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Abstract. Diffusion processes capture information about the geometry
of an object such as its curvature, symmetries and particular points.
The evolution of the diffusion is governed by the Laplace-Beltrami
operator which presides to the diffusion on the manifold. In this paper,
we define a new discrete adaptive Laplacian for digital objects, gener-
alizing the operator defined on meshes. We study its eigenvalues and
eigenvectors recovering interesting geometrical informations. We discuss
its convergence towards the usual Laplacian operator especially on lat-
tice of diamonds. We extend this definition to 3D shapes. Finally we use
this Laplacian in classical but adaptive denoising of pictures preserving
zones of interest like thin structures.

1 Introduction

Finding particular points on a discrete set is one of the most common problems
in geometry processing applications. A particular example is to find a matching
between pairs of shapes [12] and whether there exist isometric transformations
between them. Another application is to find particular points that resist to a
local deformation of the shape [14].

A large amount of work has been done in developing signature of a set de-
fined by a digital mesh. Heat kernel or random walks have been widely used in
image processing, for example lately by Sun, Ovsjanikov and Guibas [15] and
Gebal, Bærentzen, Aanæs and Larsen [5] in shape analysis.

In [15], a multi-scale signature was proposed, based on heat diffusion in or-
der to detect repeated structure or information about the neighborhoods of a
given points. This approach is connected to isometric matchings between pairs
of shapes [13]. The heat kernel is also an isometric invariant, therefore studying
it on each manifold, allows to compute a best matching map between the two
shapes. In [1], a generalisation of diffusion geometry approach is proposed based
on spectral distance.

The present article adapts to the digital geometry framework the properties
of the Laplace operator on meshes. The main works in geometry diffusion [15,
5, 13, 1] are based on meshes shapes. We define as in those previous works a



diffusion kernel on objects which are not meshes but digital objects made of a
subset of Z2 (a set of pixels) or Z3 (a set of voxels).

In [4] an auto-adaptive digital process which captures information about the
neighborhood of a point in a shape is introduced. They set up walkers on a digital
object, and we observe the possibilities for them to walk along the discrete set.
In this way, we compute weights corresponding to the time spent by a walker on
each point of the shape.

This approach can be extended to 3 dimensional sets. We propose in this pa-
per to study the relevance of this operator through the study of its eigenfunctions.
The classical eigenfunctions of the Laplace-Beltrami operator are widely used in
the mesh community to recover geometrical information about shapes [11, 7]. For
example in [7], Bruno Levy computes an approximation of these eigenfunctions
to understand the geometry of manifolds.

This paper is organized as follows. First in Sec. 2, we describe an adaptive
digital diffusion process on voxels and its associated Laplace operator. We extend
this process on lattice of diamonds and we prove the convergence toward the
usual Laplace operator in Prop. 5. Then in Sec. 3, we present two particular
cases of use of this Laplacian, widely studied in the mesh community, in order
to show its relevance. Finally in Sec. 4, we give another well known use of the
diffusion as a classical convolution mask in gray-level images, to smooth and
denoise. But the mask we use is our adaptive Laplacian and we give examples
demonstrating that it preserves thin structures.

2 Diffusion Processes

2.1 Heat Diffusion

The heat kernel kt on a manifold M maps a pair of points (x, y) ∈M ×M to a
positive real number kt(x, y) which describes the transfer of heat from y to x in
time t. Starting from a (real) temperature distribution T onM , the temperature
after a time t at a point x is given by a convolution of the initial distribution
with the diffusion kernel:

Ht f(x) =
∫
M

f(y) kt(x, y) dy.

The heat equation is driven by the diffusion process, the evolution of the
temperature in time is governed by the (spatial) Laplace-Beltrami operator
∆M : ∂f(t,x)

∂t = −∆Mf(t, x) which presides to the diffusion on the manifold, just
as random walks.

For a compact M , the heat kernel has the following eigen-decomposition:

kt(x, y) =
∑
y∈M

e−tλiφi(x)φi(y)

where λi and φi are the i− th eigenvalue and the i− th eigenfunction of the
Laplace-Beltrami operator, respectively.



The heat kernel kt(x, y), lately used by Sun, Ovsjanikov and Guibas [15],
yields information about the geometry of the manifold. We have proposed in [4]
a digital diffusion process which is adaptive to the geometry of a digital object.
We defined a diffusion kernel similar to the continuous one just described and
in this article we give examples of its use on 2D and 3D object.

2.2 Auto-adaptive Process

Definition 1 (Adaptive Markov Chain).
Let Σ ⊂ Zn be a binary digital set, a sets of voxels. We define on Σ the discrete
time Markov chain whose states are voxels, and whose transition between two
adjacent voxels is constrained by:

– Probability 1
2n to move from the center of the voxels to one of its corners,

– Equiprobable repartition of the walkers from a corner to its incident voxels.

To illustrate the definition we propose an example on a 2D set (Fig. 1). We
set up 24 walkers on the gray pixel to get an integer number of walkers in each
pixel.
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(c) Final mask after 1
step.

Fig. 1: Diffusion on an irregular set.

Remark 2. This standard choice amounts to walkers with no memory and only
local knowledge, the celebrated short-sighted drunken man. We note this process
Ams for a walker starting at any given point, with m the number of iterations of
the process.

The 1-step Markov process transition matrix As is simply a weighted version
of the adjacency matrix of the digital objectM. We note u0 the distribution of
walkers on the digital object at time 0. We call Xm the Markov chain defined
by Def. 1 iterated m times and u(m,x) the number of walkers at x after m
steps starting from u0 that is the expectation as a convolution of the initial
distribution with the Markov kernel:

u(m, x) = Exu0(Xm) =
∑
y∈M

u0(y)Ams (x, y).



The evolution of this expectation follows

u(m+ 1, x) − u(m, x)
2 =

∑
y∈M

u0(y) (Ams (As − Id)) (1)

= (As − Id)u(m, x) (2)

Analogous to the case of the continuous heat diffusion, the diffusion equation
reads

∆u(m, x)
∆m

= (As − Id)u(m, x)

We therefore define the discrete Laplacian ∆M := − (As − Id)

Property 3. On Z2, the diffusion leads to the Gaussian binomial masksAms (x, y) =(
m
|x−y|

)
This property was proven in [4]. The convergence of the Laplacian to the

continuous one on the square lattice is a particular case of Prop. 5 on a lattice
of diamonds.

2.3 Generalization to Lattice of Diamonds

In the previous section we defined a diffusion model on square pixels, with di-
agonal ratio equal to one. This model can be easily extended to quadrilaterals
with a diagonal ratio equal to a more general value ρ, leading to a generalization
of (Def 1) and similar convergence results.

Definition 4. Let Σ be a sets of quadrilaterals of horizontal diagonal ratio ρ,
that is to say a lattice of diamonds. We define on Σ the discrete time Markov
chain where the states are the quadrilaterals, and the transition between two
quadrilaterals is constrained by:

– Probability ρ
2ρ+ 2

ρ

to move from the center of a pixel to its two horizontal

corners and
1
ρ

2ρ+ 2
ρ

to the vertical ones.
– Repartition on the incident quadrilaterals weighted by the distance, ρ or 1

from the corner to the center of the neighbor.

Proposition 5. Let Σ be a set of quadrilateral of horizontal diagonal ratio ρ.
Then ∆M converges toward the usual Laplace operator.

On irregular shapes, uneven adjacency between voxels produces irregular
diffusion due to curvature. A similar convergence on irregular lattices has been
proved in [10] on discrete conformal structures. We foresee that a similar proof
will be possible for the current definition of the Laplacian and it will be the
subject of future work. Moreover in the next section, we propose examples to
show the relevance of the operator on irregular structures, to recover information
about the geometry of shapes.



3 Application of The Laplace Operator on 2D and 3D
discrete objects

In this section we propose an application of the discrete Laplacian on 2D and
3D discrete objects. In [7], Bruno Levy uses the eigenfunctions of the Laplace-
Beltrami operator ∆ = ∂2/∂x2 + ∂2/∂y2 of the considered object to understand
its geometry or its topology. These eigenvectors are proven to be noise resistant
and a cut-off in frequency provides interesting unsupervised segmentations. A
similar idea is proposed in [15], with the heat kernel signature (HKS) of a digital
shape. HKS is a natural multi-scale characterization of the neighborhood of a
given point x. We construct a similar signature for pixel or voxel discrete shapes
and show on examples that they capture information of the global geometry:
given the spectrum sp(∆) = {λi} and eigenvectors ∆φi = λi φi, we construct
the Heat Kernel Signature

km(x, y) =
∑
y∈M

e−mλiφi(x)φi(y)

3.1 Segmentation

Eigenvectors of the Laplacian, because of their interpretation as vibration modes
and robustness to noise, have been widely used and documented in the mesh
community for unsupervised clustering of protrusions and limbs segmentation
[7, 9]. The first eigenvectors, associated with highest eigenvalues, correspond to
different “breathing” or “vibrating” modes, so that positive and negative value
zones segment the object in meaningful regions. We give some examples (see
Fig. 2c) of this use in the digital setup.

3.2 Heat Kernel Signature

We propose in this subsection an application of the eigenvectors of the Laplacian
previously defined, as a digital signature of each point. This signature called HKS
[15], has been applied with a version of the Laplacian operator on Meshes. We
propose as an example of application the same operator based on our operator
on voxels in Fig. 3.

4 Gray Level Diffusion: Application to Denoising

An application of this discrete version of the Laplacian is image denoising. The
search for efficient image denoising algorithms is still active and related works on
the subject is important. The main classical linear filtering used is the Gaussian
kernel proposed in [8]. This kernel is optimal in regular parts but edges are
blurred. Several methods are introduced in [2], to limit this blurring effect. An
anisotropic weighted average to reduce the intensity of noise is proposed in [3].



(a) First Eigenvectors
on the octopus

(b) Second Eigenvec-
tor on the octopus

(c) Fourth eigenvector
on the octopus

(d) Second Eigenvec-
tors on the 3D hand

(e) Third Eigenvector
on the 3D hand

(f) Third eigenvector
of a 3D star

Fig. 2: Eigenvectors of the Laplacian on an octopus. The eigenvectors can be
interpreted as vibration modes, each one of the first eigenvectors being associated
with different tentacles of the octopus. A similar analysis could be done on 3D
digital object, like a hand or digital star.

(a) Heat Kernel signature (HKS)
computed on digital hand.

(b) Other view of the hand with HKS.

Fig. 3: On this figure, we have computed the HKS according to our definition of
the Laplace operator. In blue the point of maximal curvature have been found
efficiently, in red the point with low curvature. We map the hand with the values
of the HKS for a given time m.



They are based on extrinsic Gaussian filters while ours is adaptive to the digital
object, converging to a Gaussian filter in the isotropic case:

We propose to define a Discrete Time Markov Chain on a gray-level image.
The idea is to let a walker wander on a discrete image with a gray level intensity
that represents a hilly landscape. We use the previous pixel to pixel transition,
for different thresholds, weighted by the gray level (understood as an interest
map) of adjacent pixels:

We consider high gray values as high diffusion directions, that is to say the
walker prefers to climb up on the highest value of its neighborhood.

Let {g1, g2, . . . g8} the sorted gray intensity values of the 8-neighbors of a
given pixel pi with g1 ≤ g2 ≤ . . . ≤ g8. We note p(j)

i the j-th neighbors of pi
with the gray level value gj .

We construct iteratively the convolution mask for the 8-neighborhood of pi.
At each iteration we look for the neighbors of pi above the current threshold, we
compute its diffusion mask, then we multiply the transition probability by the
smallest gray intensity in the set and we delete this pixels from the neighbor-
hoods, updating the threshold to the next lowest value. We continue thinning
the neighborhood until there are no more pixels. If all the values are equal, we
only do one iteration. If all the value are different we must build eight different
masks among the 28 possible. We note θi the number of gray intensity values
that are different. We note A(k)

s the k-th matrix of transition of the set (this is
the transition matrix where at least k neighbors have been deleted). Then the

final values of the masque is given by: Mask(i) =
θi∑
k=1

A(k)
s (i)gk/

θi∑
k=1

gk

Property 6 (Regular Gray Mask).
Let Σ be a gray level set of pixels. If the {g0, g1, g2, . . . g8} are all equal (with
g0 the gray value of pi), the the final mask is a classical Gaussian mask.

Proof. We have all the gray intensity values that are equal, then θi = 1. Then
the Mask centered on the pixel pi is only:

Mask(i) = As(i)g0

g0

by Property 3, Mask(i) is a Gaussian mask.
ut

The aim of this construction is to build convolution masks that are adaptive
to gray level images. But on regular colors intensities we want to convolve a pixel
with a mask that only depends on its distance to neighbors (Property 6)

The final convolution mask can be also seen as the 1 step transition probabil-
ity of a Discrete Time Markov Chain starting from the center to the neighbors.

This diffusion allows a walker wandering on an image to diffuse faster in
the highest gray values of the neighborhood. This is useful when the user, or
statistical analysis, provides an interval of gray values selecting zones of the
object which are likely to be of interest, or when an interest function, such as the



(a) Original image of
Lena with Gaussian
noise

(b) Classical convolu-
tion with a Gaussian
mask.

(c) Convolution with
the gray-level adaptive
mask.

Fig. 4: An example of application of the adaptive gray masks of convolution
on a noisy version of Lena. We compare the noise reduction with the classical
Gaussian mask. Clearly the blurred effect is less important in the convolution
with our adaptive mask, contours are highlighted by a sharper contrast and
reduced noise.

contrast (see Fig. 5g) is given as a gray level map of interest. We then compute
the adaptive convolution mask for this interest level “picture” and apply it to
the original image. This way, zones of similar interest (whether high or low) are
smoothed out as with a regular (adaptive) Gaussian mask, but zones of different
interest levels are not as mixed, the diffusion taking place mostly along the
level sets of constant interest, therefore preserving, or even enhancing the thin
structures.

Some results are shown in Fig. 4a, Fig. 5a and Fig. 5d. Those images are
noisy and we chose a particular information to preserve. In the case of the pea-
cock, we want to preserve the thin feathers of the bird, therefore selecting by
statistical analysis, the range of intensities associated with the feathers as higher
interest zones. A Gaussian mask would blur the feathers while our adaptive mask
preserves them. For Lena, in Fig. 4c, we applied the mask of the noisy image on
itself, and the result is an image which is less blurred with a reduction of the
noise. We can compare the final result with an application of a Gaussian mask
Fig. 4b

5 Conclusion

We have described a diffusion process on a digital object made of pixels or vox-
els, defined as a random walk on adjacent cells, generalizing diffusion on meshes.
This process allows us to define a new discrete adaptive Laplace operator. We
proved that this operator converges toward the usual continuous Laplace oper-
ator on diamond lattices. As in recent works on heat kernel spectral analysis
for the Laplacian on meshes, we studied some properties of its eigenfunctions
on particular objects and showed that we recover information about the geom-
etry such as unsupervised segmentation or feature points detection. We have



(a) A noisy image of a
peacock.

(b) Shape of interest:
feathers of the peacock.

(c) Convolution with
the gray-level adaptive
mask.

(d) Scanned text
page

(e) Convolution
using Gaussian
Mask

(f) Convolution
using Fast Four-
rier Transform
bandpass filter

(g) Convolution
using Adaptative
convolution mask

Fig. 5: An example of application of the adaptive gray masks of convolution on
noisy image of peacock, and on letters. On those images, we want to preserve
or enhance particular information, for example defined by a certain gray level
range. For example in (5b) we want to preserve the structure of the feathers.
With a classical Gaussian mask, the fine structure is erased by the convolution,
here its not the case, smoothing is performed along the structures. Notice also
the preservation of the eye of the feathers despite the convolution. On Fig. 5d,
the original image is noisy. Fig. 5g reveals the contour, after the convolution,
preserving the structures of the letters. We compare the adaptive convolution to
classical gaussian and bandpass filter using fast Fourier transform.



used this adaptive Laplacian on grey level images to smooth and denoise images
while preserving regions or features of interest such as thin tubular structures.
This work can be transposed to non binary 3D images and will be the subject
of future work.
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