2), as well as [95], [39], [165]. Note also that

[63] unified the results in the previous papers and used them to construct structured models, e.g.

max-stable time series. The key point is to produce dependent Fréchet distributions by mixing

independent Fréchet components with dependent sum-stable scales, the two ingredients being

independent. In the latter paper, the focus is on the fact that in these models, both conditional

and unconditional distributions are extreme value distributions. The generalized logistic mixture

or generalized logistic model presented in ([M7], Theorem 1) allows more general dependence in

the terms of the mixture distribution. It is available for any dimension, differentiable and the

general expression of its density in provided by ([M7], Proposition 2).

• When the measure Λ is discrete with a single mass, say Λ = λδs⋆ , then the construction

leads to the symmetric logistic model with dependence parameter r = α.

– If σ is given then λ = c−1
α ∥σ∥α2 and s⋆ = σ/∥σ∥2.

– If Λ is given then σξi = cαλ{s⋆i }α.

In both cases, ℓ(x) =
(∑d

i=1 x
1/α
i

)α
, already mentioned in Sections 3.2.4 and 3.3.2.

• When the measure Λ is discrete with several masses, say Λ =
∑m

k=1 λkδs[k] , then the

resulting stdf is a mixture of asymmetric logistic terms having a common dependence pa-

rameter α. More precisely, ℓ(x) =
∑m

k=1

(∑d
i=1(xiβi,k)

1/α
)α

with βi,k = cαλkσ
−ξ
i {s[k]i }α

and σξi = cα
∑m

h=1 λh{s
[h]
i }α. Such asymmetric model differs from the well-known family

first introduced by [165]. The latter has much more flexibility on the dependence param-

eter, but the generalized logistic mixture offers a user-controlled number of terms m.

• When Λ admits a continuous density, we obtain a larger class of asymmetric logistic

mixtures.

3.4.3 Combinations and denseness property

In ([M7], Lemma 1, 2 and 3), we describe how scale functions σ and spectral measures H

combine such multivariate extreme value distributions when this is done under a list of oper-

ations: componentwise maximum max(Y · Z), up to some power Yp, scalar scale cY, vector

scale (c1Y1, . . . , cdYd), matrix max-product A×max Y, sum stable scale S1/ξY (for S a positive

sum stable random variable), concatenation (YT ,ZT ). While several of these facts were known,

it was useful to collect them in one place, expand the list, and see how the scale function is

a useful way to represent combinations of max-stable laws. Note in passing that the matrix

max-product finds several generalizations in the literature, as for instance max-linear causal
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graphical models or max-linear Bayesian networks studied in [167] or infinite max-linear models

recently introduced in [109].

In ([M7], Lemma 6, 7 and 9), the class of multivariate Fréchet distributions is shown to be

closed under most of the previous combinations for three particular classes: 1) when the spectral

measure H is discrete, 2) for generalized logistic mixtures, and 3) when H admits a piecewise

polynomial spectral density. The latter requires some tools for integration over a simplex, see

[5], [131] and [130].

If two multivariate Fréchet distributions have similar scale functions or similar spectral mea-

sures, then their cumulative distribution functions are uniformly close, as stated in ([M7], The-

orem 2 and 3) and following [128]. It allows to prove the denseness of the three multivariate

Fréchet classes already mentioned. Thus these results stated in ([M7], Proposition 4, 5 and 6)

offer three different approximations of any multivariate Fréchet distribution, and therefore of

any multivariate extreme value distribution G after well chosen marginal transformations. In

practice, there is no abstract reason to choose one of these models over another. It is unlikely

that one will be able to distinguish between these classes with real data, unless there is a massive

data set. However, the choice of a model can be based on some physical understanding of the

situation where the data is obtained, or on arguments such as parsimony, existence of a density,

etc. For example, in higher dimensions, it may be preferable to use a generalized logistic mixture

with a few terms that gives a smooth model, than a discrete spectral measure with many terms.

Concluding remarks

The stable tail dependence function provides a full characterization of the extremal dependence

structure. Its study allows for the discussion of very exciting mathematical concepts. Each of

the papers cited in this chapter has also led to data simulation procedures. The bivariate models

of [M5] have been shared with the community via private communications. The statement of

([M7], Theorem 1) is a stochastic representation that allows these models to be generated as

soon as a multivariate sum-stable model can be simulated, see [126], [132] and [129]. We also

refer to [160], [16], [124] and [34] for pioneering simulation algorithms under various frameworks.

For (a)symmetric logistic models, the well-known evd R-package [161], and more specifically its

function rmvevd therein has been incredibly useful. However, creating the asy vector becomes

very tedious as the dimension increases. In the recent satdad R-package [M11], this issue is

addressed through the writing of the gen.ds function, with the meaning generate a dependence

structure. The result is a list of several arguments that encodes a stdf. This package also

includes the functions rMevlog and rArchimax that generate multivariate extreme value models

and Archimax models both with (a)symmetric logistic stdf. An illustration ends the chapter.
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> library(satdad, quietly = TRUE)

> ds12 <- gen.ds(d = 12, type = "alog", sub = list(1:2, 3:7, c(3,5,7), c(2,8:12)))

Taking into account the support indicated in the list sub above, the stdf coded in ds12 has the

form

`(x1, . . . , x12) =
⇣
(�1,1 x1)

1/↵1 + (�2,1 x2)
1/↵1

⌘↵1

+
⇣
(�3,2 x3)

1/↵2 + (�4,2 x4)
1/↵2 + (�5,2 x5)

1/↵2 + (�6,2 x6)
1/↵2 + (�7,2 x7)

1/↵2

⌘↵2

+
⇣
(�3,3 x3)

1/↵3 + (�5,3 x5)
1/↵3 + (�7,3 x7)

1/↵3

⌘↵3

+
⇣
(�8,4 x8)

1/↵4 + (�9,4 x9)
1/↵4 + (�10,4 x10)

1/↵4 + (�11,4 x11)
1/↵4 + (�12,4 x12)

1/↵4

⌘↵4

where the asymmetric coefficients �·,·, randomly generated here, are saved in the list

> ds12$asy

## [[1]]

## [1] 1.0000000 0.4072452

##

## [[2]]

## [1] 0.7975571 1.0000000 0.9096378 1.0000000 0.6048126

##

## [[3]]

## [1] 0.2024429 0.0903622 0.3951874

##

## [[4]]

## [1] 0.5927548 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

and where the dependence parameters ↵·, also randomly generated here, are given by the vector

> ds12$dep

## [1] 0.04749820 0.40928894 0.77149036 0.06592641

The stdf is evaluated below at rep(1,12) and at (1:12)/20 (arbitrarily chosen)

> ellMevlog(x = rep(1,12), ds = ds12)

## [1] 4.372033

> ellMevlog(x = (1:12)/20, ds = ds12)

## [1] 1.254858

First illustration of [M11]



The well-known collection of extremal coefficients is obtained by the evaluation of the stdf at

specific points. For A a subset of {1, . . . , d}, it is given by `(1A,0�A) 2 [1, |A|]. For instance, the

bivariate family associated with the 12-dimensional stdf can be computed with the command

> ec(ds = ds12, ind = 2)$ec

The quantities 2 � `(1{i,j},0�{i,j}) are plotted in the Inverse extremal coefficients graph.

> graphs(ds = ds12, which = "iecgraph")

Two random samples are now generated.

The first has standard Fréchet margins and ` as stdf.

> X_fr12 <- rMevlog(n = 1000, ds = ds12)

The second is sampled from the Archimax copula C(u1, . . . , u12) =  
�
`( �1(u1), . . . , 

�1(u12))
�

for the function  (x) = 1/(x + �)a, where the positive shape a and positive scale � are chosen at

random.

> a <- runif(1, 0.01, 5)

> sigma <- runif(1, 0.01, 5)

> a ; sigma

## [1] 1.445411

## [1] 3.305163

> X_archimax12 <- rArchimaxMevlog(n = 1000,

+ ds = ds12, dist = "gamma", dist.param = c(a, sigma))

First illustration of [M11]



4
Functional decompositions for (tail) dependence

The stdf being infinite-dimensional it is desirable to build finite-dimensional summaries. The

well-known family of extremal coefficients can be easily calculated from the stdf and has an

interesting probabilistic interpretation. The first objective of this chapter is to propose another

family of indices that, when measured on a pair, provide information about the asymptotic

distribution associated with that pair as well as with any set of indices containing that pair.

This work, based on a specific functional decomposition, has been proposed in [M14] and refined

in [M13]. It is the subject of the first two parts of the current chapter. The third part, that

reflects the extension obtained in [M15], investigates the understanding of a generic form of func-

tional decompositions. The result therein allows then to explore a rewrite of testing hypotheses

for dependence, as it has been done in [M12] and presented here in the last part.

4.1 Global sensitivity analysis

Global sensitivity analysis is a branch of control theory and computer sciences. This type

of analysis measures how sensitive the outcome quantity f(x) is to the variation of individual

input variables xi. A variance decomposition determines which of the multiple input parameters

are responsible for most of the variation in the outcome. We refer to [98], [97] or [41] for

a presentation of methods and algorithms. This section presents an overview of functional

decomposition, computational issues and consequences in terms of variance.

4.1.1 The Hoeffding–Sobol Decomposition

The functional decomposition mentioned here has a long story that is nicely described in [168].

To provide a short presentation, let us start by quoting [91]. His pioneering work uses L2

projections to decompose and study U -statistics. But it is in [92] that the author proposes a

recursive construction, based on conditional expectations, of what can be called the Hoeffding

decomposition. Its first terms, depending on combinations of measurable functions of only one

variable, corresponds to the Hajek projection. [48] seems to be the first reference with a clear

statement and proof of the Hoeffding decomposition. It appears also in [159], with its own proof.

This work had a major impact in the field of global sensitivity analysis. This explains why the

name Sobol is now attached to the first one.

Let f : [0, 1]d → R be a function in L2([0, 1]d, λ) where λ =
∏d

i=1 λi is a product of probability

measures on [0, 1]. One way to understand the structural form of the d-variables function f is to

decompose it into functions of increasing complexity. This is precisely what allows the functional

analysis of variance (FANOVA). It relies on the Hoeffding-Sobol decomposition

f(x) =
∑

A⊆{1,...,d}

fA(x) (4.1)

where

fA(x) =
∑

B⊆A
(−1)|A\B|

∫
f(x)dλ−B(x)

for dλA(x) =
∏

i∈A dλi(xi) and −B = {1, . . . , d}\B. See [91], [159], [168]. The terms fA only de-

pend on the components of x associated with A. They can be interpreted as follows. Set U ∼ λ.
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The constant f∅ =
∫
fdλ = E[f(U)] is the global mean. The term fi(x) = E[f(U−i, xi)] − f∅

represents the main effect of component {i}, fij(x) = E[f(U−{ij},x{ij})] − fi(x) − fj(x) − f∅
captures the second-order interaction from the pair of components {i, j}, and so on. In the

previous formulae, the mathematical expectation refers to the integral with respect to dλ in f∅,

to ⊗t̸=idλt in the definition of fi, and to ⊗t̸=i,jdλt in that of fij .

This decomposition has found many applications in statistics, notably in global sensitivity anal-

ysis; see [100], [35], [67], [99], [153], [133] and [144]. In particular, the Hoeffding–Sobol decompo-

sition has been used extensively to compare the performance of Monte Carlo versus quasi-Monte

Carlo integration in high-dimensional integration problems, where the notion of effective dimen-

sion reduces the dimension of the domain of integration. For more details, we refer to [122],

[135] and [134].

4.1.2 A variance decomposition

The Hoeffding–Sobol decomposition has the advantage of a variance decomposition. The global

variance is given by σ2(f) =
∫
(f − f∅)

2dλ = var[f(U)]. Set σ2∅(f) = 0 and σ2A(f) =
∫
f2AdλA =

var[fA(U)]. For instance, σ2i (f) is the variance of f(U) due to the ith component only. Simi-

larly, σ2ij(f) is the variance due to the combined effect of components {i, j}. From orthogonality

arguments (see [48] for instance), the term fA is centered (except for the empty set) and the

FANOVA expression relies on the equality

σ2(f) =
∑

A⊆{1,...,d}

σ2A(f) .

Interest in the individual variances σ2A(f), and more particularly their ratio to the total variance

σ2A(f)/σ
2(f), traces back to [159] and [137].

One combination of such variances is of prime interest. It is defined by

Υ2
A(f) =

∑

B⊇A
σ2B(f)

and referred to as the superset importance of the subset A. See [94] and [122] for pioneering

discussion. This coefficient is positive and smaller than or equal to σ2(f). This index makes

it possible to discover additive structures in multivariate functions. Indeed, under continuity

assumptions on λ and f , Υ2
ij(f) = 0 implies that f does not simultaneously depend on i and j

in its decomposition and, thus, f is additive with respect to xi and xj .

4.1.3 Computational aspects

From ([122], Formula 9), there exists for Υ2
A(f) an integral expression that relies on f only. It

thus makes possible to compute these indices without identifying the terms of the decomposi-

tion {fB,B ⊇ A}. For instance, in a pairwise setting,

Υ2
ij(f) =

1

4

∫

[0,1]d+2

{
f(x)− f(x−i, v)− f(x−j , w) + f(x−{ij}, v, w)

}2
dλ(x)dλi(v)dλj(w) .

But, even if the superset importance coefficient Υ2
A(f) has an integral formula, it is not

easy to compute explicitly. Hopefully, any Υ2
A(f) admits a Monte Carlo approximation. For the

subset A being a pair {i, j}, its statistical properties have been investigated in [65]: it is unbiased

and asymptotically normal when the true value is not zero. Moreover, it is asymptotically

efficient in a class of models with exchangeable variables, indicating that it has the smallest

within-class variance. Furthermore, its Monte Carlo estimate vanishes when the theoretical

value is zero: the Monte Carlo error of estimation under this specific case is always zero, which

is remarkable (recall that f is known here).
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4.2 New measures for the tail dependence

A sensitivity analysis is the search for the input into a system that will have the greatest impact

on the systems output, often extremely complex. This search can be applied to subsets of

components whose variations will most significantly impact variations in the output. In other

words, given a pre-established size of subset, which group of input parameters will have the most

impact on the outcome? This question, which is generally addressed using global variances, is

in fact linked to the extreme value theory if the indicator observed becomes a high quantile or

a probability of failure. We refer to the works of [136], [116], [163], [19] and [123].

This section reflects the advances obtained in [M14], [M13] and [M11]. It is again at the

crossroads of two domains: the global sensitivity analysis introduced in Section 4.1 and the

multivariate extreme value theory presented in Chapter 3. Recall that ℓ stands for the stable

tail dependence function (stdf) of a random vector X. In such a setting, we have natural entries

represented byX1, . . . , Xd the d variables jointly studied. The idea is to define a pseudo-response

such as ℓ(U) at some generic random vector U, with the intention of ranking dependence in

the asymptotic joint structure. Note that [38] studies the influence of inputs distributions on

renormalized variance indices in relation with stochastic orders. Our entries may have the same

distribution, our goal is rather to understand the structure of the function ℓ that captures the

tail dependence of the random vector X.

4.2.1 The tail superset importance coefficients

The main goal here is to introduce new indices for multivariate extreme value analysis. Roughly

speaking, our indices are derived from the decomposition of the variance of ℓ(U). By looking

at their values, it is possible to understand part of the support of the asymptotic dependence

structure.

By homogeneity of ℓ, the stdf can be restricted to [0, 1]d without loss of information. By

continuity, ℓ is square integrable on [0, 1]d. Recall that the continuity is also useful to deduce

that a term of variance zero is null. Assume also that the measure λ is continuous with sup-

port [0, 1]d. Set U ∼ λ and {ℓA,A ⊆ {1, . . . , d}} the Hoeffding-Sobol decomposition terms of ℓ.

A tail superset importance coefficient has been introduced in ([M14], Section 3.2) as a superset

importance index

Υ2
A(ℓ) =

∑

B⊇A
σ2B(ℓ) =

∑

B⊇A
var[ℓB(U)]

for the stdf ℓ. Even though it is associated with a random vector X, the function ℓ is determin-

istic. Because ℓ is generally unknown, we provide here a new modeling tool. Under asymptotic

independence, all tail superset importance coefficients vanish. However, these indices are also

helpful in less exaggerated situations. For instance, Υ2
ij vanishes if the margins Xi and Xj are

part of asymptotically independent groups. As pointed out in ([M13], Formula 7), the integral

representation of [122] for superset importance coefficient can be expressed as

Υ2
A(ℓ) = 2−|A|

∫

[0,1]d+|A|
(DxA

zA ℓ(·, z−A))
2dλA(x)dλ(z)

where Dx
z has been already defined in (3.5).

Another formula exists for Υ2
A(ℓ). In [M13], we take advantage of the fact that ℓ is a

homogeneous co-survival function. Recall (3.6) from Section 3.3.2 where the probability measure

ν on the unit cube C = {w ∈ [0, 1]d|max(w) = 1} satisfies the d constraints
∫
C widν(w) =

1/ℓ(1) for any i = 1, . . . , d. The expression of the Hoeffding-Sobol decomposition terms ℓA and

variances σ2A(ℓ) are obtained in ([M13], Theorem 1) as integrals of rank-one tensors. Formulae

depending on the spectral measure are also derived for cumulated variances. In particular, the

tail superset importance coefficients Υ2
A(ℓ) are also written as integrals of rank-one tensors in
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([M13], Corollary 1). More precisely, if Ki(w, v; s, t) := λi([0, (s/w) ∧ (t, v) ∧ 1]) and if Ki(w; s)

stands for Ki(w,w; s, s), then

Υ2
A(ℓ) =ℓ(1)

2

∫

C
dν(w)

∫

C
dν(v)

∫ 1

0
ds

∫ 1

0
dt

∏

i ̸∈A
Ki(wi, vi; s, t)

∏

i∈A
(Ki(wi, vi; s, t)−Ki(wi; s)Ki(vi; t)) .

Such integral representations improve the numerical performance of Monte Carlo estimates, as

illustrated in ([M13], Section 2.3).

4.2.2 The tail dependograph

The features of the FANOVA graph, introduced by [127], are also highlighted in ([M14], Sec-

tion 3.3) for asymptotic dependence modeling. Applied to the stable tail dependence function,

we refer to it as the tail dependograph since it graphically represents, on an undirected but

weighted graph, the strength of asymptotic dependence within a vector. On this graph, the

edge thickness between two vertices is proportional to the force of tail dependence in the cor-

responding bivariate model but also cumulates the information of the asymptotic dependence

structure for any multivariate model that contains this pair.

An undirected and weighted graph is a list G = (V,g) of the set of vertices V = {1, . . . , d} and

the collection g = {g1;2, g1;3, . . . , g1;d, . . . , gd−1;d} of the d(d − 1)/2 edge weights. Graphically,

we represent the vertex number inside a bubble and plot a segment between {i} and {j} whose

width varies proportionally to gi;j . For a dependency graph of a random vector X, the set V rep-

resents the components of X and g contains some positive dependence measures between pairs.

An undirected and weighted graph G will be known as a tail dependency graph if the following

holds: the vectors XI = {Xi, i ∈ I} and XJ = {Xj , j ∈ J} are asymptotically independent

when there is no edge from any vertex in I to any vertex in J , for any two subsets of vertices I

and J from V : gi;j = 0, ∀i ∈ I, ∀j ∈ J .

Recall that the random vectors XI and XJ are asymptotically independent if

ℓ(xI ,xJ ,0K) = ℓ(xI ,0J ,0K) + ℓ(0I ,xJ ,0K) ∀(xI ,xJ) ∈ [0, 1]|I|+|J | . (4.2)

Proposition 2 ([M14], Section 3) The tail dependograph is defined as a tail dependency graph

with edge weights given by the pairwise tail superset importance coefficients Υ2
ij(ℓ). Tail inde-

pendence from the tail dependograph is concordant with (4.2).

4.2.3 The upper bound of the tail superset importance coefficients

The question addressed here is as simple as the proof to obtain it was difficult. Coming from a

reviewer of [M14], it is about understanding the upper bound of these new indices. Indeed, the

bounds for any ℓ are as follows

max(x) ≤ ℓ(x) ≤
d∑

i

xi

for all x ∈ [0, 1]d. A natural question is whether these bounds transfer in some way to the new

tail measures. The lower bound, that is 0, is trivial. The spectral representation (3.6) is the

main ingredient in deriving a sharp upper bound for the new quantities.
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Theorem 3 ([M13], Theorem 2) Let ℓ be a d-variate stable tail dependence function. Then, for

any non-empty A ⊆ {1, . . . , d}

Υ2
A(ℓ) ≤ Υ2

A(ℓ
∨,A) =

2(|A|!)2
(2|A|+ 2)!

where ℓ∨,A(xA) = maxi∈A xi.

If ℓ is a d-variate stdf with equality Υ2
A(ℓ) = Υ2

A(ℓ
∨,A) for a given ∅ ̸= A ⊆ {1, . . . , d}, then its

projection on the variables xA is equal to ℓ(xA,0−A) = ℓ∨,A(xA) = maxi∈A xi.

In particular, if Υ2
{1,...,d}(ℓ) =

2(d!)2

(2d+2)! for a d-variate stdf ℓ then ℓ(x) = max(x).

The optimization problem dealt with in previous ([M13], Theorem 2) might be looked at in the

broader perspective of maximizing a convex functional over a compact convex set (which need

not be a simplex). Bauer’s maximum principle ensures that the maximal value is attained in

an extreme point. It does however give no hint to localize such a point nor to its uniqueness.

Our statement answers completely the question: it asserts the existence, the uniqueness and the

location (and so finds the maximal value) of the maximization problem. The proof of ([M13],

Theorem 2) also relies on the following preliminary result.

Proposition 4 ([M13], Proposition 1) Let f : Rd
+ → R be 1d-alternating and let A be a non-

empty subset of {1, . . . , d}. Then,

Υ2
A(f) ≤ Υ2

A(f
[A])

with f [A](zA) := f(zA,0−A).

The following statement is included in the proof of ([M13], Theorem 2).

Corollary 5 ([M13], Corollary 2) For any d-variate stable tail dependence function ℓ given

as (3.6)

Υ2
{1,...,d}(ℓ) ≤ ℓ(1)2

(∫

C

d∏

i=1

w
1/d
i dν(w)

)2
2(d!)2

(2d+ 2)!
.

The knowledge of the upper bound for Υ2
A(ℓ) induces a normalized version of these indices.

The quantities

Υ2
A(ℓ)×

(2|A|+ 2)!

2(|A|!)2

all belong to the interval [0, 1], that does not depend on the cardinality of A.

4.3 Linking the Hoeffding–Sobol and Möbius formulas

The Hoeffding–Sobol decomposition, widely used in Section 4.1 and 4.2, and the Möbius decom-

position are two common ways of expressing a real-valued function f of d ≥ 2 variables acting on

a domain D ⊆ Rd into a sum running over all subsets of {1, . . . , d}, as described by (4.1). Both

formulas are well-known and useful in statistics because the terms in the representation (4.1)

become gradually simpler (in a specific sense) as the size |A| of the set A decreases from d to

zero. While many might have suspected that the two decompositions have a common origin,

the purpose of [M15] is to elucidate this connection.

4.3.1 Preliminary remarks

By comparison, the Möbius decomposition is relatively unknown and should not be confused with

the celebrated Möbius inversion formula. The Möbius decomposition was originally suggested

by [43] as a way to construct rank-based tests of independence among the components of a

continuous random vector. More specifically, an application of Möbius’ formula leads to a
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representation of an empirical copula, and hence also of the empirical copula process, into a finite

number of components which, under the null hypothesis of independence, are asymptotically

independent. Cramér–von Mises statistics derived from the sub-processes prove to be very

powerful, both asymptotically and in finite samples, as illustrated in [78], [74] and [73]. This

approach has since been extended to the problem of testing for independence between random

vectors, see [10] and [110], and more recently to testing for dependence between arbitrary random

variables [71].

In [117] conditions are given to guarantee the existence and uniqueness of the general de-

composition (4.1). They describe how their result applies to the Hoeffding–Sobol formula. The

Möbius formula is also of the form (4.1) but its existence and uniqueness do not follow from the

result of [117], whose conditions are too restrictive. They rely on projections P1, . . . ,Pd which

induce the decomposition upon setting, for each A ⊆ {1, . . . , d},

fA =

(∏

i∈A
(I−Pi)

∏

i/∈A

Pi

)
(f) . (4.3)

Their result holds provided that each projection eliminates the dependence on a specific input

variable to which the function is applied.

4.3.2 Extending Kuo, Sloan, Wasilkowski and Woźniakowski functional decomposition

The following result relaxes assumptions in [117] so that the resulting formula encompasses both

the Hoeffding–Sobol and Möbius decompositions as special cases. For any A ⊆ {1, . . . , d}, the
composition of operators is denoted by PA =

∏
i∈APi and P−A = P{1,...,d}\A.

Proposition 6 ([M15], Proposition 1) Let F be a linear space of real-valued functions acting

on a domain D of Rd and let P1, . . . ,Pd be commuting and idempotent operators on F . Then,

the following statements hold true.

Part A: Any function f ∈ F can be written as (4.1) in which the term fA, defined by (4.3) is

such that the annihilating property is satisfied, meaning that, for all i ∈ {1, . . . , d},

Pi(fA) =

{
0 if i ∈ A
fA if i /∈ A.

Part B: Suppose that every function f ∈ F can be expressed as in (4.1) and that the an-

nihilating property holds for the operators P1, . . . ,Pd, which are further assumed to be lin-

ear. Then the term fA is given by fA = P−A(f) −
∑

B⊊A fB, which is equivalent to fA =∑
B⊆A(−1)|A\B|P−B(f), and hence also to formula (4.3).

While ([M15], Proposition 1) achieves the main objective of providing a common representa-

tion for the Hoeffding–Sobol and Möbius decompositions, the need to impose linearity in Part B

implies that existence and uniqueness are no longer obtained under a common set of assump-

tions. The result stated in ([M15], Proposition 2), which remains valid for non-linear operators,

shows that one can find a unique assumption and can even bypass the idempotence assumption.

4.4 Exploring the functional decomposition of a copula

The Hoeffding–Sobol and Möbius formulas are thus two ways of decomposing a function of sev-

eral variables as a sum of terms of increasing complexity. As they were developed and used

by distinct research communities, their suspicious resemblance had never been investigated be-

fore [M15]. Beyond its intrinsic interest, the existence of the common setting revealed in ([M15],

Proposition 1) opens the door to cross-fertilization in their respective domains of application.

Dependence modeling with copulas, or other characterizations of dependence, is a domain where

this has already happen in [M12].
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4.4.1 Copulas

Identifying and modeling dependencies with copulas remain an important topic, which has

become very popular over the last decades since it has been applied in almost every discipline.

We refer to the following non-exhaustive list of testing procedures associated with copulas: [10],

[18], [162], [47], [68], [106], [120], [69], [143], [145], [89] and [71].

Consider a d-dimensional random vector X. We assume that the cumulative distribution

function (c.d.f.) F of the representative vector X has continuous univariate margins denoted

by F1, . . . , Fd. There exists then a unique copula C : [0, 1]d → [0, 1], that is a d-dimensional

c.d.f. with standard uniform margins such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all

x = (x1, . . . , xd) ∈ Rd. This representation, due to [158], illustrates that the copula C charac-

terizes the dependence between the components of X.

So far, the focus has been done in this manuscript on the stdf, which can be linked to the

copula. Indeed, the first order condition (3.1) implies that for any positive real x1, . . . , xd, as t

tends to infinity,

t
(
1− C(1− t−1x1, . . . , 1− t−1xd)

)
→ ℓ(x1, . . . , xd) .

Note also that if G is the max-attractor of F , its copula is the extreme value copula

CG(x1, . . . , xd) = exp (−ℓ (− log x1, . . . ,− log xd)) .

4.4.2 Feedback on the extension for copulas

The Hoeffding–Sobol case is reconstructed from

Pi(C)(x) =

∫ 1

0
C(x1, . . . , xi−1, z, xi+1, . . . , xd)dλi(z) ,

whereas, for Möbius, one has

Pi(C)(x) = xi × C(x1, . . . , xi−1, 1, xi+1, . . . , xd) . (4.4)

Applied to a copula, the projection PA associated to the Hoeffding–Sobol decomposition

cancels the influence of variables in the subset A through integration. The terms are of increasing

complexity with |A| in the sense that CA depends on a vector xA whose length grows with |A|.
In that decomposition, C∅ does not depend on C.

In contrast, the projection PA associated with the Möbius decomposition erases the stochas-

tic dependence between the variables with indices belonging to the set A. More precisely, if a

random vector Z has distribution PA(C), the subvectors ZA and Z−A are then independent.

While there is no increasing complexity in the terms of the decomposition, in the sense that the

value of CA at any x depends on both xA and x−A, it is noteworthy that only the stochastic

dependence embodied within xA is retained. It can be said, therefore, that the terms in the

Möbius decomposition are also increasing in complexity, but in the sense of probabilistic depen-

dence. Further note that while the term C∅ does not vanish in this decomposition, it does not

contain any information about dependence given that C∅ = Π, the independence copula.

Beyond the relative degree of complexity of their terms, the Hoeffding–Sobol and Möbius

decompositions each have their comparative advantage. One key feature of the Hoeffding–Sobol

decomposition is that it provides orthogonal terms, so that the structure of the function of

interest can be analyzed through variances. In contrast, the terms in the Möbius decomposition

are not orthogonal. However, a strong point of the Möbius decomposition is the ease with which

any term can be computed as a simple alternate combination of evaluations of the function C.
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4.4.3 Functional decomposition for testing copula-based assumptions

Recall the pioneering idea of Deheuvels in [43] which reveals the independence through the

Möbius decomposition of the empirical process. The null hypothesis is thus equivalent to the

intersection of a finite set of assumptions since all secondary terms of the decomposition vanish.

Let us be more precise by introducing some notation. Let {P1, . . . ,Pd} be a collection of

commuting idempotent functionals and set

MA =
∏

i∈A
(I−Pi)

∏

i/∈A

Pi , (4.5)

so that fA = MA(f) in (4.3). If Pi is given by (4.4), the decomposition (4.1) is the Möbius

decomposition, as already said. Set Π(x) = x1 · · ·xd the independence copula. If (H)C = Π

then one can check that M∅(C) =
∏d

i=1Pi = Π and that MA(C) vanishes whenever A ≠ ∅.
We generalize in [M12] the method by applying another functional decomposition, chosen

in accordance with the structural assumption being tested. Indeed, under various interesting

examples, the null hypothesis describing a structural form of dependence is often characterized

by the stability of the copula under the action of a transformation M∅ =
∏d

i=1Pi. It leads to

the test of (H)C = M∅(C) against its negation. From (4.1), C − M∅(C) =
∑

A∈P⋆
d
MA(C),

where P⋆
d stands for the non-empty subsets of {1, . . . , d}. As a consequence, the summation∑

A∈P⋆
d
MA(C) vanishes when (H) holds true. It is thus interesting to consider for any A ∈ P⋆

d

the null sub-hypothesis

(HA)MA(C) = 0 .

A relevant question is to analyze whether any (HA) holds true under the null hypothesis (H).

What is its link exactly with the intersection? Part of the question finds an answer.

Proposition 7 ([M12], Proposition 1) Let P1, . . . ,Pd be a commuting collection of idemptotent

operators on F . Then, the null hypothesis satisfies the equality

(H) =
⋂

A∈P⋆
d

(HA) .

The study based on a functional decomposition reveals that a collection of sub-hypotheses (HA)

hold true under (H). In consequence, new test statistics are defined by combining the information

extracted from (H) with that extracted from any (HA).

4.4.4 Examples of null hypotheses and associated maps

A kind of unification of various papers, as [43], [74], [73], [110] and [111] among others, has

been provided by [M12]. All derive copula-based tests of the structure of dependence. The

solution explained above was to dip them in the functional decomposition context of [117] (and

its recent version of [M15] which removes the linearity assumption in the existence statement)

in order to reveal a common pattern. The following summary identifies for some structural

dependence null hypotheses (H), their associated set of operators {P1, . . . ,Pd} that allows to

test (H)C = M∅(C) against (K)C ̸= M∅(C) .
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(H) Independence among subvectors ([M12], Section 2.3.1)

Pi(C)(x) = C(x{i},1−{i}) · C(1{i},x−{i})

(H) Complete independence among all components ([M12], Remark 2)

Pi(C)(x) = xi · C(x1, . . . , xi−1, 1, xi+1, . . . , xd)

(H) Weak associativity ([M12], Section 2.3.2)

Pi(C)(x) = C(x1, . . . , xi, C(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1)

(H) Specific Archimedean copula ([M12], Section 2.3.3)

Pi(C)(x) = φ[−1] [φ (C(xi,1−i)) + φ (C(1i,x−i))− φ (C(1))]

(H) Specific Archimedean by blocks ([M12], Section 2.3.4)

Pi(C)(x) = φ−1
[
φ(C(x{i},1−{i}))− φ(C(1)) + φ(C(x−{i},1{i}))

]

(H) Specific Archimax copulas ([M12], Section 2.3.5)

Pi(C)(x) = φ−1

[{(
ℓ
(
φx{i},0−{i}

))θ
+
(
φ ◦ C

(
1{i},x−{i}

))θ}1/θ
]

(H) Max-stability ([M12], Section 2.4.1)

Pi(C)(x) = Cri(x1/ri)

(H) Exchangeability ([M12], Section 2.4.2)

Pi(C)(x) = C(xτi)

Concluding remarks

The use of functional decompositions to analyze structures of asymptotic as well as non-asymptotic

dependencies has proven to be fruitful. In [M15], a common context was investigated for fixed

projections (those associated with Hoeffding–Sobol and Möbius decompositions), while in [M12],

the projections were identified for pre-specified statistical hypotheses, which led to the emer-

gence of a general framework. Furthermore, this chapter had started with the global sensitivity

analysis and its use in the multivariate extreme value theory. These new concepts are also in-

cluded in the satdad R-package [M11]. We conclude this chapter by illustrating the calculation

of tail importance superset coefficients and their plot through the tail dependograph on the

asymptotic model created at the end of Chapter 3.
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Consider the 12-dimensional dependence structure generated at the end of Chapter 3. The collec-

tion of bivariate tail superset importance coefficients is estimated below.

> tsic(ds = ds12, ind = 2)$tsic

## [1] 1.665236e-03 2.476284e-32 2.344396e-32 2.075690e-32 2.362885e-32

## [6] 2.540379e-32 1.253549e-32 1.305318e-32 1.539511e-32 1.345994e-32

## [11] 1.491440e-32 2.602008e-32 2.462725e-32 2.493540e-32 2.382606e-32

## [16] 2.625428e-32 2.227552e-05 9.369008e-05 2.035716e-05 4.187246e-05

## [21] 9.017091e-05 2.238604e-04 1.922358e-04 1.707785e-04 1.093489e-04

## [26] 1.482812e-32 1.488975e-32 1.702214e-32 1.719470e-32 1.559233e-32

## [31] 3.295230e-04 4.743226e-04 7.927839e-05 1.397763e-32 1.435973e-32

## [36] 1.541977e-32 1.477882e-32 1.447067e-32 3.882164e-04 1.130791e-04

## [41] 1.601141e-32 1.569094e-32 1.752750e-32 1.527185e-32 1.527185e-32

## [46] 8.666063e-05 1.461858e-32 1.421182e-32 1.564163e-32 1.380507e-32

## [51] 1.458160e-32 1.587583e-32 1.744122e-32 1.691121e-32 1.555535e-32

## [56] 1.597443e-32 1.205515e-03 1.403054e-03 1.136166e-03 1.040342e-03

## [61] 1.089571e-03 8.862386e-04 9.601708e-04 1.279907e-03 9.065016e-04

## [66] 1.200806e-03

These pairwise indices are plotted (renormalized, among others, by their maximal value) in the

so-called Tail dependograph.

> graphs(ds = ds12)

Second illustration of [M11]



To compare the two graphs, we plot them side by side.

— The first common feature is the ability of both bivariate collections to separate the support

of the associated stdf into two blocks.

— The second common feature is that within a common homogeneous group ({3, 5, 7} or

{8, . . . , 12} for instance), the graphs both illustrate this resemblance.

— The first difference is the relief given by the two graphs. On the left, the values can be

hierarchized, but one has to observe the edges’ thickness carefully to obtain an order. On

the right, the ordering appears more evident.

— The second difference is that the resulting order is not the same, which is obvious since we

are not measuring the same characteristics. It comes from the fact that the tail dependo-

graph shares a structural analysis of the stdf. The probabilistic interpretation is lost except

for homogeneous comparison.

• Let us focus indeed on the component 2. Its strong link with 1 on the tail dependograph

only reflects that �2,1 = 0.4072452 is still large, considering that ↵1 = 0.0474982 (the

smallest value among the dependence parameters). If �2,1 decreases to 0, its link to

the group 8-12 will obviously predominate in comparison with its link to 1. Recall that

�2,4 = 0.5927548 and ↵4 = 0.0659264.

• We provide another illustration by focusing now on the other group. The dissimilarities

between {4, 6} and {3, 5, 7} appear more clearly in the tail dependograph. Note that in

these groups, the asymmetric coefficients and the dependence parameters go in the same

direction. In other words : �4,2 = �6,2 = 1 > �j,2 for j = 3, 5, 7 and ↵2 = 0.4092889 <

0.7714904 = ↵3.

Second illustration of [M11]





5
Non-parametric statistics

So far, the work presented can be described as modeling, through the study of the stdf, its

structure analysis by a finite number of coefficients or the rewriting of testing hypotheses. In

addition to modeling, we have used several mathematical concepts to study the properties of

each abstract object. In this chapter, the non-parametric counterpart of what has been pre-

sented hitherto is examined.

Given a sample of multivariate observations, how can we estimate the tail of the underlying

multivariate distribution? By definition, the stdf is easily linked to the probability that at least

one of the variables is large. Under a general setting, the estimation of the tail margins would

be first required. However, under standard Pareto margins, for instance, if x ∼ ty for y in the

positive orthant and with large postive t,

P(X ∈ [0, ty]c) ≃ t−1 ∥y−1∥ ℓ(y−1/∥y−1∥) ,

so the estimation of such probability relies on that of ℓ. The approximation above only relies on

(3.1). The usual balance between bias and variance occurs in multivariate extreme value theory

with respect to the size of k, the number of largest observations considered as sufficiently large.

The first part below provides the asymptotic bias reduction of the non-parametric estimator

of the stdf for large k. In the second part, estimators for the new global sensitivity measures

for tail dependence are defined and studied. Finally, new test statistics derived from the func-

tional decomposition are introduced and analyzed in the last part of this chapter, both from a

theoretical and numerical point of view.

5.1 Bias correction procedure

The nonparametric estimation of the extremal dependence structure has been widely studied in

the bivariate case, see for instance [96], [51], [31], [1], [81] and [21]. Bias correction problems

in the bivariate context received less attention than in the univariate setting, see [7] and [79],

which consider the estimation of bivariate joint tails. As for the multivariate framework, [85]

introduces the empirical estimator (5.1). General approaches under parametric assumptions on

the stdf have been developed e.g. by [37], [103], [54], [55] and [52].

The paper [M5] proposes the first procedure correcting the bias for dimension greater than

two. Note that our method does not consist only of applying the univariate bias procedure at

several points. Indeed, the bias is not anymore a parametric function, so that the new feature

is mainly the fact that we are able to estimate and then subtract a function with an unknown

form.

5.1.1 First development

LetX1 = (X
(1)
1 , . . . , X

(d)
1 ), . . . ,Xn = (X

(1)
n , . . . , X

(d)
n ) be independent and identically distributed

multivariate random vectors with cdf F and continuous marginal cdfs Fj for j = 1, . . . , d.

Consider an intermediate sequence, that is to say a sequence k = k(n) tending to infinity

with n such that k/n→ 0. Denote by X
(j)
k,n the kth order statistics among n realisations of the
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margins X(j). The empirical estimator of ℓ(x) is obtained from replacing F by its empirical

version, t by n/k, and F−1
j (1− t−1xj) for j = 1, . . . , d by its empirical counterpart X

(j)
n−[nt−1xj ],n

,

so that

ℓ̂k(x) =
1

k

n∑

i=1

1{
X

(1)
i ≥X

(1)
n−[kx1]+1,n

or ... or X
(d)
i ≥X

(d)
n−[kxd]+1,n

} . (5.1)

Under suitable conditions, it can be shown that the estimator ℓ̂k(x) has the following asymp-

totic expansion

ℓ̂k(x)− ℓ(x) ≈ Wℓ(x)√
k

+ α(n/k)M(x) ,

where Wℓ is a continuous centered Gaussian process, α is a function that tends to 0 at infinity,

and M is a continuous function. Such notation is in correspondence with the setting described

in Section 3.1. In particular
√
k{ℓ̂k(x) − ℓ(x)} can be approximated in distribution by Wℓ(x),

provided that
√
kα(n/k) tends to 0 as n tends to infinity. This condition imposes a slow rate of

convergence of the estimator ℓ̂k(x), so one would be interested in relaxing this hypothesis. As a

counterpart, as soon as
√
kα(n/k) tends to a non null constant λ, an asymptotic bias appears

and is explicitely given by λM(x). The aim of [M5] is to provide a procedure that reduces

the asymptotic bias. The latter is estimated and then subtracted from the empirical estimator.

This kind of approach has been considered in the univariate setting for the bias correction of

the extreme value index with unknown sign by [28]. Refer also to [139], [64], [80], [27] and [138]

for previous contributions on this univariate problem. Note finally that the case of time series

has been studied in [M8].

Let us introduce the notation R(x) := [x,∞]c. Recall that for w ∈ C the unit cube

associated with the max-norm, λw stands for the image of the Lebesgue measure on R+ under

the mapping s 7→ s/w. As already explained in Section 3.3, ℓ(x) = µ(R(x)) where µ =

ℓ(1)
∫
C λwdν(w). For a positive T , let D([0, T ]d) be the space of real valued functions that are

right-continuous with left-limits.

Proposition 8 ([M5], Proposition 2) Suppose that the thrird order condition is satisfied, so

that (3.3) and (3.4) hold. Therein, assume that the regular variation coefficients ρ and ρ′ of the

functions α and β are negative, the functionM is differentiable and the function N is continuous.

Suppose further that the first order partial derivatives of ℓ (denoted by ∂jℓ for j = 1, . . . , d) exist

and that ∂jℓ is continuous on the set of points {x = (x1, . . . , xd) ∈ Rd
+ : xj > 0}. Assume k is

such that
√
kα(n/k) → ∞ and

√
kα(n/k)β(n/k) → 0. Then as n tends to infinity,

√
k
{
ℓ̂k(x)− ℓ(x)− α(n/k)M(x)

}
d−→ Wℓ(x) , (5.2)

in D([0, T ]d) for every T > 0 where

Wℓ(x) := Gℓ(x)−
d∑

j=1

∂jℓ(x)Gℓ(xj ,0−j) , (5.3)

and where the process Gℓ above is a continuous centered Gaussian process with covariance struc-

ture E[Gℓ(x)Gℓ(y)] = µ(R(x) ∩R(y)).

5.1.2 Bias corrected estimator

Equation (5.2) suggests a natural correction of ℓ̂k as soon as an estimator of α(n/k)M(x) is

available. In order to take advantage of the homogeneity of ℓ, let us introduce a positive scale

parameter a which allows to contract or to dilate the observed points. We denote

ℓ̂k,a(x) := a−1ℓ̂k(ax) , and ∆̂k,a(x) := ℓ̂k,a(x)− ℓ̂k(x) .
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Fixing a such that a−ρ − 1 = 1, a natural estimator of the asymptotic bias of ℓ̂k(x) is thus

∆̂k,2−1/ρ̂(x), where ρ̂ is an estimator of ρ. Recall that the unknown parameter ρ is the regular

variation index of the function α involved in the second order condition (3.3). Let kρ, such that

kρ ≫ k, be an intermediate sequence that represents the number of order statistics used in the

estimator ρ̂. A first asymptotically unbiased estimator of ℓ(x) can be defined as

ℓ̊k,1,kρ(x) := ℓ̂k(x)− ∆̂k,2−1/ρ̂(x) .

The previous construction can be easily generalized by correcting the estimator ℓ̂k,a instead

of ℓ̂k. Indeed, from (5.2) one can see that the asymptotic bias of ℓ̂k,a(x) is α(
n
k )a

−ρM(x). Recall

that when n tends to infinity, one has for any positive real b,

∆̂k,b(x)

α(nk )

P−→ (b−ρ − 1)M(x) .

Thus, fixing b such that b−ρ − 1 = a−ρ will help for canceling the asymptotic bias. It yields the

following asymptotically unbiased estimator of ℓ

ℓ̊k,a,kρ(x) := ℓ̂k,a(x)− ∆̂k,(a−ρ̂+1)−1/ρ̂(x) .

Theorem 9 ([M5], Theorem 3) Assume that the conditions of ([M5], Proposition 2) are fulfilled.

Let kρ be an intermediate sequence such that
√
kρα(n/kρ)(ρ̂ − ρ) converges in distribution.

Suppose also that k is such that k = o(kρ),
√
kα(n/k) → ∞ and

√
kα(n/k)β(n/k) → 0. Under

these assumptions, as n tends to infinity,

√
k
{
ℓ̊k,a,kρ(x)− ℓ(x)

}
d−→ W̊ℓ,a(x) ,

in D([0, T ]d) for every T > 0, where W̊ℓ,a is a continuous centered Gaussian process defined by

W̊ℓ,a(x) := Wℓ(x)− (1 + a−ρ)1/ρWℓ((1 + a−ρ)−1/ρx) + a−1Wℓ(ax)

with covariance E[W̊ℓ,a(x)W̊ℓ,a(y)] = E[Wℓ(x)Wℓ(y)]
(
1 + a−1/2 − (1 + a−ρ)1/(2ρ)

)2
.

5.1.3 In practice

For any model among those presented in Section 3.2, the parameters have been tuned in practice

as follows: n = 1000, a = 0.4, kρ = 99/100× n and ρ estimated using

ρ̂k,a,r(x) :=

(
1− 1

log r
log

∣∣∣∣∣
∆̂k,a(rx)

∆̂k,a(x)

∣∣∣∣∣

)
∧ 0

with a = r = 0.4. Another way to estimate ρ could have been to use the techniques developed

in the univariate setting, as in [M4], and combine the estimates associated with each margin.

Note that the empirical estimator ℓ̂k behaves fairly well in terms of bias for small values of k.

Besides, the bias is efficiently corrected by the estimator ℓ̊k = ℓ̊k,0.4,990. Since the bias almost

vanishes along the range of k, one can think about reducing the variance through an aggregation

in k (via mean or median) of ℓ̊k. This leads to consider the following estimator

ℓ̊agg := Median(ℓ̊k, k = 1, · · · , κn) ,

where n is the sample size and κn is an appropriate fraction of n. If κn satisfies the condition

imposed on kn in ([M5], Theorem 3), then the aggregated estimators ℓ̊agg would inherit the

asymptotic properties of ℓ̊k. Indeed, all the estimators jointly converge, since they are based on
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a single empirical process. The fraction κn is arbitrarily fixed to n− 1. Such a choice is open to

criticism since it does not satisfy the theoretical assumptions mentioned in the previous remark.

But it is motivated here by the fact that the bias happened to be efficiently corrected even for

very large values of k. Note however that such a choice would not be systematically the right

one. In presence of more complex models such as mixtures, κn should not exceed the size of the

subpopulation with heaviest tail.

To illustrate the practical use of the bias correction procedure, the estimation of the proba-

bility P(X > 104 orY > 2× 104) is studied under two specific settings. Sampling bivariate data

from BPII(β) with β = 3, see Section 3.2.1, the margins are assumed to be known on the left

panel of Figure 5.1, whereas they are also estimated on the right. The true value is given by the

black line, the bias corrected and aggregated estimate ℓ̊agg is in red and the collection of original

non-parametric estimates ℓ̂k are in green. More illustrations are provided in [M5].

Figure 5.1: Boxplot (based on 500 replicates) for the estimation of P(X > 104 orY > 2 × 104)

when (X,Y ) is drawn from the BPII(3) model with sample size n = 1000. In red: the bias

corrected and aggregated estimate ℓ̊agg. In green: the collection of original non-parametric

estimates ℓ̂k.

5.2 The empirical tail measures

In this part, the empirical counterpart of the tail superset importance coefficients (see Sec-

tion 4.2.1) and the tail dependograph (from Section 4.2.2) are introduced. These statements

come from [M14]. The Hoeffding–Sobol decomposition of the function ℓ̂k,n is given by

ℓ̂k,n(x) =
∑

A⊆{1,...,d}

ℓ̂k,n;A(x)

where the subfunctions are centered and orthogonal as explained in Section 4.1.1. The frame-

work under study is fairly unusual in global sensitivity analysis since most of the empirical

computation can be done and all the terms have an explicit formula as stated below.

5.2.1 Rank-based expressions

The notation is update here so that i and j are no more used to describe the sample but a pair

in {1, . . . , d}. More precisely, for s = 1, . . . , n and t = 1, . . . , d, set R̃
(t)
s := (n − R

(t)
s + 1)/k
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where R
(t)
s denotes the rank of X

(t)
s among X

(t)
1 , . . . , X

(t)
n . The empirical stdf (5.1) is a tensor-

product function since

ℓ̂k,n(x) =
1

k

n∑

s= 1

(
1−

d∏

t= 1

1{xt < R̃(t)
s }
)

=
n

k
− 1

k

n∑

s= 1

d∏

t= 1

1{xt < R̃(t)
s }. (5.4)

The proof of the next result relies on both (5.4) and ([M14], Lemma 2), that is a technical

preliminary lemma for the the sensitivity analysis of tensor-product functions. The latter lemma

is also very similar to ([38], Proposition 4.6).

Theorem 10 ([M14], Theorem 2) For any non-empty A ⊆ {1, . . . , d}, the associated term in

the decomposition is

ℓ̂k,n;A(x) = −1

k

n∑

s=1

{∏

t∈A

(
1{xt < R̃(t)

s } − λt

(
R̃(t)

s

))∏

t/∈A

λt

(
R̃(t)

s

)}
,

and its variance

σ2A(ℓ̂k,n) =
1

k2

n∑

s,s′=1

∏

t∈A

{
λt

(
R̃(t)

s ∧ R̃(t)
s′

)
− λt

(
R̃(t)

s

)
λt

(
R̃

(t)
s′

)}∏

t/∈A

λt

(
R̃(t)

s

)
λt

(
R̃

(t)
s′

)

is an estimate of σ2A(ℓ). The superset part of the Hoeffding–Sobol decomposition, that contains

the variables {xt, t ∈ A}, is given by

∑

B⊇A
ℓ̂k,n;B(x) = −1

k

n∑

s=1

∏

t∈A

(
1{xt < R̃(t)

s } − λt

(
R̃(t)

s

))∏

t/∈A

1{xt < R̃(t)
s } ,

with variance

Υ2
A(ℓ̂k,n) =

1

k2

n∑

s,s′=1

{∏

t∈A

(
λt

(
R̃(t)

s ∧ R̃(t)
s′

)
− λt

(
R̃(t)

s

)
λt

(
R̃

(t)
s′

))∏

t/∈A

λt

(
R̃(t)

s ∧ R̃(t)
s′

)}
.

Additionally, the constant term in the Hoeffding–Sobol decomposition can be written as

ℓ̂k,n;∅ =
n

k
− 1

k

n∑

s=1

d∏

t=1

λt

(
R̃(t)

s

)
.

By construction, the inequality σ2A(ℓ) ≤ Υ2
A(ℓ) is verified by the empirical estimates whose

expressions are stated above. This can be directly checked by observing that

λt

(
R̃(t)

s

)
λt

(
R̃

(t)
s′

)
= λt

(
R̃(t)

s ∧ R̃(t)
s′

)
λt

(
R̃(t)

s ∨ R̃(t)
s′

)
≤ λt

(
R̃(t)

s ∧ R̃(t)
s′

)
.

Set now R̄
(t)
s := R̃

(t)
s ∧ 1. All preceding expressions can be simplified thanks to the equalities

λt(R̃
(t)
s ) = R̄

(t)
s and λt(R̃

(t)
s ∧R̃(t)

s′ ) = R̄
(t)
s ∧R̄(t)

s′ , when each probability measure λt is the standard

uniform distribution. In particular, the pairwise empirical tail superset importance coefficient is

Υ2
ij(ℓ̂k,n) =

1

k2

n∑

s,s′=1




∏

t∈{i,j}

(
R̄(t)

s ∧ R̄(t)
s′ − R̄(t)

s R̄
(t))
s′

) ∏

t/∈{i,j}

R̄(t)
s ∧ R̄(t)

s′



 .

Since these quantities are tractable, the empirical tail superset importance coefficients are

defined as Υ2
A(ℓ̂k,n) and the empirical tail dependograph is defined as the dependency graph

whose weights are given by the pairwise empirical tail superset importance coefficients Υ2
ij(ℓ̂k,n).
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5.2.2 Consistency and asymptotic distribution

The uniform convergence is valid for any subfunction of the Hoeffding–Sobol decomposition, as

stated in the next result.

Corollary 11 ([M14], Corollary 1) Assume the first order condition so that the limit given

in (3.1) holds uniformly on [0, 1]d. Let k be an intermediate sequence such that as n tends to

infinity, k → ∞ with k = o(n). All the empirical subfunctions defined in ([M14], Theorem 2)

are uniformly consistent

sup
x∈[0,1]d

|ℓ̂k,n;A(x)− ℓA(x)| P−→ 0 .

As a consequence, the empirical variances σ2A(ℓ̂k,n) or Υ
2
A(ℓ̂k,n) are consistent for their equivalent

theoretical forms. In particular, the empirical tail dependograph is consistent.

The asymptotic distributional expansion (5.3) is inherited by ℓ̂k,n;A and that of the empirical

tail superset importance coefficients are also derived in ([M14], Proposition 3). More precisely,

assume the second order condition is satisfied, so that (3.3) holds. Assume k is such that√
kα(n/k) → λ.

• If Υ2
A(ℓ) > 0 then

√
k
(
Υ2

A(ℓ̂k,n)−Υ2
A(ℓ)

)
d−→ 1

2|A|−1

∫

[0,1]d+|A|
DxA

zA ℓ(·, z−A)D
xA
zA {Wℓ + λM}(·, z−A)dxAdz .

• Whereas if Υ2
A(ℓ) = 0 then kΥ2

A(ℓ̂k,n) → Υ2
A(Wℓ + λM).

The previous lines can be used to test the asymptotic independence between two variables

or groups of variables. The illustrations for the new theoretical and empirical tail measures have

been extracted from the text and placed at the end of each chapter. This has also been done in

the current chapter, highlighting the use of the satdad package [M11].

5.3 Testing copula-based dependence hypotheses

This part refers back to the problem presented in Section 4.4.3. Recall that a general writing

for several copula-based dependence hypotheses has been identified as (H)M∅(C) = 0 for M∅
and more generally MA defined as the composition of a collection of operators Pi chosen in

accordance with the meaning of (H). See Equation (4.5). Start from a copula estimator Cn, one

might think in one of the four examples listed in the middle of the next part. It is natural to

construct the testing process as (
√
n(Cn −M∅(Cn))(x),x ∈ [0, 1]d) when considering (H). This

is precisely what is done in the literature. Nevertheless, since (H) implies any sub-hypothesis

(HA)MA(C) = 0, as stated in Section 4.4.3, another choice is possible.

5.3.1 Empirical testing process

Consider X1, . . . ,Xn a sample of d-variate observations of X where Xj stands for (Xj1, . . . , Xjd).

Set Uj = (F1(Xj1), . . . , Fd(Xjd)) for j ∈ {1, . . . , n} where, for i = 1, . . . , d, Fi denotes the true

cumulative function of the ith margin. The empirical cumulative distribution function (cdf)

based on U1, . . . ,Un is denoted by Gn and we set Gn =
√
n(Gn − C).

Introduce D∅,n :=
√
n(Cn−M∅(Cn)) and DA,n :=

√
nMA(Cn). We study in [M12] the concate-

nated empirical testing process (
D∅,n, {DA,n}A∈P⋆

d

)
.
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We assume regular conditions, so that the empirical process Gn converges weakly in ℓ∞([0, 1]d)

to a tight centered Gaussian process GC concentrated on

C0 =
{
h ∈ C([0, 1]d) such thath(1) = 0 and

h(x) = 0 if some components of x are equal to 0} .
Let us also introduce

WC(x) = GC(x)−
d∑

i=1

∂Ci(x)GC(xi,1−i), x ∈ [0, 1]d . (5.5)

Theorem 12 ([M12], Theorem 3.1) Consider (H)C = M∅(C), depending through (4.5) on a

set of operators P1, . . . ,Pd. It is assumed, at least when (H) holds true, that

• {P1, . . . ,Pd} are commuting and idempotent maps.

• The associated maps {MA}A∈Pd
are Hadamard-differentiable at C tangentially to C0.

Consider an empirical copula Cn such that, as n tends to infinity, the empirical copula process√
n(Cn − C) converges weakly in ℓ∞([0, 1]d) to WC given in (5.5).

Then, under (H) and as n tends to infinity, the joint empirical processes converge weakly in

{ℓ∞([0, 1]d)}2d as following
(
D∅,n, {DA,n}A∈P⋆

d

)
w
⇝

n→∞

(
WC −M′

∅(C;WC),
{
M′

A(C;WC)
}
A∈P⋆

d

)
. (5.6)

The last lines of ([112], Section 2) list carefully the conditions ensuring the required conver-

gence of the empirical copula process for the following list of well-known empirical copulas

- the non-parametric estimators

C̃n(x) =
1

n

n∑

j=1

d∏

i=1

1{F̂i,n(Xji)≤xi} and Ĉn(x) =
1

n

n∑

j=1

d∏

i=1

1{Rji,n≤nxi} ,

where F̂i,n is the ith marginal empirical cdf and Rji,n is the rank of Xji among X1i, . . . , Xni,

- the empirical checkerboard copula

C#
n (x) =

1

n

n∑

j=1

d∏

i=1

min{max{nxi −Rji,n + 1, 0}, 1} ,

- and the empirical beta copula,

Cβ
n (x) =

1

n

n∑

j=1

d∏

i=1

Fn,Rji,n(xi) ,

where Fn,r stands for the pdf of the Beta distribution B(r, n+ 1− r).

Before applying our results with another copula estimator than those listed above, one should

first check that the associated empirical copula process satisfies the required convergence. For

instance, in the case of the check-min-erboard estimators of C studied in [125] and [40], only

part of the question is answered by [112].

The limiting covariance structures in (5.6) of the processes D∅ := WC − M′
∅(C;WC) and

DA := M′
A(C;WC) depend on the unknown copula C. For this reason it is not directly applicable

for statistical testing. Multiplier bootstrap (see [154], [146], [20], [155], [24], [111], [15]) and

subsampling (see [142], [14], [11], [12], [112]) have been introduced in the literature to reproduce

independently the asymptotic behavior of such processes. They are extended to the present

setting in ([M12], Theorem 3.2) for subsampling, ([M12], Theorem 3.3) for weighted subsampling

and ([M12], Theorem 3.4) for bootstrap based on multipliers. For other references on empirical

copula processes, see also [59], [72], [76], [60], [17], [26], [22], [25], [70], [157], [105] and [23].
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5.3.2 New test statistics

Set Ûj·,n = (Rj1,n, . . . , Rjd,n)/n. The Cramér-von Mises statistics associated with subset A and

weight function q is defined by

SA,n,q =
1

n

n∑

j=1

{
DA,n(Ûj·,n)

q(Ûj·,n)

}2

and its associated limit as

SA,q =

∫

[0,1]d

{
DA(x)

q(x)

}2

dC(x) .

Let w = {wA}A∈Pd
be a vector of positive weights. The latter reflects the importance we put

in the test (H)C = M∅(C) through w∅, or in the test (HA) MA(C) = 0 through wA. We

introduce the combined Cramér-von Mises statistics and associated limits by

Sw,n,q =
∑

A∈Pd

wASA,n,q and Sw,q =
∑

A∈Pd

wASA,q . (5.7)

Corollary 13 ([M12], Corollary 4.1 and 4.2) Let I1,n and I2,n be two integers representing

symbolically a version (from bootstrap or multipliers) of the original sample.

(i) Under the assumptions of ([M12], Theorem 3.1), the combined Cramér-von Mises statistics

Sw,n,1 converges in distribution to Sw,1.

(ii) The assumptions of ([M12], Theorem 3.2) allow to define S
[I1,n]
w,n,1 and S

[I2,n]
w,n,1 such that the

random vector
(
Sw,n,1, S

[I1,n]
w,n,1, S

[I2,n]
w,n,1

)
converges in distribution to (Sw,1,S

[1]
w,1,S

[2]
w,1) where the lat-

ter is the concatenation of independent copies.

(iii) The assumptions of ([M12], Theorem 3.3) allow to define S
[I1,n]
w,n,q and S

[I2,n]
w,n,q such that the

random vector
(
Sw,n,q, S

[I1,n]
w,n,q, S

[I2,n]
w,n,q

)
converges in distribution to (Sw,q, S

[1]
w,q,S[2]w,q) where the lat-

ter is the concatenation of independent copies.

(iv) The assumptions of ([M12], Theorem 3.4) allow to define Ŝ
(I1,n)
w,n,1 and Ŝ

(I2,n)
w,n,1 such that the

random vector
(
Ŝw,n,1, Ŝ

(I1,n)
w,n,1 , Ŝ

(I2,n)
w,n,1

)
converges in distribution to (Sw,1, S

[1]
w,1, S

[2]
w,1) where the

latter is the concatenation of independent copies.

Similar results hold true for more standard Cramér-von Mises combined statistics and Kol-

mogorov combined statistics.

5.3.3 Illustration

Consider a 12-variate random vector {X1, . . . , X4}, {X5, . . . , X8} and {X9, . . . , X12} that comes

from the Normal copula. Let us focus on the test of (H) the block are independent against

its negation (K). The correlation matrix controls the departure from the null hypothesis (H)

through the value ρinter. The latter is zero under (H). The statistics Wn, Tn and In are those

presented in [110] and available in the routine multIndepTest of the R-package copula [93]. The

statistics Sw,n,1, defined by (5.7), are evaluated for several weights w:

• w1 = (1, 0, 0, 0, 0, 0, 0, 0) that only measures the left hand term of the decomposition,

• w2 = (1, 0, 0, 0, 1, 1, 1, 1) that combines the left hand term of the decomposition with the

right hand terms of order 2 and 3 (note that the right hand terms associated with singletons

all vanish),

• w3 = (0, 0, 0, 0, 1, 1, 1, 1) that only combines the non-null right hand terms of the decom-

position,
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ρinter
0.00 0.025 0.05 0.075 0.10 0.125 0.15

T
e
st

st
a
ti
st
ic
s Wn 0.060 0.146 0.332 0.540 0.770 0.901 0.982

Tn 0.047 0.110 0.234 0.404 0.584 0.766 0.932

In 0.054 0.128 0.287 0.503 0.711 0.854 0.971

Sw1,n,1 0.049 0.176 0.376 0.673 0.875 0.964 0.994

Sw2,n,1 0.046 0.181 0.388 0.691 0.883 0.971 0.995

Sw3,n,1 0.041 0.124 0.311 0.572 0.819 0.953 0.992

Sw4,n,1 0.046 0.173 0.400 0.683 0.878 0.969 0.994

Table 5.1: Percentage of rejection of (H) when n = 200.

• w4 = (8.253373, 0, 0, 0, 2.373714, 2.344580, 2.35670, 1.989524) that combines left and right

hand terms proportionally to some variances. It is an empirical choice where each wA is

proportional to the estimate of var(SA,n,1) obtained by block bootstrapping.

The numerical illustrations are based on the non-parametric estimator Ĉn for the weight

q = 1. The results of Table 5.1 show that the combined statistics Sw,n,1 improve the power of

the test procedure. It could be interesting to compare also the performance of the combined

statistics Sw,n,q for other weights q and other estimates of C.

The next study needs some preliminary remarks. Goodness-of-fit tests arise when C is un-

known but assumed to belong to a particular class (H̃)C ∈ {Cθ, θ ∈ Θ} where Θ is an open

subset of RD for some integer D ≥ 1. Natural tests consist in measuring a “distance” between

the empirical copula and an estimate of C obtained under (H̃). In the theoretical development,

the details for the inference on the parameter have been skept and the testing part of the proce-

dure only has been analyzed. The null hypothesis becomes (H)C = Cθ0 where the reader should

think of Cθ0 as Cθ̂n
, where θ̂n estimates θ in Θ. Of course, convergence of the practical procedure

with respect to (H̃) needs appropriate regularity conditions on both the parametric family and

the sequence of estimators θ̂n. We refer to [75] for a review and discussion on combining both

testing steps, and more recently to [29].

We thus turn to the Goodness-of-Fit tests (H)C = Cφ for φ being the Clayton or the Gumbel

generator in a 3-dimensional setting. These classes will both be used as the sampling distri-

bution or as the family being tested. As already mentioned, even if the theoretical results

have been obtained for a fixed φ, the numerical illustration here goes further since it estimates

first φθ̂. To generate the original samples, three values of Kendall’s τ are chosen: τ = .1,

τ = .2 and τ = .3. Test statistics Sw,n,1 are given by (5.7). The results are provided in Ta-

ble 5.2 for n = 100. The first lines are dedicated to the test (H3) when φ is the Clayton

copula. Similarly, Gumbel copula is tested in the last lines of the table. The parameter as-

sociated with the generator φ is estimated at each step as the mean of empirical Kendall’s τ .

The parametric bootstrap described in ([M12], Algorithm 2) with nboot = 200 is used to com-

pute the p-value. The rejection rates are estimated through nrep = 500 repetitions of each

experiment. Two characteristics are of interest: the empirical level might be close to the nom-

inal level, arbitrarily fixed at 0.05, and the empirical power. We also add another procedure

in Table 5.2. The line gofCopula corresponds to the results associated with the command

gofCopula(CopulTest, rCopula(n, CopulSimu), estim.method = "itau").

Even if the goal of [M12] is not really to improve a methodology but to transform already

known tools in particular cases of more general statements, one can take advantage in analyzing

the functional decomposition associated with the null hypothesis in order to take into account

subhypotheses and derive powerful weighted test statistics, as illustrated in Tables 5.1 and 5.2.
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Simulated copulas

Clayton Gumbel

τ = .1 τ = .2 τ = .3 τ = .1 τ = .2 τ = .3

Clayton Sw1,n,1 0.056 0.044 0.048 0.364 0.690 0.934

T
e
st
e
d

c
o
p
u
la
s Sw2,n,1 0.052 0.044 0.038 0.294 0.674 0.924

Sw3,n,1 0.044 0.060 0.046 0.160 0.494 0.852

gofCopula 0.050 0.044 0.044 0.214 0.670 0.924

Gumbel Sw1,n,1 0.282 0.720 0.922 0.070 0.048 0.056

Sw2,n,1 0.306 0.766 0.948 0.036 0.042 0.052

Sw3,n,1 0.254 0.710 0.960 0.024 0.042 0.048

gofCopula 0.288 0.716 0.930 0.030 0.062 0.054

Table 5.2: Rejection rates of the null hypothesis based on sample size n = 100, parametric

bootstrap size nboot = 200 and number of repetitions of the experiment nrep = 500.

Concluding remarks

Identifying and modeling dependencies with copulas remain an important topic, which has

become very popular over the last decades since it has been applied in almost every discipline.

[M12] unifies the treatment of several copula-based tests of the structure of dependence, as [43],

[74], [73], [110], [111] among others. The solution to dip them in the functional decomposition

context of [117] (and its recent version [M15]) in order to reveal a common pattern is successful

both theoretically and empirically. In a tail dependence context, the empirical study of the stdf

has been handled in [M5] in order to cancel the asymptotic bias and in [M14] to provide a finite

overview of its support. Once again, their implementation on data lead to really satisfactory

results. As with the previous two chapters, this one ends with an illustration from the satdad

R-package [M11]. Using simulations in the domain of attraction (with an Archimax sampling)

and in the attractor (with a multivariate Fréchet sampling), the tail dependograph is estimated

and plotted.
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Consider the 12-dimensional dependence structure generated at the end of Chapter 3 as well as the

two samples of multivariate extreme value random vectors and Archimax random vectors. Recall

the theoretical Inverse extremal coefficient graph and the theoretical tail dependograph obtained

at the end of Chapter 4. We now provide their empirical counteparts on both samples.

> graphsEmp(sample = X_fr12, k = 100, which = "iecgraph")

> graphsEmp(sample = X_fr12, k = 100)

Third illustration of [M11]



> graphsEmp(sample = X_archimax12, k = 100, which = "iecgraph")

> graphsEmp(sample = X_archimax12, k = 100)

The empirical tail dependograph still nicely separates the support into two groups. Although these

two groups are less dissociated in the empirical inverse extremal coefficients graph, it wouldn’t be

complicated to obtain an empirical threshold so that values smaller than it are set to 0 and the

two groups are reconstructed. One could say that the empirical inverse extremal coefficients graph

needs some (easy) post-cleaning.

Third illustration of [M11]



Summary and perspectives

Summary My research work lies at the interface of extreme value theory, sensitivity analysis,

and non-parametric inference. The links between the first two themes was not obvious but their

combination has proved fruitful. The aim of extreme value theory is to propose probabilis-

tic models that allow for extrapolation of a phenomenon to rarely observed values. It allows

goodness-of-fit tests, statistical evaluations, and comparison of the efficiency of different proce-

dures. Finally, applying it enables us to improve our understanding of various environmental or

financial phenomena, for example.

At the heart of my habilitation thesis is the stable tail dependence function, which provides

a complete characterization of the asymptotic dependence structure. Its study involves very

interesting mathematical concepts, such as multivariate monotonicity, homogeneity, or spectral

representation. Furthermore, it becomes additive on asymptotically independent components.

This search for additivity is also explored through superset importance indices in global sensi-

tivity analysis. In particular, the Hoeffding-Sobol decomposition has allowed me to introduce

new concepts such as tail superset importance coefficients and the tail dependograph. More

generally, the analysis of functional decompositions using commutative and idempotent oper-

ators yield a better understanding of the similarities and differences between Hoeffding-Sobol

and Möbius decompositions. This has led to the emergence of a general framework for analyzing

various statistical dependence hypotheses.

Perspectives Regarding the new family of indices resulting from this, namely the tail superset

importance coefficients, my goal was to hierarchize the strength of dependence and proceed with

dimension reduction. However, the fact that there is no longer a probabilistic interpretation,

unlike what extremal coefficients offer, contributes to this difficulty. The only way to proceed is

to first reconstruct the stdf. A less difficult project, still related to this collection of coefficients,

is the following: An ongoing work, not presented in this text, allows me to produce a new test

of asymptotic independence. Its performance could be compared to the test associated with the

tail superset importance coefficients.

As for the work that analyzes dependence, there is a theoretical passage to be filled in when it

comes to the case of goodness-of-fit. Work remains to be done and several choices are possible.

Apart from the specific case of gof tests, another natural question that has not really been

addressed but only measured on examples is the optimal choice of weights that contribute to

the definition of the new test statistics, and reflect the importance we put respectively on the

global hypothesis and the sub hypotheses.

Over time, another objective is to improve and enrich my package by adding elements from

past collaborations, as well as elements from my future publications.

If I extract myself from the text I presented and think about the path taken to construct

the coming years, I remember three things. My participation in research projects has allowed

me to study concrete problems. This is undoubtedly the greatest challenge of my work: taking

into account all the specificities and complications of real data. It is time-consuming but very

informative. Attending seminars and conferences, even (or especially) when the field is not truly

our own, can sometimes prove fruitful. Finally, the most important thing in my opinion is to
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continue ongoing collaborations and start new ones. To conclude, I would like to mention that

supervising PhD or master’s students involves regular questioning of our research project. This

work of transmission and support is at the heart of our missions as teacher-researchers. I hope

that the future holds some opportunities for me and that, with this habilitation, I will be better

equipped to contribute.
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[125] P. Mikusiński and M. D. Taylor. “Some approximations of n-copulas”. In: Metrika 72.3

(2010), pp. 385–414.

[126] R. Modarres and J. P. Nolan. “A method for simulating stable random vectors”. In:

Comput. Statist. 9.1 (1994), pp. 11–19.

[127] T. Muehlenstaedt, O. Roustant, L. Carraro, and S. Kuhnt. “Data-driven Kriging

models based on FANOVA-decomposition”. In: Statistics and Computing 22.3 (2012),

pp. 723–738.

[128] J. P. Nolan. “Metrics for multivariate stable distributions”. In: Banach Center Publi-

cations 90 (2010), pp. 83–102.

[129] J. P. Nolan. Multivariate Stable Distributions - Models for Heavy Tailed Data. In

progress. New York: Springer Verlag, 2023.

[130] J. P. Nolan. mvmesh: Multivariate Meshes and Histograms in Arbitrary Dimensions.

2020. url: https://CRAN.R-project.org/package=mvmesh.

[131] J. P. Nolan. SimplicialCubature: Integration of Functions Over Simplices. 2021. url:

https://cran.r-project.org/web/packages/SimplicialCubature/.

[132] J.P. Nolan. Univariate Stable Distributions: Models for Heavy Tailed Data. Springer

Series in Operations Research and Financial Engineering. Springer International Pub-

lishing, 2020.
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Non parametric statistics and global sensitivity analysis tools
in the study of (tail) dependence

Abstract:
My research work lies at the interface of extreme value theory, sensitivity analysis, and non-parametric inference.
The links between the first two themes are not obvious but their combination has proved fruitful. The aim of
extreme value theory is to propose probabilistic models that allow for extrapolation of a phenomenon to rarely
observed values. It allows goodness-of-fit tests, statistical evaluations, and comparison of the efficiency of different
procedures. Finally, applying it enables us to improve our understanding of various environmental or financial
phenomena, for example.
At the heart of my habilitation thesis is the stable tail dependence function, which provides a complete characteri-
zation of the asymptotic dependence structure. Its study involves very interesting mathematical concepts, such as
multivariate monotonicity, homogeneity, or spectral representation. Furthermore, it becomes additive on asymp-
totically independent components. This search for additivity is also explored through superset importance indices
in global sensitivity analysis. In particular, the Hoeffding-Sobol decomposition has allowed me to introduce new
concepts such as tail superset importance coefficients and the tail dependograph. More generally, the analysis
of functional decompositions using commutative and idempotent operators yield a better understanding of the
similarities and differences between Hoeffding-Sobol and Möbius decompositions. This has led to the emergence
of a general framework for analyzing various statistical dependence hypotheses.

Statistique non paramétrique et outils de l’analyse de sensibilité globale
pour l’étude de la dépendance (asymptotique)

Résumé:
Mes travaux de recherche se situent à l’interface de la théorie des valeurs extrêmes, de l’analyse de sensibilité et de
l’inférence non paramétrique. Les liens entre les deux premiers thèmes ne sont pas évidents mais leur combinaison
s’est avérée féconde. La théorie des valeurs extrêmes vise à proposer des modèles probabilistes permettant
l’extrapolation d’un phénomène vers des valeurs rarement observées. Elle permet des tests d’adéquation, des
évaluations statistiques et la comparaison de l’efficacité de différentes procédures. En l’appliquant, elle améliore
enfin notre compréhension de divers phénomènes environnementaux ou financiers, par exemple.
Au cœur de mon mémoire d’habilitation à diriger des recherches se trouve la stable tail dependence function, qui
fournit une caractérisation complète de la structure de dépendance asymptotique. Son étude implique des concepts
mathématiques très intéressants, tels que la monotonicité multivariée, l’homogénéité ou la représentation spectrale.
De plus, elle devient additive sur les composantes asymptotiquement indépendantes. Cette recherche d’additivité
est également explorée à travers les indices d’importance superset en analyse de sensibilité globale. En particulier,
la décomposition de Hoeffding-Sobol m’a permis d’introduire de nouveaux concepts tels que les tail superset
importance coefficients et le tail dependograph. Plus généralement, l’analyse de décompositions fonctionnelles
à partir d’opérateurs commutatifs et idempotents permet une meilleure compréhension des similitudes et des
différences entre les décompositions de Hoeffding-Sobol et de Möbius. Cela a conduit à l’émergence d’un cadre
général pour l’analyse de diverses hypothèses statistiques de dépendance.
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