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DISCRETE RIEMANN SURFACESCHRISTIAN MERCATAbstra
t. We detail the theory of Dis
rete Riemann Surfa
es. Ittakes pla
e on a 
ellular de
omposition of a surfa
e, together withits Poin
ar�e dual, equipped with a dis
rete 
onformal stru
ture.A lot of theorems of the 
ontinuous theory follow through to thedis
rete 
ase, we will de�ne the dis
rete analogs of period matri
es,Riemann's bilinear relations, exponential of 
onstant argument andseries. We present the notion of 
riti
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2 CHRISTIAN MERCAT1. Introdu
tionRiemann surfa
es theory was a major a
hievment of XIXth 
enturymathemati
s, setting the framework where modern 
omplex analysisbloomed. Nowadays, surfa
es are intensively used in 
omputer s
ien
efor numeri
 
omputations, ranging from visualization to pattern re
og-nition and approximation of partial di�erential equations. A lot ofthese 
omputations involve, at the 
ontinuous level, analyti
 fun
tions.But very few algorithms 
are about this spe
i�
ity, although analyti
fun
tions form a relatively small ve
tor spa
e among the spa
e of fun
-tions, problems are usually 
rudely dis
retized in a way that doesn'ttake advantage of analyti
ity.The theory of dis
rete Riemann surfa
es aims at �lling this gap andsetting the theoreti
al framework in whi
h the notion of dis
rete ana-lyti
ity is set on solid grounds.Most of the results in this paper are a straightforward appli
ationof the 
ontinuous theory [1, 2℄ together with the results in [3, 4, 5℄,to whi
h we refer for details. We de�ne the dis
rete period matrix,whi
h is twi
e as large as in the 
ontinuous 
ase: the periods of aholomorphi
 form on the graph and on its dual are in general di�erent,but the 
ontinuous limit theorem, given a re�ning sequen
e of 
riti
almaps, ensures that they 
onverge to the same value. The main tool isthe same as in the 
ontinuous 
ase, the Riemann bilinear relations.2. Dis
rete Riemann surfa
es2.1. Dis
rete Hodge theory. We re
all in this se
tion basi
 de�ni-tions and results from [4℄ where the notion of dis
rete Riemann surfa
eswas de�ned. We are interested in dis
rete surfa
es given by a 
ellularde
omposition } of dimension two, where all fa
es are quadrilaterals(a quad-graph [6, 7, 8℄). Its verti
es and diagonals de�ne, up to ho-motopy and away from the boundary, two dual 
ellular de
ompositions� and ��: The edges in ��1 are dual to edges in �1, fa
es in ��2 aredual to verti
es in �0 and vi
e-versa. Their union is denoted the double� = � t ��. A dis
rete 
onformal stru
ture on � is a real positivefun
tion � on the unoriented edges satisfying �(e�) = 1=�(e). It de�nesa genuine Riemann surfa
e stru
ture on the dis
rete surfa
e: Choosea length Æ and realize ea
h quadrilateral by a lozenge whose diagonalshave a length ratio given by �. Gluing them together provides a 
atriemannian metri
 with 
oni
 singularities at the verti
es, hen
e a 
on-formal stru
ture [9℄. It leads to a straightforward dis
rete version ofthe Cau
hy-Riemann equation. A fun
tion on the verti
es is dis
rete
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Figure 1. The verti
es and diagonals of a quadrilateralde�ne a pair of dual edges.

2. The fa
e dual to a vertex.1. Dual edges.0. The vertex dual to a fa
e.F � ee� vv1v2 vn
Figure 2. Duality.holomorphi
 i� for every quadrilateral (x; y; x0; y0) 2 }2,(2.1) f(y0)� f(y) = i �(x; x0) (f(x0)� f(x)) :We re
all elements of de-Rham 
ohomology, doubled in our 
ontext:The 
omplex of 
hains C(�) = C0(�) � C1(�) � C2(�) is the ve
-tor spa
e span by verti
es, edges and fa
es. It is equipped with aboundary operator � : Ck(�)! Ck�1(�), null on verti
es and ful�lling�2 = 0. The kernel ker � =: Z�(�) of the boundary operator are the
losed 
hains or 
y
les. Its image are the exa
t 
hains. It provides thedual spa
es of forms, 
alled 
o
hains, Ck(�) := Hom(Ck(�); C ) with a



4 CHRISTIAN MERCATx y x0y0 `(x; x0)`(y; y0)
Figure 3. The dis
rete Cau
hy-Riemann equation.
oboundary d : Ck(�)! Ck+1(�) de�ned by Stokes formula:Z(x;x0) df := f (�(x; x0)) = f(x0)� f(x); ZZF d� := I�F �:A 
o
y
le is a 
losed 
o
hain and we note � 2 Zk(�).These spa
es are equipped with the 
anoni
al s
alar produ
t, weigtheda

ording to � on edges and averaged on the graph and its dual:(�; �) := 12 Xe2�1 �(e)�Ze ���Ze �� :Duality of 
omplexes allows us to de�ne a Hodge operator � on formsby � : Ck(�) ! C2�k(�)C0(�) 3 f 7! �f : ZZF �f := f(F �);C1(�) 3 � 7! �� : Ze �� := ��(e�)Ze� �;(2.2) C2(�) 3 ! 7! �! : (�!)(x) := ZZx� !:It ful�lls �2 = (�IdCk)k. The endomorphism � := �d � d � � � d � dis the usual dis
rete Lapla
ian: Its formula on a fun
tion at a vertexx 2 �0 with neighbours x1; : : : ; xV 2 �0 is the usual weighted averaged



DISCRETE RIEMANN SURFACES 5di�eren
e: (�(f)) (x) = VXk=1 �(x; xk) (f(x)� f(xk)) :The spa
e of harmoni
 forms is de�ned as its kernel .The Hodge star and the lapla
ian are real operators. Sin
e �2 = �Idon fun
tions, it is natural to 
onsider them on 
omplexi�ed 
o
hains.The dis
rete holomorphi
 forms are spe
ial 
omplex harmoni
 forms:a 1-form(2.3) � 2 C1(�) is holomorphi
 i� d� = 0 and � � = �i�;that is to say if it is 
losed and of type (1; 0). Let d0, resp. d00 the
ompositions of the exterior derivative with the proje
tion on the spa
eof (1; 0), resp. (0; 1)-forms, Eq. (2.3) is equivalent to d0� = 0. We willnote � 2 
1(�). A fun
tion f : �0 ! C is holomorphi
 i� df isholomorphi
, whi
h is equivalent to (2.1) and we note f 2 
0(�).In the 
ompa
t 
ase, � � d � is the adjoint d� of the 
oboundaryoperator d and the Hodge theorem orthogonally de
omposes forms intoexa
t, 
oexa
t and harmoni
,Ck(�) = Im d �? Im d� �? Ker �;harmoni
 forms are the 
losed and 
o-
losed ones, and harmoni
 1-formare the orthogonal sum of holomorphi
 and anti-holomorphi
 ones:Ker � = Ker d \Ker d� = Ker d0 �? Ker d00:2.2. Wedge produ
t. We 
onstru
t a wedge produ
t on } su
h that� the 
anoni
al weighted hermitian s
alar produ
t reads as ex-pe
ted (�; �) = ZZ � ^ ���;� and the 
oboundary operator d} on }, is a derivation for thisprodu
t ^ : Ck(})� C l(})! Ck+l(}).



6 CHRISTIAN MERCATIt is de�ned by the following formulae, for f; g 2 C0(}), �; � 2 C1(})and ! 2 C2(}):(f � g)(x) :=f(x) � g(x) for x 2 }0;(2.4) Z(x;y) f � � :=f(x) + f(y)2 Z(x;y) � for (x; y) 2 }1;(2.5) ZZ(x1;x2;x3;x4)� ^ � :=14 4Xk=1 Z(xk�1;xk) � Z(xk;xk+1)� � Z(xk+1;xk) � Z(xk;xk�1)�;(2.6) ZZ(x1;x2;x3;x4)f � ! :=f(x1)+f(x2)+f(x3)+f(x4)4 ZZ(x1;x2;x3;x4)!(2.7) for (x1; x2; x3; x4) 2 }2:A form on } 
an be averaged into a form on �: This map A fromC�(}) to C�(�) is the identity for fun
tions and de�ned by the followingformulae for 1 and 2-forms:Z(x;x0) A(�}) := 120B� Z(x;y) +Z(y;x0)+Z(x;y0)+ Z(y0;x0)1CA�};(2.8) ZZx� A(!}) := 12 dXk=1 ZZ(xk;yk;x;yk�1)!};(2.9)where notations are made 
lear in Fig. 4. The mapA is neither inje
tivenor surje
tive in the non simply-
onne
ted 
ase, so we 
an neither de�nea Hodge star on } nor a wedge produ
t on �. Its kernel on 1-forms isKer (A) = Ve
t (d}"), where " is the bi
onstant, +1 on � and �1 on ��.But d�A = Ad} so it 
arries 
o
y
les on } to 
o
y
les on �. Its imageare these 
o
y
les of � verifying that their holonomies along 
y
les of� only depend on their homology on the 
ombinatorial surfa
e. Givena 1-
o
y
le � 2 Z1(�) with su
h a property, a 
orresponding 1-
o
y
le� 2 Z1(}) is built in the following way: Choose an edge (x0; y0) 2 }1;for an edge (x; y) 2 }1 with x and x0 on the same leaf of �, 
hoosetwo paths �x;x0 and �y0 ;y on the double graph �, from x to x0 and y0to y respe
tively, and de�ne(2.10) Z(x;y) � := Z�x;x0 �+ Z�y0;y � � I[
℄ �



DISCRETE RIEMANN SURFACES 7where [
℄ = [�x;x0 + (x0; y0)+ �y0;y +(y; x)℄ is the 
lass of the full 
y
lein the homology of the surfa
e. Changing the base points 
hange � bya multiple of d}".It follows in the 
ompa
t 
ase that the dimensions of the harmoni
forms on } (the kernel of �A) modulo d", as well as the harmoni
forms on � with same holonomies on the graph and on its dual, aretwi
e the genus of the surfa
e, as expe
ted. Unfortunately, the spa
eIm A = H? � Im d is not stable by the Hodge star �. We 
ould never-theless de�ne holomorphi
 1-forms on } but their dimension would bemu
h smaller than in the 
ontinuous, namely the genus of the surfa
e.Criti
ality provides 
onditions whi
h ensure that the spa
e �Im A is\
lose" to Im A.x xx1x2 y2y1 yd xd(2.8) (2.9)yy0 x0
Figure 4. Notations.We 
onstru
t an heterogeneous wedge produ
t for 1-forms: with�; � 2 C1(�), de�ne � ^ � 2 C1(}) by(2.11) ZZ(x;y;x0;y0)� ^ � := 120B� Z(x;x0)�Z(y;y0)� + Z(y;y0)�Z(x0;x)�1CA :It veri�es A(�}) ^A(�}) = �} ^ �}, the �rst wedge produ
t beingbetween 1-forms on � and the se
ond between forms on }. The usuals
alar produ
t on 
ompa
tly supported forms on � reads as expe
ted:(2.12) (�; �) = 12 Xe2�1 �(e)�Ze ���Ze ��� = ZZ}2 � ^ ���



8 CHRISTIAN MERCAT2.3. Energies. The L2 norm of the 1-form df , 
alled the Diri
hletenergy of the fun
tion f , is the mean of the usual Diri
hlet energies onea
h independant graph:ED(f) := 12kdfk2 = 12 (df; df) = 14 X(x;x0)2�1 �(x; x0) jf(x0)� f(x)j2(2.13) = ED(f j�) + ED(f j��)2 :Harmoni
 maps minimize this energy among fun
tions ful�lling 
ertainboundary 
onditions.The 
onformal energy of a map measures its 
onformality defe
t, itis null on holomorphi
 fun
tions:(2.14) EC(f) := 14kdf � i � dfk2:It is related to the Diri
hlet energy through the same formula as in the
ontinuous:EC(f) = 14 (df � i � df; df � i � df)= 14kdfk2 + 14k�i � dfk2 + 12Re(df; �i � df)= 12kdfk2 + 12ImZZ�2 df ^ df= ED(f) �A(f)(2.15)where the area of the image of the appli
ation f in the 
omplex planehas the same formula(2.16) A(f) = i2 ZZ�2 df ^ dfas in the 
ontinuous 
ase sin
e, for a fa
e (x; y; x0; y0) 2 �2, the algebrai
area of the oriented quadrilateral �f(x); f(x0); f(y); f(y0)� is given byZZ(x;y;x0;y0)df ^ df = i Im�(f(x0)� f(x))(f(y0)� f(y))�= �2iA�f(x); f(x0); f(y); f(y0)�:3. Period matrixWe use the 
onvention of Farkas and Kra [1℄, 
hapter III, to whi
h werefer for details. Consider (}; �) a dis
rete 
ompa
t Riemann surfa
e.



DISCRETE RIEMANN SURFACES 93.1. Interse
tion number, on � and on }. For a given simple (real)
y
le C 2 Z1(�), we 
onstru
t a harmoni
 1-form �C su
h that HA �C
ounts the algebrai
 number of times A 
ontains an edge dual to anedge of C: It is the solution of a Neumann problem on the surfa
e 
utopen along C (see [3℄ for details). It follows from standard homologyte
hnique that �C depends only on the homology 
lass of C (all the
y
les whi
h di�er from C by an exa
t 
y
le �A) and 
an be extendedlinearly to all 
y
les as �� : H1(�)! C1(�); it ful�lls, for a 
losed form�,(3.1) IC � = ZZ} �C ^ �;and a basis of the homology provides a dual basis of harmoni
 formson �. Beware that if the 
y
le C 2 Z1(�) is purely on �, then thisform �C j� = 0 is null on �.The interse
tion number between two 
y
les A;B 2 Z1(�) is de�nedas(3.2) A �B := ZZ} �A ^ �B:It is obviously linear and antisymmetri
, it is an integer number forinteger 
y
les. Let's stress again that the interse
tion of a 
y
le on �with another 
y
le on � is always null. A 
y
le C 2 Z1(}) de�nesa pair of 
y
les on ea
h graph C� 2 Z1(�), C�� 2 Z1(��) whi
h arehomologous to C on the surfa
e, 
omposed of portions of the boundaryof the fa
es on � dual to the verti
es of C. They are uniquely de�nedif we require that they lie \to the left" of C as shown in Fig.5. Bythe pro
edure (2.10) applied to �C� + �C�� , we 
onstru
t a 1-
o
y
le�C 2 Z1(}) unique up to d", and sin
e 8�; d"^� = 0, Eq. (3.2) de�nesan interse
tion number on Z1(}). Unlike the interse
tion number on �,this one has all the usual expe
ted properties. In parti
ular Eq. (3.2)holds for A;B 2 Z1(}).3.2. Canoni
al disse
tion, fundamental polygon. The 
omplex} being 
onne
ted, 
onsider a maximal tree T � }1, that is to say Tis a Z2-homologi
ally trivial 
hain and every edge added to T forms a
y
le. A 
anoni
al disse
tion or 
ut-system � of the genus g dis
reteRiemann surfa
e } is given by a set of oriented edges (ek)1�k�2g su
hthat the 
y
les � � (T [ ek) form a basis of the homology group H1(})verifying, for 1 � k; ` � g(3.3) �k � �` = 0; �k+g � �`+g = 0; �k � �`+g = Æk;`:



10 CHRISTIAN MERCAT
Figure 5. A path C on } de�nes a pair of paths C�and C�� on its left.They a
tually form a basis of the fundamental group �1(}) and thede�ning relation among them is (noted multipli
atively)(3.4) gYk=1�k�k+g��1k ��1k+g = 1:The 
onstru
tion of su
h a basis is standard and we won't repeat thepro
edure. What is less standard is the interpretation of Eq. (3.4) interms of the boundary of a fundamental domain, dis
retization intro-du
es some subtleties (that 
an safely be skept in �rst instan
e). Weend up with the familiar 2g � 2g interse
tion numbers matrix on }.Considering T [ ek as a rooted graph, we 
an prune it of all itspending bran
hes, leaving a simple 
losed loop ��k , atta
hed to theorigin O by a simple path �k (see Fig. 6), yielding the 
y
le �k. Thesethree 
y
les are deformation retra
t of one another, ��k � �k � T [ ekhen
e are equal in homology.In the 
ontinuous 
ase, a basis of the homology 
an be realized by2g simple ar
s, transverse to one another and meeting only at the basepoint. It de�nes an isometri
 model of the surfa
e as a fundamentaldomain homeomorphi
 to a dis
 and bordered by 4g ar
s to identifypairwise. In the dis
rete 
ase, by de�nition, the set }n� of the 
ellular



DISCRETE RIEMANN SURFACES 112: 3:1: Figure 6. 1. A maximal rooted tree in a quadrilateralde
omposition of the torus. 2. An additional edge de�nesa rooted 
y
le �1, pruned of its dangling trees. 3. Its un-rooted version, the simple loop ��1 .
omplex minus the edges taking part into the 
y
les basis is homeomor-phi
 to a dis
 hen
e the surfa
e is realized as a polygonal fundamentaldomain M whose boundary edges are identi�ed pairwise.But it is sometimes impossible to 
hoose a basis of the homologyverifying (3.3) by simple dis
rete 
y
les whi
h are transverse to oneanother. For instan
e, if the path �k is not empty, the 
y
le �k isnot even simple. Moreover, some edges may belong to several 
y
les.In this 
ase, the edges on the boundary of this fundamental polygon
an not be assigned a unique element of the basis or its inverse, andtherefore 
an not be grouped into only 4g 
ontinuous paths to identifypairwise but more than 4g.In fa
t, the information 
ontained into the basis � is more thansimply this polygon, the set of edges 
omposing the 
on
atenated 
y
le(3.5) (�1;�g+1;��11 ;��1g+1;�2; : : : ;��1g ;��12g )en
odes a 
ellular 
omplex M+ whi
h is not a 
ombinatorial surfa
eand 
onsists of the fundamental polygon M plus some dangling trees,
orresponding to the edges whi
h belong to more than one 
y
le orparti
ipate more than on
e in a 
y
le (the paths �k), as exempli�edin Fig.7. By 
onstru
tion, the edge ek belongs to the 
y
le �k only,hen
e these trees are in fa
t without bran
hes, simple paths whoseonly leaf is the base point O. To retrieve the surfa
e, the edges of thisstru
ture M+ are identi�ed group-wise, an edge parti
ipating k timesin 
y
les will have [k=2℄+2 representatives to identify together, two onthe fundamental polygon and the rest as edges of dangling trees.Eliminating repetition, that is to say looking at (3.5) not as a se-quen
e of edges but as a simpli�ed 
y
le (or a simpli�ed word in edges),thinsM+ intoM, pruning away the dangling paths. The fundamental



12 CHRISTIAN MERCAT1: 2: 3:Figure 7. Three di�erent fundamental polygons of ade
omposition of the torus (g = 1) by three quadrilat-erals: 1. The standard fundamental domain where the4g paths are not adapted to }. 2. M+ is 
omposed ofedges of } 
omposing 4g ar
s (whi
h may have portionsin 
ommon) to identify pairwise, ea
h edge 
orrespondsto an element of the basis � or its inverse, ex
ept foredges of \dangling trees" whi
h are asso
iated with twosu
h elements. 3. M is 
omposed of edges of } 
ompos-ing more than 4g ar
s to identify pairwise, there is no
orresponden
e with a basis of 
y
les.polygon boundary loses its stru
ture as 4g ar
s to be identi�ed pairwise,in general a basis 
y
le will be dis
onne
ted around the fundamentaldomain and a given edge 
an not be assigned to a parti
ular 
y
le.This pe
uliarity gives a more 
omplex yet well de�ned meaning to the
ontour integral formula for a 1-form � de�ned on the boundary edgesof M+,(3.6) I�M � = 2gXk=1 I�k � + I��1k �:This basis gives rise to 
y
les �� and ��� whose homology 
lasses forma basis of the group for ea
h respe
tive graph, that we 
ompose into�� de�ned by ��k = ��k ; ��k+g = ���k ;(3.7) ��k+2g = ���k+g; ��k+3g = ��k+g ;for 1 � k � g so that while the interse
tion numbers matrix on } isgiven by the 2g � 2g matrix(3.8) (�k � �`)k;` = � 0 I�I 0� ;



DISCRETE RIEMANN SURFACES 13the interse
tion numbers matrix on � is the 4g � 4g matrix with thesame stru
ture(3.9) (��k � ��̀)k;` = � �� �� �0BB� 0 0 I 00 0 0 I�I 0 0 00 �I 0 01CCA ������ :3.3. Bilinear relations.Proposition 3.1. Given a 
anoni
al disse
tion �, for two 
losed forms�; �0 2 Z1(}),(3.10) ZZ} � ^ �0 = gXj=1  I�j � I�j+g�0 � I�j+g� I�j �0! ;for two 
losed forms �; �0 2 Z1(�),(3.11) ZZ} � ^ �0 = 2gXj=1  I��j � I��j+2g�0 � I��j+2g� I��j �0! :Proof 3.1. Ea
h side is bilinear and depends only on the 
ohomol-ogy 
lasses of the forms. De
ompose the forms onto the 
ohomologybasis (�k). On �, use Eq (3.15) for the LHS and the duality propertyEq. (3.14) for the RHS. On }, use their 
ounterparts. }Noti
e that for a harmoni
 form � 2 H1(�), the form �� is 
losed aswell, therefore its norm is given by(3.12) � 2 H1(�) =) k�k2= 2gXj=1  I�j � I�j+2g��� � I�j+2g� I�j ���! :3.4. Basis of harmoni
 forms, basis of holomorphi
 forms. Wede�ne ��, the basis of real harmoni
 1-forms, dual to the homologybasis ��, as des
ribed in Se
. 3.1,��k := ���k+2g and��k+2g := ����k for 1 � k � 2g(3.13)whi
h verify I��k �` = Æk;`;I��k+2g �`+2g = Æk;`;(3.14)



14 CHRISTIAN MERCATand dually, the interse
tion matrix elements are given by(3.15) ��k � ��̀ = ZZ} ��k ^ ��̀ = (��k ;� � ��̀):On }, the elements �}k := ��k+g and �}k+g := ���k for 1 � k � g,de�ned up to d", verify A(�}k ) = ��k + ��k+g, A(�}k+g) = ��k+2g + ��k+3gand form a basis of the 
ohomology on } dual to � as well,�}k := ��}k+g and�}k+g := ���}k for 1 � k � g;(3.16)they ful�ll the �rst identity in Eq.(3.15) but the se
ond is meaninglessin general sin
e � 
an not be de�ned on }. We will drop the mention� when no 
onfusion is possible.Proposition 3.2. The matrix of inner produ
ts on �,(3.17)(�k; �`)k;` = ZZ} �k^���` = (+ H�k+2g ��`; 1 � k � 2g;� H�k�2g ��`; 2g < k � 4g: =: �A DB C�is a real symmetri
 positive de�nite matrix.Proof 3.2. It is real be
ause the forms are real, and symmet-ri
 be
ause the s
alar produ
t (2.12) is skew symmetri
. De�nitionEq. (3.13) and Eq. (3.1) lead to the integral formulae. Positivity fol-lows from the bilinear relation Eq. (3.11): for � = P4gk=1 �k �k, with�k 2 C; P4gk=1 j�kj2 > 0,k�k2 = 2gXj=1 "Z�j � Z�2g+j ��� � Z�2g+j � Z�2j ���#= 4gXk;`=1 �k ��` 2gXj=1 "Z�j �k Z�2g+j ��` � Z�2g+j �k Z�2j ��`#= 4gXk;`=1 �k ��` (�k; �`) > 0:(3.18) }The form �k is supported by only one of the two graphs � or ��,the form ��k is supported by the other one, and the wedge produ
t�� ^ �0� = 0 is null for two 1-forms supported by the same graph.Therefore the matri
es A and C are g � g-blo
k diagonal and B is



DISCRETE RIEMANN SURFACES 15anti-diagonal.(3.19)A = �A� 00 A��� ; B = � 0 B��;�B�;�� 0 � ; C = �C�� 00 C�� :The matri
es of interse
tion numbers (3.9) and of inner produ
ts di�eronly by the Hodge star �. Be
ause � preserves harmoni
 forms and theinner produ
t, we get its matrix representation in the basis �,(3.20) � = ��D A�C B�and be
ause �2 = �1,B2 � C �A+ I = 0(3.21) A �B = tB �A(3.22) C � tB = B � C:(3.23)On }, while the Hodge star � 
an not be de�ned, we 
an obviously
onsider the following positive s
alar produ
t on the 
lasses of 
losedforms modulo d", to whi
h the set (�}k ) belong:(�}; �}) := �A(�}); A(�})�= X(x;y;x0;y0)2}2�=�(x;x0); ��=�(y;y0)0BBB�t R(x ;y ) �R(y ;x0) �R(x0;y0) �R(y0;x ) �1CCCA �0BB�+�+�� +���� ����� ��+��+���� +�+�� ��+�� ���������� ��+�� +�+�� +������+�� ����� +���� +�+��1CCA �0BBB�R(x ;y ) ��R(y ;x0) ��R(x0;y0) ��R(y0;x ) ��1CCCA :and it yields(3.24) (�}k ; �}̀)k;` = � A� +A�� tB��� + tB���B��� +B��� C� + C�� � ;whi
h, in general, 
an not be understood as the periods of a set offorms on } along the basis �.Let's de
ompose the spa
e of harmoni
 forms into two orthogonalsupplements,(3.25) H1(�) = H1k �? H1?where the �rst ve
tor spa
e are the harmoni
 forms whose holonomieson one graph are equal to their holonomies on the dual, that is to say(3.26) H1k := Ve
t (�k + �k+g; 1 � k � g or 2g < k � 3g):De�nition (3.13) and Eq. (3.1) imply that(3.27) H1? = Ve
t (��k � ��k+g; 1 � k � g or 2g < k � 3g):



16 CHRISTIAN MERCATThese elements in the basis (�k+�k+g; ; �k��k+g) for 1 � k � g and2g < k � 3g, are represented by the following invertible matrix:(3.28) 0BB�I 0 tB��� � tB��� A� �A��0 I C� � C�� B��� �B���0 0 tB��� + tB��� A� +A��0 0 C� + C�� B��� +B���1CCA :It implies in parti
ular that the lower right g � g blo
k is invertible,therefore so is Eq. (3.24).3.5. Period matrix.Proposition 3.3. The matrix � = C�1 � (i�B) is the period matrixof the basis of holomorphi
 forms(3.29) �k := (i� �) 2gX̀=1 C�1k;` �`+2gin the 
anoni
al disse
tion �, that is to say(3.30) I�k �` = (Æk;` for 1 � k � 2g;�k�2g;` for 2g < k � 4g;and � is symmetri
, with a positive de�nite imaginary part.The proof is essentially the same as in the 
ontinuous 
ase [1℄ andwe in
lude it for 
ompleteness.Proof 3.3. Let !j := �j + i � �j for 1 � j � 4g. These holomorphi
forms ful�llPk;j := 12(!k; !j) = (�k; �j) + i (�k;� � �j)(3.31) = (�i R�j+2g !k; 1 � j � 2g;i R�j�2g !k; 2g < j � 4g:(3.32)P is the period matrix of the forms (!) in the homology basis �. The�rst 2g forms (!j)1�j�2g are a basis of holomorphi
 forms. It has theright dimension and they are linearly independent:2gXj=1 (�j + i�j)(�j + i � �j) = 2gXj=1  (�j + 2gXk=1 �k Bj;k)�j + 2gXk=1 �k Cj;k �2g+j!+i 2gXj=1  (�j + 2gXk=1 �k Bj;k)�j + 2gXk=1 �k Cj;k �2g+j!(3.33)is null, for �; � 2 R only when � = � = 0 be
ause C is positivede�nite. Similarly for the last 2g forms. The 
hange of basis i C�1 on



DISCRETE RIEMANN SURFACES 17them provides the basis of holomorphi
 forms (�). The last 2g rows ofP is the 2g � 4g matrix (B � i I; C) hen
e the periods of (�) in � aregiven by (I;�). }The �rst identity in Eq.(3.30) uniquely de�nes the basis � and aholomorphi
 1-form is 
ompletely determined by whether its periodson the �rst 2g 
y
les of �, or their real parts on the whole set.Noti
e that be
ause C is g�g blo
k diagonal and B is anti-diagonal,� is de
omposed into four g�g blo
ks, the two diagonal matri
es formi C�1 and are pure imaginary, the other two form �C�1 � B and arereal.(3.34) � = ��i� �r�r� �i� = � i C�1�� �C�1�� �B��;��C�1� �B�;�� i C�1� � :Therefore the holomorphi
 forms �k are real on one graph and pureimaginary on its dual,1 � k � g ) �k 2 C1R(�) � i C1R(��)(3.35) g < k � 2g ) �k 2 C1R(��)� i C1R(�):We will 
all(3.36) �� = �r +�i�the period matrix on the graph � the sum of the real periods of �k,1 � k � g, on �, with the asso
iated pure imaginary periods on thedual ��, and similarly for �k, g < k � 2g, the period matrix on ��.It is natural to ask how 
lose �� and ��� are from one another, andwhether their mean 
an be given an interpretation. Criti
ality [3, 4℄answers partially the issue:Theorem 3.1. In the genus one 
riti
al 
ase, the period matri
es ��and ��� are equal to the period matrix �� of the underlying surfa
e �.For higher genus, given a re�ning sequen
e (}k; �k) of 
riti
al mapsof �, the dis
rete period matri
es ��k and ���k 
onverge to the periodmatrix ��.Proof 3.1. The genus one 
ase is postponed to Se
. 3.6. The 
on-tinuous limit 
omes from te
hniques in [3, 4℄, developed in [5℄ whi
hprove that, given a re�ning sequen
e of 
riti
al maps, any holomorphi
fun
tion 
an be approximated by a sequen
e of dis
rete holomorphi
fun
tions. Taking the real parts, this implies as well that any harmoni
fun
tion 
an be approximated by dis
rete harmoni
 fun
tions. In par-ti
ular, the dis
rete solutions fk to a Diri
hlet or Neumann problem ona simply 
onne
ted set 
onverge to the 
ontinuous solution f be
ausethe latter 
an be approximated by dis
rete harmoni
 fun
tions gk and



18 CHRISTIAN MERCATthe di�eren
e fk � gk being harmoni
 and small on the boundary, 
on-verge to zero. In parti
ular, ea
h form in the basis (�}̀), provides asolution to the Neumann problem Eq. (3.16) and a similar pro
edure,detailed afterwards, de�ne a 
onverging sequen
e of forms �}̀, yieldingthe result. }We 
an try to repli
ate the work done on � on the graph }. Aproblem is that A� + A� and C� + C� need not be positive de�nite.Moreover, the Hodge star � doesn't preserve the spa
e (A(�}k )) of har-moni
 forms with equal holonomies on the graph and on its dual, sowe 
an not de�ne the analogue of �+ i � � on }. We �rst investigatewhat happens when we 
an partially de�ne these analogues:Assume that for 2g < k � 3g, the holonomies of ��k on � are equalto the holonomies of ��k+g on ��, that is to say C� = C�� =: 12C} andD��� = D��� =: 12D}. It implies that the transposes ful�ll B��� =B��� =: 12B} as well. We 
an then de�ne �}k�g 2 Z1(}) su
h thatA(�}k�g) = ��k+g, uniquely up to d". The last g 
olumns t(B}; C}) ofthe matrix of s
alar produ
t Eq. (3.24) are related to their periods inthe homology basis �} in a way similar to Eq. (3.17). By the samereasoning as before, the forms(3.37) �}k = gX̀=1 C�1} k;` ��}̀+g � i�}̀+g� ; 1 � k � gverify A(�}k ) = �k+�k+g2 and have periods on �} given by the identityfor the �rst g 
y
les and the following g� g matrix, mean of the periodmatri
es on the graph and on its dual:(3.38) �} = C�1} (i�B}) = �� +���2 :The same reasoning applies when the periods of the forms ��k onthe graph and on its dual are not equal but 
lose to one another. In the
ontext of re�ning sequen
es, we said that the basis (�}̀), 
onverges tothe 
ontinuous basis of harmoni
 forms de�ned by the same Neumannproblem Eq. (3.16). Therefore(3.39) C� � C�� = o(1); B��� �B��� = o(1):A harmoni
 form �k+g = o(1) on �� 
an be added to ��k+g su
h thatthere exists �}k�g 2 Z1(}) with A(�}k�g) = ��k+g+�k+g, yielding forms�}k , verifying A(�}k ) = 12(�k + �k+g) + o(1) and whose period matrix is�} + o(1). Sin
e the periods of �k 
onverge to the same periods as its
ontinuous limit, this period matrix 
onverges to the period matrix ��of the surfa
e. Whi
h is the 
laim of Th. 3.1.



DISCRETE RIEMANN SURFACES 19In the paper [10℄, R. Costa-Santos and B. M
Coy de�ne a periodmatrix on a spe
ial 
ellular de
omposition � of a surfa
e by squares.They don't 
onsider the dual graph ��. Their period matrix is equal toone of the two diagonal blo
ks of the double period matrix we 
onstru
tin this 
ase. They don't have to 
onsider the o�-diagonal blo
ks be
ausethe problem is so symmetri
 that their period matrix is pure imaginary.3.6. Genus one 
ase. Criti
ality solves partially the problem of hav-ing two di�erent g�g period matri
es instead of one sin
e they 
onvergeto one another in a re�ning sequen
e. However, on a genus one 
riti-
al torus, the situation is simpler: The overall 
urvature is null and a
riti
al map is everywhere 
at. Therefore the 
ellular de
omposition isthe quotient of a periodi
 
ellular de
omposition of the plane by twoindependant periods. They 
an be normalized to (1; � ). The 
ontinu-ous period matrix is the 1�1-matrix � . A basis of the two dimensionalholomorphi
 1-forms is given by the real and imaginary parts of dZ on� and �� respe
tively, and the reverse. The dis
rete period matrix isthe 2� 2 matrix �Im � Re �Re � Im �� and the period matri
es on the graphand on its dual are both equal to the 
ontinuous one.For illustration purposes, the whole 
onstru
tion, of a basis of har-moni
 forms, then proje
ted onto a basis of holomorphi
 forms, yieldingthe period matrix, 
an be 
he
ked expli
itely on the 
riti
al maps of thegenus 1 torus de
omposed by square or triangular/hexagonal latti
es:Consider the 
riti
al square (re
tangular) latti
e de
omposition of atorus } = (Zei� +Ze�i�)=(2p ei � +2q e�i �), with horizontal parameter� = tan � and verti
al parameter its inverse. Its modulus is � = qpe2 i �.The two dual graphs � and �� are isomorphi
. An expli
it harmoni
form ��1 is given by the 
onstant 1=2p on horizontal and downwardsedges of the graph � and 0 on all the other edges. Its holonomies are1 and 0 on the p, resp. q 
y
les. Considering 1=2q and the dual graph,we 
onstru
t in the same fashion ��2 ; ���1 ; ���2 . The matrix of innerprodu
ts is(3.40) (�k; �`)k;` = 1sin 2� 0BB� qp 
os 2�qp 
os 2�
os 2� pq
os 2� pq 1CCA



20 CHRISTIAN MERCATusing �+1=�2 = 1= sin 2� and ��1=�2 = �1= tan 2� so that the periodmatrix is(3.41) � = qp �i sin 2� 
os 2�
os 2� i sin 2�� :Therefore there exists a holomorphi
 form whi
h has the same periodson the graph and on its dual, it is the average of the two half formsof Eq. (3.30) and its periods are (1; qpe2 i �) along the p, resp. q 
y
les,yielding the 
ontinuous modulus. This holomorphi
 form is simply thenormalized fundamental form dZpe�i � .In the 
riti
al triangular/hexagonal latti
e, we just point out to thene
essary 
he
k by 
on
entrating on a tile of the torus, 
omposed of twotriangles, pointing up and down respe
tively. We show that there existsan expli
it holomorphi
 form whi
h has the same shift on the graphand on its dual, along this tile. Let ��; �n and �= the three parametersaround a given triangle. Criti
ality o

urs when �� �n+�n �=+�= �� =1. The form whi
h is 1 on the rightwards and South-West edges and0 elsewhere is harmoni
 on the triangular latti
e. Its pure imaginary
ompanion on the dual hexagonal latti
e exhibits a shift by i �n in thehorizontal dire
tion and i (�n + ��) in the North-East dire
tion alongthe tile. Dually, on the hexagonal latti
e, the form whi
h is �n �� alongthe North-East and downwards edges and 1 � �n �� along the South-East edges, is a harmoni
 form. Its shift in the horizontal dire
tion is1, in the North-East dire
tion 0, and its pure imaginary 
ompanion onthe triangular latti
e exhibits a shift by i �n in the horizontal dire
tionand i (�n + ��) in the North-East dire
tion along the tile as before.Hen
e their sum is a holomorphi
 form with equal holonomies on thetriangular and hexagonal graphs and the period matrix it 
omputes isthe same as the 
ontinuous one. This simply amounts to pointing outthat the fundamental form dz 
an be expli
itely expressed in terms ofthe dis
rete 
onformal data.4. Criti
ality and integrable systemThis theory 
an be viewed as the simplest (it is linear) of a series ofintegrable theories [8℄. We will present its quadrati
 
ounterpart, whi
hleads to another version of dis
rete analyti
 fun
tions, based on 
ir
lepatterns. Along the way, we will see how dis
rete exponentials anddis
rete polynomials emerge due to integrable systems theory pie
es ofte
hnology named the B�a
klund or Darboux transform [8℄.



DISCRETE RIEMANN SURFACES 214.1. Criti
ality. Until now, everything has been purely 
ombinato-rial, there was no referen
e to an underlying geometry and no 
ontin-uous limit. Criti
ality is what links 
ombinatori
s and geometry, andwhat gives a meaning to approximation theorems.De�nition 4.1. A dis
rete 
onformal map (}; �) is 
riti
al if thereexists a dis
rete holomorphi
 map Z su
h that the quadrilateral fa
es}2 
an be simultaneously embedded into rhombi in the 
omplex plane.Be
ause of the Gauss-Bonnet theorem, it is not possible to globallyembed a 
ompa
t surfa
e into the plane, therefore we allow for an atlasof lo
al 
riti
al maps with a �nite number of �xed lo
al 
oni
 singu-larities. When a 
ontinuous limit is taken, their number, angle andposition should not 
hange, and the theorem of isolated singularitieshelps us wipe them out as inessential.It is a simple 
al
ulation to 
he
k that if Z is a 
riti
al map, anydis
rete holomorphi
 fun
tion f 2 
(}) gives rise, through (2.5) to aholomorphi
 1-form fdZ.For a holomorphi
 fun
tion f , the equality f dZ � 0 is equivalent tof = � " for some � 2 C with " the bi
onstant "(�) = +1, "(��) = �1.Following DuÆn [11, 12℄, we introdu
e theDe�nition 4.2. For a holomorphi
 fun
tion f , de�ne on a 
at simply
onne
ted map U the holomorphi
 fun
tions fy, the dual of f , and f 0,the derivative of f , by the following formulae:(4.1) fy(z) := "(z) �f(z);where �f denotes the 
omplex 
onjugate, " = �1 is the bi
onstant, and(4.2) f 0(z) := 4Æ2 �Z zO fydZ�y + � ";de�ned up to ".It is an immediate 
al
ulation [4℄ to 
he
k the followingProposition 4.3. The derivative f 0 ful�lls(4.3) d f = f 0 dZ:4.2. �� operator. For holomorphi
 or anti-holomorphi
 fun
tions, dfis, lo
ally on ea
h pair of dual diagonals, proportional to dZ, resp. d �Z ,we de�ne � and �� operators (not to be 
onfused with the boundaryoperator on 
hains) that de
ompose the exterior derivative into holo-morphi
 and anti-holomorphi
 parts yieldingdf ^ df = �j�f j2 + j��f j2� dZ ^ d �Z



22 CHRISTIAN MERCATwhere the derivatives naturally live on fa
es:In the 
ontinuous theory, for any derivable fun
tion f on the 
omplexplane, the derivatives � = ddx + i ddy and �� = ddx � i ddy with respe
t toz = x+ i y and �z = x� i y yieldf(z + z0) = f(z0) + z(�f)(z0) + �z(��f)(z0) + o(jzj):These derivatives 
an be seen as a limit of a 
ontour integral over asmall loop 
 around z0:(�f)(z0) = lim
!z0 i2A(
)I
 fd�z; (��f)(z0) = � lim
!z0 i2A(
)I
 fdZ;whi
h leads to the following de�nitions in the dis
rete setup:� : C0(}) ! C2(})f 7! �f = �(x; y; x0; y0) 7! i2A(x;y;x0;y0) I(x;y;x0;y0) fd �Z�;�� : C0(}) ! C2(})f 7! ��f = �(x; y; x0; y0) 7! � i2A(x;y;x0;y0) I(x;y;x0;y0) fdZ�:A holomorphi
 fun
tion f veri�es ��f � 0 and (with Z(u) noted simplyu) �f(x; y; x0; y0) = f(y0)� f(y)y0 � y = f(x0)� f(x)x0 � x :Noti
e that the statement f = �R �f dz� has no meaning, � is not aderivation endomorphism in the spa
e of fun
tions on the verti
es ofthe double.On the other hand, these di�erential operators 
an be extended(see [6℄) into operators (the Kasteleyn operator) �20; ��20 : C2(}) !C0(}) simply by transposition, �20 = �t�02, leading to endomorphismsof C0(})�C2(}). They are su
h that their 
omposition, restri
ted tothe verti
es }0, gives ba
k the lapla
ian:� = 12 �� Æ �� + �� Æ �� :Furthermore, the double derivative �20 Æ �02 is a well de�ned endo-morphism of C0(}).



DISCRETE RIEMANN SURFACES 234.3. Dis
rete exponential.De�nition 4.4. For a 
onstant � 2 C , the dis
rete exponential exp(:�:Z)is the solution of exp(:�:O) = 1d exp(:�:Z) = � exp(:�:Z) dZ:(4.4)We de�ne its derivatives with respe
t to the 
ontinuous parameter �:(4.5) Z :k: exp(:�:Z) := �k��k exp(:�:Z):The dis
rete exponential on the square latti
e was de�ned by Lelong-Ferrand [13℄, generalized in [14℄ and studied independently in [6, 15℄.For j�j 6= 2=Æ, an immediate 
he
k shows that it is a rational fra
tionin � at every point: For the vertex x =P Æ ei �k ,(4.6) exp(:�:x) =Yk 1 + �Æ2 ei �k1 � �Æ2 ei �kwhere (�k) are the angles de�ning (Æ ei �k), the set of (Z-images of) }-edges between x and the origin. Be
ause the map is 
riti
al, Eq. (4.6)only depends on the end points (O;x). It is a generalization of a wellknown formula, in a slightly better version,(4.7) exp(�x) = �1 + �xn �n +O(�2 x2n ) =  1 + �x2n1� �x2n !n +O(�3 x3n2 )to the 
ase when the path from the origin to the point x = Pn1 xn =P Æ ei �k is not restri
ted to straight equal segments but to a generalpath of O(jxj=Æ) segments of any dire
tions.The integration with respe
t to � gives an interesting analogue ofZ :�k: exp(:�:Z). It is de�ned up to a globally de�ned dis
rete holo-morphi
 map. One way to �x it is to integrate from a given �0 ofmodulus 2=Æ, whi
h is not a pole of the rational fra
tion, along a paththat doesn't 
ross the 
ir
le of radius 2=Æ again.Proposition 4.5. For point-wise multipli
ation, at every point x 2 }0,(4.8) exp(:�:x) � exp(:� �:x) = 1:The spe
ialization at � = 0 de�nes monomials:(4.9) Z :k: = Z :k: exp(:�:Z)j�=0



24 CHRISTIAN MERCATwhi
h ful�ll Z :k: = k R Z :k�1: dZ. The anti-linear duality y maps ex-ponentials to exponentials:(4.10) exp(:�:)y = exp(: 4Æ2�� :):In parti
ular, exp(:1:) = 1y = " is the bi
onstant.Proof 4.5. The �rst assertion is immediate.The derivation of (4.4) with respe
t to � yields(4.11)d �k��k exp(:�:Z) = �� �k��k exp(:�:Z) + k �k�1��k�1 exp(:�:Z)� dZwhi
h implies (4.9).Derivation of exp(:�:)y gives,�exp(:�:)y�0 = 4Æ2 �Z zO exp(:�:) dZ�y + � "(4.12) = 4Æ2 �exp(:�:)� 1� �y + � "= 4Æ2�� exp(:�:)y + � "with �; � some 
onstants, so that the initial 
ondition exp(:�:O)y = 1at the origin and the di�eren
e equation d exp(:�:)y = 4Æ2�� exp(:�:)y dZyields the result. �Note that it is natural to de�ne exp(:�: (x � x0)) := exp(:�:x)exp(:�:x0) as afun
tion of x with x0 a �xed vertex. It is simply a 
hange of origin.But apart on a latti
e where addition of verti
es or multipli
ation byan integer 
an be given a meaning as maps of the latti
e, there is noeasy way to generalize this 
onstru
tion to other dis
rete holomorphi
fun
tions su
h as exp(:�: (x+ n y)) with x; y 2 }0 and n 2Z.4.4. Series. The series P1k=0 �k Z:k:k! , wherever it is absolutely 
onver-gent, 
oin
ide with the rational fra
tion (4.6): Its value at the origin is1 and it ful�lls the de�ning di�eren
e equation (4.4). Using Eq. (4.9),a Taylor expansion of exp(:�: x) at � = 0 gives ba
k the same result.We are now interested in the rate of growth of the monomials.Dire
t analysis gives an estimate of Z :k::



DISCRETE RIEMANN SURFACES 25Proposition 4.6. For x 2 }, at a 
ombinatorial distan
e d(x;O) ofthe origin, and any k 2 N,(4.13) ����Z :k:(x)k! ���� � ��+ 1� � 1�d(x;O)�� Æ2�k ;for any � > 1 arbitrarily 
lose to 1.Corollary 4.7. The series P1k=0 �k Z:k:k! is absolutely 
onvergent forj�j < 2Æ .Proof 4.6. It is proved by double indu
tion, on the degree k and on the
ombinatorial distan
e to the origin.For k = 0, it is valid for any x sin
e �+1��1 = 1+ 2��1 > 1, with equalityonly at the origin.Consider x 2 } a neighbor of the origin, Z(x) = Æ ei �, then animmediate indu
tion gives for k � 1,(4.14) Z :k:(x)k! = 2�Æ ei �2 �kwhi
h ful�lls the 
ondition Eq. (4.13) for any k � 1 be
ause �+1��1 �k > 2.This was done merely for illustration purposes sin
e it is suÆ
ient to
he
k that the 
ondition holds at the origin, whi
h it obviously does.Suppose the 
ondition is satis�ed for a vertex x up to degree k, andfor its neighbor y, one edge further from the origin, up to degree k� 1.Then,(4.15) Z :k:(y)k! = Z :k:(x)k! + Z :k�1:(x) + Z :k�1:(y)(k � 1)! Z(y)� Z(x)2in absolute value ful�lls����Z :k:(y)k! ���� � ��+ 1� � 1�d(x;O)�� Æ2�k�1��� Æ2�+�1 + �+ 1� � 1� Æ2�= �� + 1�� 1�d(x;O)�� Æ2�k �1 + 2�� 1�(4.16) = �� + 1�� 1�d(y;O)�� Æ2�k ;thus proving the 
ondition for y at degree k. It follows by indu
tionthat the 
ondition holds at any point and any degree. �



26 CHRISTIAN MERCAT4.5. Basis. The dis
rete exponentials form a basis of dis
rete holo-morphi
 fun
tions on a �nite 
riti
al map: given any set of pair-wisedi�erent reals f�kg of the right dimension, the asso
iated dis
rete expo-nentials will form a basis of the spa
e of dis
rete holomorphi
 fun
tions.See [8℄ for the formula(4.17) f(x) = 12i� Z
 g(�) exp(: � : x) d�for a 
ertain �xed 
ontour 
 in the spa
e of parameters �, and thede�nition of g(�) as a �xed 
ontour integral in } involving f .The polynomials however don't form a basis in general: the 
ombi-natorial surfa
e has to ful�ll a 
ertain 
ondition 
alled \
ombinatorial
onvexity". A quadrilateral, when traversed from one side to its oppo-site, de�ne a unique 
hain of quadrilaterals, that we 
all a \train-tra
k".The 
ondition we ask is that two di�erent train-tra
ks have di�erentslopes.On a 
ombinatorially 
onvex set, the dis
rete polynomials form abasis as well.4.6. Continuous limit. In a 
riti
al map, where quadrilaterals aremapped to rhombi of side Æ, identifying a vertex x with its image Z(x).The 
ombinatorial distan
e d}(x;O) is related to the modulus jxjthrough(4.18) d}(x;O)sin �m4 � jxjÆ � d}(x;O)where �m is the minimum of all rhombi angles. When the rhombidon't 
atten, the 
ombinatorial distan
e and the modulus (over Æ) areequivalent distan
es.Lemma 4.8. Let (ABCD) be a four sided polygon of the Eu
lideanplane su
h that its diagonals are orthogonal and the verti
es angles arein [�; 2���℄ with � > 0. Let (M;M 0) be a pair of points on the polygon.There exists a path on (ABCD) from M to M 0 of minimal length `.Then MM 0` � sin �4 :It is a straightforward study of a several variables fun
tion. If thetwo points are on the same side, MM 0 = ` and sin � � 1. If they areon adja
ent sides, the extremal position with MM 0 �xed is when thetriangleMM 0P , with P the vertex of (ABCD) between them, is iso
el.The angle in P being less than �, MM 0` � sin �2 > sin�2 : If the pointsare on opposite sides, the extremal 
on�guration is given by Fig. 8.2.,where MM 0` = sin�4 .�
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ent sides. � �M 0M2. M;M 0 on opposite sides.Figure 8. The two extremal positions.A fun
tion f : }0 ! C on the 
ombinatorial surfa
e 
an be extendedto a fun
tion on the image of the 
riti
al map in the 
omplex planef̂ : U ! C by stating that f̂ (Z(x)) = f(x) for the image of a vertex,and extend it linearly on the segments [Z(x); Z(y)℄ image of an edge,and harmoni
ally inside ea
h rhombus.Theorem 4.1. Let (}k) a sequen
e of simply 
onne
ted 
riti
al maps,U the non empty interse
tion of their images in the 
omplex plane anda holomorphi
 fun
tion f : U ! C . If the sequen
e of minimum anglesare bounded away from 0 and the sequen
e of rhombi side lengths (Æk)
onverge to 0, then the fun
tion f 
an be approximated by a sequen
eof dis
rete holomorphi
 fun
tions fn 2 
(}k) 
onverging to f . The
onvergen
e is not only pointwise but C1 on the interse
tion of im-ages. Conversely a 
onverging sequen
e of dis
rete holomorphi
 fun
-tions 
onverges to a 
ontinuous holomorphi
 fun
tion, in parti
ular thedis
rete polynomials and dis
rete exponentials with �xed parameters.Corollary 4.9. On a Riemann surfa
e, any 1-form 
an be approx-imated by a sequen
e of dis
rete holomorphi
 1-forms on a re�ningsequen
e of 
riti
al maps with �xed 
oni
 singularities.The proof relies on the 
onvergen
e of polynomials seen as iteratedprimitives of the 
onstant fun
tion.Lemma 4.10. Given a sequen
e of dis
rete holomorphi
 fun
tions (fk)on a re�ning sequen
e of 
riti
al maps, 
onverging to a holomorphi
fun
tion f , the sequen
e of primitives (R fk dZ) 
onverges to R f(z) dz.Moreover, in the 
ompa
t 
ase, if the 
onvergen
e of the fun
tions is oforder O(Æ2k), it stays this way for the primitives.Proof 4.10. Suppose that we are given a sequen
e of 
at verti
esOk 2 }k where the fa
e 
ontaining the �xed 
at origin O 2 U isadja
ent to Ok. For a given integer k, let bFk the 
ontinuous pie
ewise



28 CHRISTIAN MERCATharmoni
 extension of the dis
rete primitive ROk fk dZ to U . We wantto prove that for any x 2 U , the following sequen
e tends to zero(4.19) �����( bFk(x)� bFk(O))� Z xO f(z) dz�����k2N :For ea
h integer k 
onsider a vertex xk 2 }0 on the boundary of thefa
e of }2 
ontaining x.We de
ompose the di�eren
e (4.19) into three parts, inside the fa
e
ontaining the origin O and its neighbor Ok, similarly for x and xk,and purely along the edges of the graph }k itself.j� bFk(x) � bFk(O)�� Z xO f(z) dzj =����( bFk(x)� bFk(xk)) + Z xkOk fk dZ + ( bFk(O) � bFk(Ok))� Z xO f(z) dz����� ���� bFk(x)� bFk(xk)� Z xxk f(z) dz����+ ����Z xkOk fk dZ � Z xkOk f(z) dz����+���� bFk(Ok)� bFk(O)� Z OkO f(z) dz���� :(4.20)On the fa
e of } 
ontaining x, the primitive � 7! R �xk f(z) dz is a holo-morphi
, hen
e harmoni
 fun
tion as well as � 7! bFk(�). By the maxi-mum prin
iple, the harmoni
 fun
tion � 7! bFk(�)� bFk(xk)�R �xk f(z) dzrea
hes its maximum on that fa
e, along its boundary. The di�eren
eof the dis
rete primitive along the boundary edge (xk; y) 2 }1 at thepoint � = (1 � �)xk + � y is equal by de�nition to(4.21) bFk((1� �)xk + � y) � bFk(xk) = �(y � xk)fk(xk) + fk(y)2 :The holomorphi
 f is di�erentiable with a bounded derivative on U ,so averaging the �rst order expansions at xk and y, we getZ �xk f(z) dz = �(y � xk)f(xk) + f(y)2 + (y � xk)2�2f 0(xk) + (1 � �)2f 0(y)4+o �(� � xk)3�+ o �(� � y)3�= �(y � xk)f(xk) + f(y)2 +O(Æ2k)(4.22)therefore(4.23) j bFk(x)� bFk(xk)� Z xxk f(z) dzj = O(Æ2k):



DISCRETE RIEMANN SURFACES 29Similarly for the term around the origin.By de�nition of bfk, the 1-form bfk(z) dz along edges of the graph }is equal to the dis
rete form fkdZ so that R xkOk fk dZ = R xkOk bfk(z) dz ona path along } edges. Therefore the di�eren
e(4.24) ����Z xkOk fk dZ � Z xkOk f(z) dz���� � Z xkOk ���� bfk(z)� f(z)� dz���is of the same order as the di�eren
e jfk(z)� f(z)j times the length`(
k) of a path on }k from Ok to xk. This length is bounded as `(
k) �4sin �m jxk�Okj. Sin
e we are interested in the 
ompa
t 
ase, this lengthis bounded uniformly and the di�eren
e (4.24) is of the same order asthe point-wise di�eren
e. We 
on
lude that the sequen
e of dis
reteprimitives 
onverges to the 
ontinuous primitive and if the limit forthe fun
tions was of order O(Æ2), it remains of that order. }The dis
rete polynomials of degree less than three agree point-wisewith their 
ontinuous 
ounterpart, Z :2:(x) = Z(x)2.A simple indu
tion then gives the followingCorollary 4.11. The dis
rete polynomials 
onverge to the 
ontinuousones, the limit is of order O(Æ2k).Whi
h implies the main theorem:Proof 4.1. On the simply 
onne
ted 
ompa
t set U , a holomorphi
fun
tion f 
an be written, in a lo
al map z as a series,(4.25) f(z) =Xk2Nakzk:Therefore, by a diagonal pro
edure, there exists an in
reasing integersequen
e (N(n))n2N su
h that the sequen
e of dis
rete holomorphi
polynomials 
onverge to the 
ontinuous series and the 
onvergen
e isC1.(4.26) 0�N(n)Xk=0 akZ :k:1An2N! f: }4.7. Cross-ratio preserving maps. On
e the isometry Z is 
ho-sen, holomorphi
ity of a fun
tion f 
an be written on a quadrilateral(x; y; x0; y0) 2 }2, writing x = Z(x) for a vertex x 2 }0, as(4.27) f(y0)� f(y)f(x0)� f(x) = y0 � yx0 � x



30 CHRISTIAN MERCATand f is understood as a diagonal ratio preserving map, and ea
h valueat a 
orner vertex 
an be linearly solved in terms of the three others.A quadrati
 version is given by the 
ross-ratio preserving maps: Afun
tion f is said to be quadrati
 holomorphi
 i�(4.28) (f(y)� f(x)) (f(y0)� f(x0))(f(x)� f(y0)) (f(x0)� f(y)) = (y � x) (y0 � x0)(x� y0) (x0 � y) :A rhombi
 tiling gives rise to two sets of isoradial 
ir
le patterns: aset of 
ir
les of 
ommon radius Æ, whose 
enters are the verti
es of �and interse
tions are the verti
es of �� and vi
e-versa. Two interestingfamilies of 
ross-ratio preserving maps are given by 
ir
le patterns withthe same 
ombinatori
s and interse
tion angles as one of these two 
ir
lepatterns. �!Figure 9. A 
ir
le pattern with pres
ribed angles as a
ross ratio preserving map.x yy0 x0� �0' ' q = e�2(�+�0)= e�2'Figure 10. The 
ross-ratio q is given by the interse
tion angles.A 
hange of 
oordinates helps understanding diagonal ratio preserv-ing maps as a linearized version of the 
ross-ratio preserving maps. We



DISCRETE RIEMANN SURFACES 31will say that the fun
tion w : }2 ! C solves the Hirota system if,around a fa
e (x; y; x0; y0) 2 }2,(4.29)(y�x)w(x)w(y)+(x�y0)w(y0)w(x)+(y0�x0)w(x0)w(y0)+(x0�y)w(y)w(x0) = 0:This is to be understood as a quadrati
 version of the Morera theoremH f dz = 0 and w is a half of the derivative of a holomorphi
 fun
tion:Proposition 4.12. If w solves the Hirota system, then the fun
tionf : }2 ! C de�ned up to an additive 
onstant by(4.30) f(y)� f(x) = (y � x)w(x)w(y)is quadrati
 holomorphi
.Proof 4.12. The fun
tion f is well de�ned be
ause the asso
iated1-form is 
losed by de�nition of the Hirota system. The fun
tion wdisappears in the 
ross-ratio of f , leaving the original 
ross-ratio. }Conversely, a quadrati
 holomorphi
 fun
tion de�nes a solution to theHirota system, unique up to multipli
ation by � on �, 1=� on ��. Con-
erning 
ir
le patterns families, w is real on the 
enters and unitary onthe interse
tions, and en
odes the variation of radius, resp. of dire
tionof the image of the 
ir
le:(4.31) f(y)� f(x) = r(x)ei�(y)(y � x):Proposition 4.13. The logarithmi
 derivative of the Hirota systemasso
iated to a family of 
ross-ratio preserving maps is a diagonal ratiopreserving map.In other words, for (1 + �g)w to 
ontinue solving the Hirota systemat �rst order, the deformation g must satisfy(4.32) g(y0)� g(y)g(x0)� g(x) = f(y0) � f(y)f(x0) � f(x) :Proof 4.13. The � 
ontribution of the 
loseness 
ondition (4.29) for(1 + �g)w gives(g(x) + g(y)) f(x) f(y) (y � x) + (g(y) + g(x0)) f(y) f(x0) (x0 � y)+(g(x0) + g(y0))w(x0)w(y0) (y0 � x0) + (g(y0) + g(x))w(y0)w(x) (x� y0) = 0;whi
h reads, refering to f : g(y0)� g(y)g(x0)� g(x) = f(y0) � f(y)f(x0) � f(x) : }



32 CHRISTIAN MERCAT4.8. Bae
klund transformation. The Bae
klund transformation isa way to asso
iate, to a given solution of an integrable problem, a familyof deformed solutions. The two problems under 
onsideration here arethe linear and quadrati
 holomorphi
ity 
onstraints on ea
h fa
e. Theyare given by a linear, resp. quadrati
 algebrai
 relation between thefour values of a solution at the verti
es of ea
h fa
e. These relationsinvolve only values supported by the edges of the rhombus, whi
h areequal on opposite sides, namely the 
omplex label y � x = x0 � y0.The Bae
klund transformation is de�ned by imposing su
h 
onstraintsover new virtual fa
es added over ea
h edge, with \verti
al edges" la-belled by a 
omplex 
onstant �:De�nition 4.14. Given a linear holomorphi
 fun
tion f 2 
(}), 
om-plex numbers u; � 2 C , its Bae
klund transformation f� = Bu�(f) isde�ned by f�(0) = u;f�(x)� f(y)f�(y)� f(x) = � + x� y� + y � x:(4.33)Given a quadrati
 holomorphi
 fun
tion f , 
omplex numbers u; � 2 C ,its Bae
klund transformation f� = Bu�(f) is de�ned byf�(0) = u;f�(y)� f�(x)f�(x)� f(x) f(x)� f(y)f(y)� f�(y) = (y � x)2�2 :(4.34)The right hand sides are the values respe
tively of the diagonal ratioand 
ross-ratio of a parallelogram fa
es of sides (y � x) and � seen as\over" the edge (x; y) 2 }1. x0x0�y0�xx� y y0y��q = (y�x)2�2i � = y�x+�x�y+�Figure 11. The fa
e (x�; y�; x0�; y0�) \over" the fa
e(x; y; x0; y0) 2 }2.



DISCRETE RIEMANN SURFACES 33Proposition 4.15. This transformation is well de�ned in the 
riti
al
ase.This 
ondition, 
alled three dimensional 
onsisten
y is an overdeter-mination 
onstraint: if the 
ube \over" the fa
e (x; y; x0; y0) 2 }2 issplit into two hexagons along the 
y
le (y; x0; y0; y0�; x�; y�), one 
an seethat, given values at these six verti
es, the values at the 
enters of ea
hhexagons, namely at x0� and at x are overdetermined.y x0 y0y0�x�y� x0��y x0 y0y0�x�y� xFigure 12. The 
ube split into two hexagons yieldingequivalent 
ompatibility 
onstraints.Therefore only 
ertain values at the six verti
es are allowed, de�nedby two algebrai
 relations between them. The 
ompatibility 
onditionis that these two algebrai
 relations are equivalent. It is a simple 
om-putation to 
he
k it is the 
ase for 
riti
al maps.This transformation veri�es(4.35) Bf(O)��1 (Bu�(f)) = ffor any (u; �). It is an analyti
 transformation in all the parameterstherefore its derivative is a linear map between the tangent spa
es, thatis to say between diagonal ratio preserving maps,(4.36) dBu�(f) : 
(f) ! 
(Bu�(f)) :It is not inje
tive and I de�ne the dis
rete exponential at f as beingthe dire
tion of this 1-dimensional kernel. It 
an be 
hara
terized as aderivative with respe
t to the initial value at the origin:(4.37) expu(:�:f) := ��vBv��1 (Bu�(f)) jv=f(O) 2 ker (dBu�(f))be
ause Bu� �Bv��1(g)� = g for all �; g and v.As in the dis
rete exponential 
ase, the value of the Bae
klund trans-formation at a given vertex is the image of values at neighbouringverti
es by a homography. These homographies 
an be en
oded as



34 CHRISTIAN MERCATBu�(f)Bu��1(g)expu(:�:f) := ��vBv��1(g)jv=uBv��1(g) f = Bu��1(g) g = Bu�(f)
Figure 13. The dis
rete exponential expu(:�:f) is thekernel of the linear transformation dBu�(f) (here u =f(O)).proje
tive operators L(e;�) 2 GL2(C )[�℄ lying on the edges e 2 }2,
alled a zero 
urvature representation:(4.38)L((x; y);�) =  � + y � x �2(y � x)(f(x) + f(y))0 �+ x� y ! for the linear 
ase,(4.39)L((x; y);�) =  1 �(y � x)w(y)��(y � x)=w(x) w(y)=w(x) ! for the Hirota system.Then we de�ne [16℄ the moving frame 	 : }2 ! GL2(C )(�) by a pre-s
ribed value at the origin and re
ursively by 	(y;�) = L((x; y);�)	(x;�)and its logarithmi
 derivative with respe
t to �(4.40) A(e;�) = d	(e;�)d� 	�1(e;�)is meromorphi
 in � for ea
h edge e. We 
all f , resp. w isomonodromi
if the positions and orders of the poles don't depend on the edge e. Thetwo points dis
rete Green fun
tion (the dis
rete logarithm) G(O;x),inverse of the Lapla
ian in the sense that(4.41) �G(O; �) = ÆO;�
an be 
onstru
ted as the unique isomonodromi
 solution with somepres
ribed data [8℄, whi
h allows us to give an expli
it formula for it,re
overing results of Kenyon [15℄: an integral over a loop in the spa
e
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rete exponentials:(4.42) G(O;x) = � 18�2 i IC exp(:�:x) log Æ2�� d�where the integration 
ontour C 
ontains all the possible poles of therational fra
tion exp(:�: x) but avoids the half line through �x. It isreal (negative) on half of the verti
es and imaginary on the others.Be
ause of the logarithm, this imaginary part is multivalued.
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