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Abstract: We define a new theory of discrete Riemann surfaces and present its basic
results. The key idea is to consider not only a cellular decomposition of a surface, but the
union with its dual. Discrete holomorphy is defined by a straightforward discretisation
of the Cauchy–Riemann equation. A lot of classical results in Riemann theory have a
discrete counterpart, Hodge star, harmonicity, Hodge theorem, Weyl’s lemma, Cauchy
integral formula, existence of holomorphic forms with prescribed holonomies. Giving
a geometrical meaning to the construction on a Riemann surface, we define a notion of
criticality on which we prove a continuous limit theorem. We investigate its connection
with criticality in the Ising model. We set up a Dirac equation on a discrete universal spin
structure and we prove that the existence of a Dirac spinor is equivalent to criticality.
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1. Introduction

We present here a new theory of discrete analytic functions, generalising to discrete
Riemann surfaces the notion introduced by Lelong–Ferrand [LF].

Although the theory defined here may be applied wherever the usual Riemann Sur-
faces theory can, it was primarily designed with statistical mechanics, and particularly
the Ising model, in mind [McCW,ID]. Most of the results can be understood without
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any prior knowledge in statistical mechanics. The other obvious fields of application in
two dimensions are electrical networks, elasticity theory, thermodynamics and hydrody-
namics, all fields in which continuous Riemann surfaces theory gives wonderful results.
The relationship between the Ising model and holomorphy is almost as old as the theory
itself. The key connection to the Dirac equation goes back to the work of Kaufman [K]
and the results in this paper should come as no surprise for workers in statistical me-
chanics; they knew or suspected them for a long time, in one form or another. The aim of
this paper is therefore, from the statistical mechanics point of view, to define a general
theory as close to the continuous theory as possible, in which claims as “the Ising model
near criticality converges to a theory of Dirac spinors” are given a precise meaning
and a proof, keeping in mind that such meanings and proofs already exist elsewhere
in other forms. The main new result in this context is that there exists a discrete Dirac
spinor near criticality in the finite size Ising model,before the thermodynamic limit is
taken. Self-duality, which enabled the first evaluations of the critical temperature [KW,
Ons,Wan50], is equivalent to criticality at finite size. It is given a meaning in terms of
compatibility with holomorphy.

The first idea in order to discretise surfaces is to considercellular decompositions.
Equipping a cellular decomposition of a surface with a discrete metric, that is giving
each edge a length, is sufficient if one only wants to do discrete harmonic analysis.
However it is not enough if one wants to define discrete analytic geometry. The basic
idea of this paper is to consider not just the cellular decomposition but rather what we
call its double, i.e. the pair consisting of the cellular decomposition together with its
Poincaré dual. A discrete conformal structure is then a class of metrics on the double
where we retain only the ratio of the lengths of dual edges1. In Ising model terms, a
discrete conformal structure is nothing more than a set of interaction constants on each
edge separating neighbouring spins in an Ising model of a given topology.

A function of the vertices of the double is said to bediscrete holomorphic if it satisfies
the discrete Cauchy–Riemann equation, on two dual edges(x, x′) and(y, y′),

f (y′)− f (y)

�(y, y′)
= i

f (x′)− f (x)

�(x, x′)
.

This definition gives rise to a theory which is analogous to the classical theory of
Riemann surfaces. We define discrete differential forms on the double, a Hodge star
operator, discrete holomorphic forms, and prove analogues of the Hodge decomposition
and Weyl’s lemma. We extend to our situation the notion of pole of order one and
we prove existence theorems for meromorphic differentials with prescribed poles and
holonomies. Similarly, we define a Green potential and a Cauchy integral formula.

Up to this point, the theory is purely combinatorial. In order to relate the discrete
and continuous theories on a Riemann surface, we need to impose an extra condition
on the discrete conformal structure to give its parameters a geometrical meaning. We
call this semi-criticality in Sect. 3. The main result here is that the limit of a pointwise
convergent sequence of discrete holomorphic functions, on a refining sequence of semi-
critical cellular decompositions of the same Riemann surface, is a genuine holomorphic
function on the Riemann surface. If one imposes the stronger condition of criticality on
the discrete conformal structure, one can define a wedge product between functions and
1-forms which is compatible with holomorphy.

1 By definition, a discrete Riemann surface is a discrete surface equipped with a discrete conformal structure
in this sense.
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Fig. 1. The discrete Cauchy–Riemann equation

Finally, for applications of this theory to statistical physics, one needs to define a
discrete analogue of spinor fields on Riemann surfaces. In Sect. 4 we first define the
notion of a discrete spin structure on a discrete surface. It sheds an interesting light onto
the continuous notion, allowing us to redefine it in explicit geometrical terms. In the case
of a discrete Riemann surface we then define a discrete Dirac equation, generalising an
equation appearing in the Ising model, and show that criticality of the discrete conformal
structure is equivalent to the existence of a local massless Dirac spinor field.

In Sect. 2, we present definitions and properties of the theory which are purely
combinatorial. First, in the empty boundary case, we recall the definitions of dual cellular
complexes, notions of deRham cohomology. We define the double�, we present the
discrete Cauchy–Riemann equation, the discrete Hodge star on�, the Laplacian and the
Hodge decomposition. In Subsect. 2.2, we prove Dirichlet and Neumann theorems, the
basic tools of discrete harmonic analysis. In Subsect. 2.3 we prove existence theorems
for 1-forms with prescribed poles and holonomies. In Subsect. 2.4, we deal with the
basic difficulty of the theory: The Hodge star is defined on� while the wedge product
is on another complex, the diamond♦, obtained from� or �∗ by the procedure of
tile centering [GS87]. We prove Weyl’s lemma, Green’s identity and Cauchy integral
formulae.

In Sect. 3, we define semi-criticality and criticality and prove that it agrees with the
usual notion for the Ising model on the square and triangular lattices. We presentVoronoï
and Delaunay semi-critical maps in order to give examples and we prove the continuous
limit theorem. We prove that every Riemann surface admits a critical map and give
examples. On a critical map, the product between functions and 1-forms is compatible
with holomorphy and yields a polynomial ring, integration and derivation of functions.
We give an example showing where the problems are.

In Sect. 4, we set up the Dirac equation on discrete spin structures. We motivate the
discrete universal spin structure by first showing the same construction in the continuous
case.We show discrete holomorphy property for Dirac spinors, we prove that criticality is
equivalent to the existence of local Dirac spinors and present a continuous limit theorem
for Dirac spinors.
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2. Discrete Harmonic and Holomorphic Functions

In this section, we are interested in properties ofcombinatorial geometry. The construc-
tions are considered up to homeomorphisms, that is to say on a combinatorial surface,
as opposed to Sect. 3 where criticality implies that the discrete geometry is embedded
in a genuine Riemann surface.

2.1. First definitions. Let  be an oriented surface without boundary. A cellular de-
composition� of  is a partition of into disjoint connected sets, called cells, of three
types: a discrete set of points, the vertices�0; a set of non intersecting paths between
vertices, the edges�1; and a set of topological discs bounded by a finite number of edges
and vertices, the oriented faces�2. A parametrisation of each cell is chosen, faces are
mapped to standard polygons of the euclidean plane, and edges to the segment(0,1);
we recall particularly that for each edge, one of its two possible orientations is chosen
arbitrarily. We consider only locally finite decompositions, i.e. any compact set inter-
sects a finite number of cells. In each dimension, we define the space of chainsC•(�)
as theZ-module generated by the cells. The boundary operator∂ : Ck(�)→ Ck−1(�)

partially encodes the incidence relations between cells. It fulfills the boundary condition
∂∂ = 0.

We now describe thedual cellular decomposition �∗ of a cellular decomposition�
of a surfacewithout boundary. We refer to [Veb] for the general definition. Though we
formally use the parametrisation of each cell for the definition of the dual, its combina-
torics is intrinsically well defined. To each faceF ∈ �2 we define the vertexF ∗ ∈ �∗0
inside the faceF , the preimage of the origin of the euclidean plane by the parametrisa-
tion of the face. Each edgee ∈ �1, separates two faces, sayF1, F2 ∈ �1 (which may
coincide), hence is identified with a segment on the boundary of the standard polygon
corresponding toF1, respectivelyF2. We define the dual edgee∗ ∈ �∗1 as the preimage
of the two segments in these polygons, joining the origin to the point of the boundary
mapped to the middle ofe. It is a simple path lying in the facesF1 andF2, drawn be-
tween the two verticesF ∗1 andF ∗2 (which may coincide), cutting no edge bute, once
and transversely. As the surface is oriented, to the oriented edgee we can associate the
oriented dual edgee∗ such that(e, e∗) is direct at their crossing point. To each vertex
v ∈ �0, with v1, . . . , vn ∈ �0 as neighbours, we define the facev∗ ∈ �∗2 by its boundary
∂v∗ = (v, v1)

∗ + . . .+ (v, vk)
∗ + . . .+ (v, vn)

∗.

Remark 1. �∗ is a cellular decomposition of [Veb]. If we choose a parametrisation of
the cells of�∗, we can consider its dual�∗∗; it is a cellular decomposition homeomorphic
to � but the orientation of the edges is reversed. The bidual ofe ∈ �1 is the reversed
edgee∗∗ = −e (see Fig. 2).

The double � of a cellular decomposition is the union of these two dual cellular
decompositions. We will speak of ak-cell of � as ak-cell of either� or �∗.

A discretemetric � is an assignment of a positive number�(e) to each edgee ∈ �1,
its length. For convenience the edge with reversed orientation,−e, will be assigned the
same length:�(−e) := �(e). Two metrics�, �′ : �1 → (0,+∞) belong to the same
discreteconformal structure if the ratio of the lengthsρ(e) := �(e∗)

�(e)
= �′(e∗)

�′(e) , on each
pair of dual edgese ∈ �1, e

∗ ∈ �∗1 are equal.
A function f on � is a function defined on the vertices of� and of�∗. Such a

function is said to beholomorphic if, for every pair of dual edges(x, x′) ∈ �1 and
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Fig. 2. Duality

(y, y′) = (x, x′)∗ ∈ �∗1, it fulfills

f (y′)− f (y)

�(y, y′)
= i

f (x′)− f (x)

�(x, x′)
.

It is the naive discretisation of the Cauchy–Riemann equation for a functionf , which
is, in local orthonormal coordinates(x, y):

∂f

∂y
= i

∂f

∂x
.

Here, we understand two dual edges as being orthogonal.
This equation, though simple, was never considered in such a generality. It was intro-

duced by Lelong–Ferrand [LF] for the decomposition of the plane by the standard square
latticeZ2. It is also called monodiffric functions; for background on this topic, see [Duf].
Polynomials of degree two, restricted to the square lattice, give examples of monodiffric
functions. See also the works of Kenyon [Ken] and Schramm and Benjamini [BS96]
who considered more than lattices.

The usual notions of deRham cohomology are useful in this setup. We said thatk-
chains are elements of theZ-moduleCk(�), generated by thek-cells, its dual space
Ck(�) := Hom (Ck(�),C) is the space ofk-cochains. We will denote the coupling by
the usual integral and functional notations:f (x) for a functionf ∈ C0(�) on a vertex
x ∈ �0;

∫
e
α for a 1-formα ∈ C1(�) on an edgee ∈ �1; and

∫∫
F
ω for a 2-form

ω ∈ C2(�) on a faceF ∈ �2.
Thecoboundary d : Ck(�)→ Ck+1(�) is defined by the Stokes formula (with the

same notations as before):∫
(x,x′)

df := f
(
∂(x, x′)

) = f (x′)− f (x)

∫∫
F

dα :=
∮
∂F

α.

As the boundary operator splits onto the two dual complexes� and�∗, the coboundary
d also respects the direct sumCk(�) = Ck(�)⊕ Ck(�∗).

The Cauchy–Riemann equation can be written in the usual form∗df = −idf for
the followingHodge star ∗ : Ck(�)→ C2−k(�) defined by:∫

e

∗α := −ρ(e∗)
∫
e∗
α.
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We extend it to functions and 2-forms by:

∫∫
F

∗f := f (F ∗), ∗ω(x) :=
∫∫
x∗

ω.

As, by definition, for each edgee ∈ �1, ρ(e)ρ(e∗) = �(e∗)
�(e)

�(e)
�(e∗) = 1, the Hodge star

fulfills on k-forms,∗2 = (−1)k(2−k)IdCk(�).
It decomposes 1-forms into−i, respectively+i, eigenspaces, calledtype (1,0), resp.

type (0,1) forms:

C1(�) = C(1,0)(�)⊕ C(0,1)(�).

The associated projections are denoted:

π(1,0) = 1

2
(Id + i∗): C1(�)→ C(1,0)(�),

π(0,1) = 1

2
(Id − i∗): C1(�)→ C(0,1)(�).

A 1-form is holomorphic if it is closed and of type(1,0):

α ∈ �1(�) ⇐⇒ dα = 0 and ∗ α = −iα.

It is meromorphic with a pole at a vertexx ∈ �0 if it is of type (1,0) and not closed
on the facex∗. Its residue atx is defined by

Resx(α) := 1

2iπ

∮
∂x∗

α.

The residue theorem is merely a tautology in this context.
We defined ′, d ′′, the composition of the coboundary with the projections on eigen-

spaces of∗ as its holomorphic and anti-holomorphic parts:

d ′ := π(1,0) ◦ d, d ′′ := π(0,1) ◦ d
from functions to 1-forms,

d ′ := d ◦ π(0,1), d ′′ := d ◦ π(1,0)

from 1-forms to 2-forms andd ′ = d ′′ = 0 on 2-forms. They verifyd ′2 = 0 andd ′′2 = 0.
The usual discreteLaplacian, which splits onto� and�∗ independently, reads� :=

−d ∗d ∗−∗d ∗d as expected. Its formula for a functionf ∈ C0(�) on a vertexx ∈ �0,
with x1, . . . , xn as neighbours is

(�f )(x) =
n∑

k=1

ρ(x, xk) (f (x)− f (xk)) . (2.1)

As in the continuous case, it can be written in terms ofd ′ andd ′′ operators: For
functions,� = i ∗ (d ′d ′′ − d ′′d ′), in particular holomorphic and anti-holomorphic
functions are harmonic. The same result holds for 1-forms.
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In the compact case, the operatord∗ = − ∗ d∗ is the adjoint of the coboundary with
respect to the usual scalar product,(f, g) := ∑

x∈�0
f (x)ḡ(x) on functions, similarly

on 2-forms and

(α, β) :=
∑
e∈�1

ρ(e)

(∫
e

α

) (∫
e

β̄

)
on 1-forms.

It gives rise to theHodge decomposition,

Proposition 1 (Hodge theorem). In the compact case, the k-forms are decomposed into
orthogonal direct sums of exact, coexact and harmonic forms:

Ck(�) = Im d ⊕⊥ Im d∗ ⊕⊥ Ker �,

harmonic forms are the closed and coclosed ones:

Ker � = Ker d ∩ Ker d∗.

In particular the only harmonic functions are locally constant. Harmonic 1-forms are
also the sum of holomorphic and anti-holomorphic ones:

Ker � = Ker d ′ ⊕⊥ Ker d ′′.

Beware that� being disconnected, the space of locally constant functions is 2-
dimensional. The functionε which is+1 on� and−1 on�∗ is chosen as the second
basis vector.

The proof is algebraic and the same as in the continuous case. As the Laplacian
decomposes onto the two dual graphs, this result tells also that for any harmonic 1-form
on�, there exists a unique harmonic 1-form on the dual graph�∗ such that the couple
is a holomorphic 1-form on�, it’s simply α�∗ := i ∗ α�. These decompositions don’t
hold in the non-compact case; there exist non-closed and/or non-co-closed, harmonic
1-forms.

2.2. Dirichlet and Neumann problems.

Proposition 2 (Dirichlet problem). Consider a finite connected graph �, equipped
with a function ρ on the edges, and a certain non-empty set of points D marked as its
boundary. For any boundary function f ∂ : (∂�)0 → C, there exists a unique function
f , harmonic on �0 \D such that f |∂� = f ∂ .

We refer to the usual laplacian defined by Eq. (2.1).
If f ∂ = 0, the solution is the null function. Otherwise, it is the minimum of the strictly

convex, positive functionalf �→ (df, df ), proper on the non-empty affine subspace of
functions which agree withf ∂ on the boundary.

Definition 1. Given � a cellular decomposition of a compact surface with boundary
, define the double 2 :=  ∪ ̄, union with the opposite oriented surface, along
their boundary. The double �2 is a cellular decomposition of the compact surface 2.
Consider its dual �2∗ and define �∗ :=  ∩ �2∗. We don’t take into account the faces
of �2∗ which are not completely inside  but we do consider the half-edges dual to
boundary edges of � as genuine edges noted (∂�∗)1 and define (∂�∗)0 := �2∗

1 ∩ ∂ as
the set of their boundary vertices.

A function ρ on the edges of � yields an extension to �∗1 by defining ρ(e∗) := 1
ρ(e)

.
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Remark 2. �∗ is not a cellular decomposition of the surface; the half-edges dual to
boundary edges do not bound any face of�∗.

Proposition 3 (Neumann problem). Consider � a cellular decomposition of a disk,
equipped with a function ρ on its edges. Choose a boundary vertex y0 ∈ (∂�∗)0, a value
f0 ∈ C, and on the set of boundary edges e ∈ (∂�∗)1, not incident to y0, a 1-form α.

Then there exists a unique function f , harmonic on �∗ \(∂�∗)0 such that f (y0) = f0
and

∫
e
df = ∫

e
α for all e ∈ (∂�∗)1 not incident to y0.

It is a dual problem. Lete∗0 ∈ (∂�∗)1, be the edge incident toy0 ande0 ∈ (∂�)1 its
dual. Consider, on the set of boundary edgese ∈ (∂�)1 different frome0, the 1-form
defined byi ∗ α. Integrating it along the boundary, we get a functionf ∂ on (∂�)0, well
defined up to an additive constant. The Dirichlet theorem gives us a functionf harmonic
on�0 \ (∂�)0 corresponding tof ∂ . Integrating the closed 1-formi ∗ df on�∗ yields
the desired harmonic functionf .

Remark 3. The number of boundary points in� is the same as in�∗, and as every
harmonic function on�, when the surface is a disk, defines a harmonic function on�∗
such that their couple is holomorphic, unique up to an additive constant, the space of
holomorphic functions, resp. 1-forms, on the double decomposition with boundary� is
|(∂�)0|/2+ 1, resp.|(∂�)0|/2− 1 dimensional.

The theorem is true for more general surfaces than a disk but the proof is different,
see the author’s PhD thesis [M]. There are�2 versions of these theorems too.

2.3. Existence theorems. We have very similar existence theorems to the ones in the
continuous case. We begin with the main difference:

Proposition 4. The space of discrete holomorphic 1-forms on a compact surface without
boundary is of dimension twice the genus.

The Hodge theorem implies an isomorphism between the space of harmonic forms
and the cohomology group of�. It is the direct sum of the cohomology groups of�

and of�∗ and each is isomorphic to the cohomology group of the surface which is 2g

dimensional on a genusg surface. It splits in two isomorphic parts under the type(1,0)
and type(0,1) sum. As any holomorphic form is harmonic, the dimension of the space
of holomorphic 1-forms is 2g.

We can give explicit basis to this vector space as in the continuous case [Sie]. To
construct them, we begin with meromorphic forms:

Proposition 5. Let  be a compact surface with boundary. For each vertex x ∈ �0\∂♦,
and a simple pathλ on� going from x to the boundary there exists a pair of meromorphic
1-forms αx, βx with a single pole at x, with residue+1 and which have pure imaginary,
respectively real holonomies, along loops which don’t have any edge dual to an edge
of λ.

Proposition 6. Let  be a compact surface. For each pair of vertices x, x′ ∈ �0 with
a simple path λ on � from x to x′, there exists a unique pair of meromorphic 1-forms
αx,x′ , βx,x′ with only poles at x and x′, with residue+1 and−1 respectively, and which
have pure imaginary, respectively real holonomies, along loops which don’t have any
edge dual to an edge of λ.
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In both cases, the forms are(Id + i∗)df with f a solution of a Dirichlet problem
at x (andx′) for α and of a Neumann problem on the surface split open along the path
λ for β. The uniqueness in the second proposition is given by the difference: the poles
cancel out and yield a holomorphic 1-form with pure imaginary, resp. real holonomies,
so its real part, resp. imaginary part, can be integrated into a harmonic, hence constant
function. So this part is in fact null. Being a holomorphic 1-form, the other part is null
too. We refer to the author’s PhD thesis [M] for details.

As in the continuous case, it allows us to construct holomorphic forms with (no poles
and) prescribed holonomies:

Corollary 1. Let A,B ∈ Z1(�) be two non-intersecting simple loops such that there
exists exactly one edge of A dual to an edge of B (dual loops). There exists a unique
holomorphic 1-form #AB such that Re(

∫
B
#AB) = 1 and

∫
γ
#AB ∈ iR for every loop

γ which doesn’t have any edge dual to an edge of A.

We decomposeA in two pathsλyx andλxy . It gives us two 1-formsβx,y andβy,x , then

#AB := 1

2iπ
(βx,y + βy,x) (2.2)

fulfills the conditions.

2.4. The diamond♦ and its wedge product. Following [Whit], we define a wedge prod-
uct, on another complex, thediamond ♦, constructed out of the double�: Each pair
of dual edges, say(x, x′) ∈ �1 and(y, y′) = (x, x′)∗ ∈ �∗1, defines (up to homeomor-
phisms) a four-sided polygon(x, y, x′, y′) and all these constitute the faces of a cellular
complex called♦ (see Fig. 3).

x

y

x′

y′

Fig. 3. The diamond♦

On the other hand, from any cellular decomposition♦ of a surface by four-sided
polygons one can reconstruct the double�. A difference is that� may not be discon-
nected in two dual pieces� and�∗, it is so if each loop in♦ is of even length; we
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will restrict ourselves to this simpler case. This is not very restrictive because from a
connected double, refining each quadrilateral in four smaller quadrilaterals, one gets a
double disconnected in two dual pieces.

Definition 2. A discrete surface with boundary is defined by a quadrilateral cellular
decomposition ♦ of an oriented surface with boundary such that its double complex �

is disconnected in two dual parts.

This definition is a generalisation of the more natural previous Definition 1. It allows
us to consider any subset of faces of♦ as a domain yielding a discrete surface with
boundary. While any edge of� has a dual edge, a vertex of� has a dual face if and
only if it is an inner vertex. Punctured surfaces can be understood in these terms too: An
inner vertexv ∈ �0 is a puncture if it is declared as being on the boundary and its dual
facev∗ removed from�2.

We construct a discrete wedge product, but while the Hodge star lives on the double
�, the wedge product is defined on the diamond♦: ∧ : Ck(♦)×Cl(♦)→ Ck+l (♦). It
is defined by the following formulae, forf, g ∈ C0(♦), α, β ∈ C1(♦) andω ∈ C2(♦):

(f · g)(x) := f (x) · g(x) for x ∈ ♦0,∫
(x,y)

f · α := f (x)+ f (y)

2

∫
(x, y)α for (x, y) ∈ ♦1,

∫∫
(x1,x2,x3,x4)

α ∧ β := 1

4

4∑
k=1

∫
(xk−1,xk)

α

∫
(xk,xk+1)

β −
∫

(xk+1,xk)

α

∫
(xk,xk−1)

β

∫∫
(x1,x2,x3,x4)

f · ω := f (x1)+f (x2)+f (x3)+f (x4)

4

∫∫
(x1,x2,x3,x4)

ω

for (x1, x2, x3, x4) ∈ ♦2.

Lemma 1. d♦ is a derivation with respect to this wedge product.

To take advantage of this property, one has to relate forms on♦ and forms on�where
the Hodge star is defined. We construct anaveraging map A from C•(♦) to C•(�).
The map is the identity for functions and defined by the following formulae for 1 and
2-forms:

∫
(x,x′)

A(α♦) := 1

2




∫
(x,y)

+
∫

(y,x′)

+
∫

(x,y′)

+
∫

(y′,x′)


α♦, (2.3)

∫∫
x∗

A(ω♦) := 1

2

d∑
k=1

∫∫
(xk,yk,x,yk−1)

ω♦, (2.4)

where notations are made clear in Fig. 4. With this definition,d�A = Ad♦, but the map
A is neither injective nor always surjective, so we can neither define a Hodge star on♦
nor a wedge product on�. An element of the kernel ofA is given for example byd♦ε,
whereε is+1 on� and−1 on�∗.
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x x

x1

x2

y2

y1
yd

xd

(2.3) (2.4)

y

y′

x′

Fig. 4. Notations

On the double� itself, we have pointwise multiplication between functions, functions
and 2-forms, and we construct anheterogeneous wedge product for 1-forms: withα, β ∈
C1(�), defineα ∧ β ∈ C1(♦) by

∫∫
(x,y,x′,y′)

α ∧ β :=
∫

(x,x′)

α

∫
(y,y′)

β +
∫

(y,y′)

α

∫
(x′,x)

β.

It verifiesA(α♦)∧A(β♦) = α♦∧β♦, the first wedge product being between 1-forms on
� and the second between forms on♦. Of course, we also have for integrable 2-forms:

∫∫
♦2

ω♦ =
∫∫
�2

A(ω♦) =
∫∫
�∗2

A(ω♦) = 1

2

∫∫
�2

A(ω♦).

And for a functionf ,
∫∫
♦2

f · ω♦ = 1

2

∫∫
�2

A(f · ω♦) = 1

2

∫∫
�2

f · A(ω♦)

wheneverf · ω♦ is integrable.
Explicit calculation shows that for a functionf ∈ C0(�), denoting byχx the char-

acteristic function of a vertexx ∈ �0, (�f )(x) = − ∫∫
�2

f · ∗�χx. So by linearity one
getsWeyl’s lemma: a functionf is harmonic iff for any compactly supported function
g ∈ C0(�), ∫∫

�2

f ·�g = 0.

One checks also that the usual scalar product on compactly supported forms on�

reads as expected:

(α, β) :=
∑
e∈�1

ρ(e)

(∫
e

α

) (∫
e

β̄

)
=

∫∫
♦2

α ∧ ∗β̄.
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In some cases, for example, the decomposition of the plane by lattices, the averaging
mapA is surjective. We define the inverse mapB : C1(�) → C1(♦)/Ker A and
�♦ := d♦B ∗ d and we then have

Proposition 7 (Green’s identity). For two functionsf, g on a compact domainD ⊂ ♦2,
∫∫

D

(f ·�♦g − g ·�♦f )−
∮
∂D

(f · B∗dg − g · B∗df ) = 0.

This means that for any representatives of the classes inC1(♦)/Ker A the equality
holds, but each integral separately is not well defined on the classes.

2.5. Cauchy integral formula.

Proposition 8. Let � a double map and D a compact region of ♦2 homeomorphic
to a disc. Consider an interior edge (x, y) ∈ D; there exists a meromorphic 1-form
νx,y ∈ C1(D \ (x, y)) such that the holonomy

∮
γ
νx,y along a cycle γ in D only depends

on its homology class in D \ (x, y), and
∮
∂D

νx,y = 2iπ .

Consider the meromorphic 1-formµx,y = αx+αy ∈ C1(�∩D)defined by existence
Theorem 5 onD. It is uniquely defined up to a global holomorphic form onD. Its only
poles arex and y of residue+1 so it verifies a similar holonomy property, but on
� ∩D \ (x, y). We define a 1-formνx,y on♦ ∩D \ R, such thatµx,y = Aνx,y in the
following way: Let

∫
(x,a)

νx,y := λ, a fixed value, and for an edge(x′, y′) ∈ D1, with

x′ ∈ �0, y′ ∈ �∗0, given two paths inD, λx
x′ ∈ C1(�) andλy

′
y ∈ C1(�

∗) respectively
from x′ to x and fromy to y′,

∫
(x′,y′)

νx,y :=
∫
λx
x′
µx,y +

∫
(x,A)

νx,y +
∫
λ
y′
y

µx,y −
∮
[γ ]

µx,y,

where[γ ] is the homology class ofλx
x′ +(x, y)+λ

y′
y +(y′, x′) on the punctured domain.

νx,y is the discrete analogue ofdz
z−z0

with z0 = (x, y). It is closed on every face of
D \ R. By definition, the average ofνx,y on the double map is the meromorphic form
Aνx,y = µx,y .

It allows us to state

Proposition 9 (Cauchy integral formula). Let D be a compact connected subset of♦2
and (x, y) ∈ D1 two interior neighbours of D with a non-empty boundary. For each
function f ∈ C0(�),

∮
∂D

f · νx,y =
∫∫

D

d ′′f ∧ µx,y + 2iπ
f (x)+ f (y)

2
.

The proof is straightforward: The edge(x, y) bounds two faces inD, letR = (abcd)

the rectangle made of these faces (see Fig. 5).
OnD \ R,

d♦(f · νx,y) = d♦f ∧ νx,y + f · d♦νx,y .
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R

D

x

y

a

bc

d

Fig. 5. The rectangleR in a domainD defined by an edge(x, y) ∈ ♦1

The(1,0) part ofdf disappears in the wedge product against the holomorphic form
µx,y , so we can substitute

d♦f ∧ νx,y = d�f ∧ Aνx,y = d ′′f ∧ µx,y.

Integrating overD, asνx,y is closed onD \ R, we get:∮
∂D

f · νx,y =
∫∫

D\R
d ′′f ∧ µx,y +

∮
∂R

f · νx,y .

Explicit calculus shows that
∮
∂R

f · νx,y =
∫∫

R
d ′′f ∧ µx,y + 2iπ f (x)+f (y)

2 . ��
Remark 4. Since for allα ∈ C1(♦), the locally constant functionε defined byε(�) =
+1, ε(�∗) = −1, verifiesε · α = 0, an integral formula will give the same result for a
functionf andf + λε. Therefore such a formula can not give access to the value of the
function at one point but only to its average value at an edge of♦.

Corollary 2. For f ∈ �(�) a holomorphic function, the Cauchy integral formula reads,
with the same notations,

f (x)+ f (y)

2
= 1

2iπ

∮
∂D

f · νx,y .

The Green function on the lattices (rectangular, triangular, hexagonal, Kagomé,
square/octogon) is exactly known in terms of hyperelliptic functions ([Hug] and ref-
erences in Appendix 3). As the potential is real, it means that the discrete Dirichlet
problem on these lattices can be exactly solved this way, once the boundary values on
the graph and its dual are given: if these values are real and� and imaginary on its
dual, the solution is real on� and pure imaginary on the dual so the contributionsf (x)

andf (y) are simply the real and imaginary parts of the contour summation respectively.
Unfortunately, this pair of boundary values are not independant but related by a Dirichlet
to Neumann problem [CdV96].

3. Criticality

The term criticality, as well as our motivation to investigate discrete holomorphic func-
tions, comes from statistical mechanics, namely the Ising model. A critical temperature
is defined that restrains the interaction constants, interpreted here as lengths. We will
see these geometrical constraints in Sect. 3.3.

Technically, as far as the continuous limit theorem is concerned, a weaker property,
calledsemi-criticality is sufficient, it gives us a product between functions and forms.
Moreover, at criticality, this product will be compatible with holomorphy.
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3.1. Semi-criticality. DefineCθ := {(r, t) : r ≥ 0, t ∈ R/θZ}/(0, t) ∼ (0, t ′) with the
metricds2 := dr2+ r2dt2 as thestandard cone of angle θ > 0 [Tro].

The cones can be realized by cutting and pasting paper, demonstrating their local
isometry with the euclidean complex plane.

Let  be a compact Riemann surface andP ⊂  a discrete set of points. Aflat
Riemannian metric with P as conic singularities is an atlas{ZUx : Ux → U ′ ⊂
Cθx >}x∈P of open setsUx ⊂ , a neighbourhood of a singularityx ∈ P , into open
sets of a standard cone, such that the singularity is mapped to the vertex of the cone and
the changes of coordinatesCU,V : U ∩ V → C are euclidean isometries.

There is a lot of freedom allowed in the choice of a flat metric for a given closed
Riemann surface: Any finite setP of points on with a set of anglesθx > 0 for
everyx ∈ P such that 2πχ() = ∑

x∈P (2π − θx), defines uniquely a Riemannian flat
metric on with these conic singularities and angles [Tro].

Consider such a flat riemannian metric on a compact Riemann surface and(�, �)

a double cellular decomposition of as before.

Definition 3. (�, �) is a semi-critical map for this flat metric if the conic singularities
are among the vertices of� and♦ can be realized such that each face (x, y, x′, y′) ∈ ♦2
is mapped, by a local isometry Z preserving the orientation, to a four-sided poly-
gon (Z(x), Z(y), Z(x′), Z(y′)) of the euclidean plane, the segments [Z(x), Z(x′)] and
[Z(y), Z(y′)] being of lengths �(x, x′), �(y, y′) respectively and forming a direct or-
thogonal basis. We name δ(�, �) the supremum of the lengths of the edges of ♦.

The local isometric mapsZ are discrete holomorphic.
Voronoï and Delaunay complexes [PS85] are interesting examples of semi-critical

dual complexes. Any discrete set of pointsQ on a flat Riemannian surface, containing
the conic singularities, defines such a pair:

We first define two partitionsV andD of  into sets of three types: 2-sets, 1-sets and
0-sets, and then show that they are in fact dual cellular complexes. They are defined by
a real positive functionmQ on the surface, themultiplicity.

Consider a pointx ∈ ; as the setQ is discrete, the distanced(x,Q) is realized
by geodesics of minimal length, generically a single one. LetmQ(x) ∈ [1,∞) be the
number of such geodesics. IfmQ(x) = 1, there exists a vertexπ(x) ∈ Q such that the
shortest geodesic fromx to π(x) is the only geodesic fromx to Q with such a small
length.

The Voronoï 2-set associated to a vertexv in Q, is π−1(v), that is to say the set of
points of closer to this vertex than to any other vertex inQ. Each 2-set ofV is a
connected component ofm−1

Q (1).

Likewise, the 1-sets are the connected components ofm−1
Q (2). They are associated

to pairs of points inQ.
The 0-sets are the connected components ofm−1

Q ([3,+∞)). Generically, they are
associated to three points inQ.

V is a cellular complex (see below) and the complexD is its dual (generically a
triangulation), its vertices are the points inQ, its edges are segments(x, x′) for x, x′ ∈ Q

such that there exist points equidistant and closer to them.

Proposition 10. The Voronoï partition, on a closed Riemann surface with a flat met-
ric with conic singularities, of a given discrete set of points Q containing the conic
singularities, is a cellular complex.
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We have to prove that 2-sets are homeomorphic to discs, 1-sets are segments and
0-sets are points.

First, 2-sets are star-shaped, for every pointx closer tov ∈ Q than to any other
point inQ, along a unique portion of a geodesic, the whole segment[x, v] has the same
property.

2-sets are open, ifx is closer tov ∈ Q than to any other point inQ, as it is discrete,
d(x,Q \ v)− d(x, v) > 0. By triangular inequality, every point in the open ball of this
radius centred atx is closer tov than to any other point inQ.

So 2-sets are homeomorphic to discs.
Let x be a point in a 1-set. It is defined by exactly two portions of geodesicsD,D′

from x to y, y′ ∈ Q (they may coincide). By definition, the open sphere centred atx

containingD ∪ D′ doesn’t contain any point ofQ so it can be lifted to the universal
covering, where the usual rules of euclidean geometry tell us that the set of points
equidistant toy andy′ aroundx is a submanifold of dimension 1. As the surface is
compact, if it is not a segment, it can only be a circle. Then, it’s easy to see that the
surface is homeomorphic to a 2-sphere and thaty andy′ are the only points inQ. But
this is impossible because an euclidean metric on a 2-sphere has at least three conic
singularities [Tro].

The same type of arguments shows that 0-sets are isolated points.

Fig. 6. The Voronoï/Delaunay decompositions associated to two points on a genus two surface

Proposition 11. Such Delaunay/Voronoï dual complexes are semi-critical maps of the
surface. Hence any Riemann surface admits semi-critical maps.

The edge inV dual to(x, x′) ∈ D1 is a segment of their mediatrix so is orthogonal to
(x, x′). Hence, equipped with the Euclidean length on the edges,(V ,D) is a semi-critical
map.

Remark 5. Apart from Voronoï/Delaunay maps, circle packings [CdV90] give another
very large class of examples of interesting semi-critical decompositions (see Fig. 7).

The semi-criticality of a double map gives a coherent system of anglesφ in (0, π)
on the oriented edges of�. An edge(x, x′) ∈ �1 is the diagonal of a certain diamond;
φ(x, x′) is the angle of that diamond at the vertexx. In particular,φ(x, x′) #= φ(x′, x) a
priori. They verify that for every diamond, the sum of the angles on the four directions
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Fig. 7. Circle packing, the dual vertex to a face

of the two dual diagonals is 2π (see Fig. 8). Then the conic angle at a vertex is given by
the sum of the angles over the incident edges.

x

y

x′

y′

φ(x, x′)

φ(y, y′)

φ(y′, y)
φ(x′, x)

Fig. 8. A system of angles for a semi-critical map

3.2. Continuous limit. We state the main theorem, a converging sequence of discrete
holomorphic functions on a refining sequence of semi-critical maps of the same Riemann
surface, converges to a holomorphic function. Precisely:

Theorem 3. Let  be a Riemann surface and (k�, �k)k∈N a sequence of semi-critical
maps on it, with respect to the same flat metric with conic singularities. Assume that the
lengths δk = δ(k�) tend to zero and that the angles at the vertices of all the faces of the
k♦ are in the interval [η,2π − η] with η > 0.

Let (fk)k∈N be a sequence of discrete holomorphic functions fk ∈ �(k�), such that
there exists a function f on  which verifies, for every converging sequence (xk)k∈N of
points of  with each xk ∈ k�0, f

(
limk(xk)

) = limk

(
fk(xk)

)
, then the function f is

holomorphic on .

Such a refining sequence is easy to produce (see Fig. 9) but the theorem takes into
account more general sequences.A more natural refining sequence, which mixes the two
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Fig. 9. Refining a semi-critical map

dual sequences is given by a series of tile centering procedures [GS87]: If one calls♦/2
the cellular decomposition constructed from♦ by replacing each tile by four smaller
ones of half its size, and�(♦/2), �∗(♦/2) the double cellular decomposition it defines,
one has�(♦/2) = �(♦)“ ∪ ”�∗(♦) and the interesting following sequence:

�(♦) → ♦→ �(♦/2) → ♦/2→ · · · → ♦/2n → . . .

↗ ↘ ↗ ↘ ↗ ↘
�∗(♦) �∗(♦/2) · · · · · ·

. (3.1)

The horizontal arrows correspond to tile centering procedures, and the ascending, re-
spectively descending arrows, to tile centering, resp. edge centering procedures. This
sequence is not that exciting though since locally, the graph rapidly looks like a rectan-
gular lattice. More interesting inflation rules staying at criticality can be considered too
(see Fig. 21).

The demonstration of the continuous limit theorem needs three lemmas:

Lemma 2. Let (fk)k∈N be a sequence of functions on an open set � ⊂ C such that there
exists a function f on � verifying, for every converging sequence (xk)k∈N of points of
�, f

(
limk(xk)

) = limk

(
fk(xk)

)
. Then the function f is continuous and uniform limit

of (fk) on any compact.

Taking a constant sequence of points, we see that(fk) converges tof pointwise. So
with the notations of the theorem,(fk(xk)) converges tof (x) and(fl(xk))l∈N to f (xk).
Combining the two,(f (xk)) converges tof (x) sof is continuous. If the convergence
was not uniform on a compac sett, then there would exist a converging sequence(xk)

with (fk(xk)− f (xk)) not converging to zero. Butf is continuous inx = lim(xk) and
(fk(xk)) converges tof (x), which, combined, contradicts the hypotheses.

Lemma 3. Let (ABCD) be a four sided polygon of the Euclidean plane such that its
diagonals are orthogonal and the vertices angles are in [η,2π − η] with η > 0. Let
(M,M ′) be a pair of points on the polygon. There exists a path on (ABCD) from M to
M ′ of minimal length �. Then

MM ′

�
≥ sinη

4
.
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It is a straightforward study of a several variables function. If the two points are on the
same side,MM ′ = � and sinη ≤ 1. If they are on adjacent sides, the extremal position
with MM ′ fixed is when the triangleMM ′P , with P the vertex of(ABCD) between
them, is isocel. The angle inP being less thanη, MM ′

�
≥ sin η

2 >
sinη

2 . If the points are

on opposite sides, the extremal configuration is given by Fig. 10.2., whereMM ′
�
= sinη

4 .

η

M

M ′

1.M,M ′ on adjacent sides

η η

M ′

M

2.M,M ′ on opposite sides

Fig. 10. The two extremal positions

Lemma 4. Let (�, �) be any double cellular decomposition and α ∈ C1(♦) a closed
1-form. The 1-form f · α is closed for any holomorphic function f ∈ �(�) if and only
if α is holomorphic.

Just check.

Proof of Theorem 3. We interpolate each functionfk from the discrete set of pointsk�0
to a functionf̄k of the whole surface, linearly on the edges ofk♦ and harmonicly in its
faces.

Let (ζk) be a converging sequence of points in. Eachζk is in the adherence of a
face ofk♦. Let xk, yk be the minimum and maximum of Refk around the face. By the
maximum principle for the harmonic function Rēfk,

Refk(xk) ≤ Re f̄k(ζk) ≤ Refk(yk).

Moreover, the distance betweenxk andζk is at most 2δk, as well as foryk. It implies that
(xk) and(yk) converge tox = lim(ζk), (fk(xk)) and(fk(yk)) to f (x), and(Re f̄k(ζk))
to Ref (x); and similarly for its imaginary part. So, by Lemma 2, the functionf is
continuous, and is the uniform limit of(f̄k) on every compact set. In particular, it is
bounded on any compact.

By the theorem of inessential singularities, sincef is continuous hence bounded on
any compact set, and that conic singularities form a discrete set in, to show thatf is
holomorphic, we can restrict ourselves to each elementU ⊂  of a euclidean atlas of
thepunctured surface (without conic singularities). We have an explicit coordinatez on
U .

Let γ be a homotopically trivial loop inU of finite length�. We are going to prove
that

∮
γ
f dz = 0. The theorem of Morera then states thatf is holomorphic.

Let us fix the integerk. By application of Lemma 3 on every face ofk♦ crossed byγ ,
we construct a loopγk ∈ C1(

k♦), homotopic toγ , of length�(γk) ≤ 4�
sinη (see Fig. 11).
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As the diameter of a face ofk♦ is at most 2δk, all these faces are contained in the tubular
neighbourhood ofγ of diameter 4δk. Its area is 4δk� and it contains the setC of 
betweenγ andγk.

Fig. 11. The discretised path

Assumef is of classC1, on the compactC, |∂̄f | is bounded by a numberM.Applying
Stockes formula tof dz,

∣∣∣
∮
γ

f (z)dz−
∮
γk

f (z)dz

∣∣∣ ≤
∫∫

C

|∂̄f (z)|dz ∧ dz̄ ≤ M × 4δk�.

So
∮
γ
f (z)dz = lim

∮
γk

f (z)dz. Taking a sequence of classC1 functions converging
uniformly tof onC, we prove the same result forf simply continuous because all the
paths into account are of bounded lengths.

As (f̄k) converges uniformly tof on C and the paths are of bounded lengths, we
also have that(| ∮

γk

(
f̄k(z)− f (z)

)
dz|)k∈N tends to zero. But because the interpolation

is linear on edges ofk♦,
∮
γk

f̄k(z)dz =
∮
γk

fkdZ, the second integral being the coupling

between a 1-chain and a 1-cochain ofk♦. But sincefk anddZ are discrete holomorphic,
fkdZ is a closed 1-form, and

∮
γk

fkdZ = 0. So
∮
γk

fk(z)dz tends to zero and

∮
γ

f (z)dz = 0. ��

3.3. Criticality.

Proposition 12. Let α be a holomorphic 1-form, f · α is holomorphic for any holomor-
phic function if and only if

∫
(y,x)

α = ∫
(x′,y′) α for each pair of dual edges

(x, x′), (y, y′).
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Let (x, y, x′, y′) ∈ ♦2 be a face of♦, the Cauchy–Riemann equation forf · α, on
the couple(x, x′) and(y, y′) is the nullity of:

∫
(y,y′)

f · α

�(y, y′)
− i

∫
(x,x′)

f · α

�(x, x′)
= 1

�(y, y′)

(
f (x)+ f (y)

2

∫
(y,x)

α + f (x)+ f (y′)
2

∫
(x,y′)

α

+ f (x′)+ f (y)

2

∫
(y,x′)

α + f (x′)+ f (y′)
2

∫
(x′,y′)

α

)

− i
1

�(x, x′)

(
f (x)+ f (y)

2

∫
(x,y)

α + f (x′)+ f (y)

2

∫
(y,x′)

α

+ f (x)+ f (y′)
2

∫
(x,y′)

α + f (x′)+ f (y′)
2

∫
(y′,x′)

α

)

=
( ∫
(y,x)

α +
∫

(y′,x′)

α

)
f (y′)− f (y)

�(y, y′)
,

after having developed, used the holomorphy ofα, then the holomorphy off .
So to be able to construct out of the holomorphic 1-formsdZ given by local flat

isometries, and a holomorphic function a holomorphic 1-formf dZ, we have to impose
that for each face(x, y, x′, y′) ∈ ♦2, Z(x)− Z(y) = Z(y′)− Z(x′). Geometrically, it
means that each face of the graph♦ is mapped byZ to a parallelogram inC. But as the
diagonals of this parallelogram are orthogonal, it is a lozenge (or rhombus, or diamond).

Definition 4. A double (�, �) of a Riemann surface  is critical if it is semi-critical and
each face of ♦2 are lozenges. Let δ(�) be the common length of their sides.

Remark 6. This has an intrinsic meaning on, the faces of♦ are genuine lozenges on
the surface and every edge of� can be realized by segments of length given by�, two
dual edges being orthogonal segments.

Another equivalent way to look at criticality can be useful: a double(�, �) is critical if

there exists an applicationZ : ̃ \ P → C from the universal covering of the punctured
surface \ P for a finite setP ⊂ �0 into C identified to the oriented Euclidean plane
R2 such that

– the image of an edgea ∈ �̃1 is a linear segment of length�(a),
– two dual edges are mapped to a direct orthogonal basis,
– Z is an embedding out of the vertices,
– there exists a representationρ of the fundamental groupπ1( \ P) into the group of

isometries of the plane respecting orientation such that,

∀γ ∈ π1( \ P), Z ◦ γ = ρ(γ ) ◦ Z,

– and the lengths of all the segments corresponding to the edges of♦ are all equal to
the sameδ > 0.
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The criticality of a double map gives a coherent system of anglesφ in (0, π) on the
unoriented edges of�,φ(x, x′) is the angle in the lozenge for which(x, x′) is a diagonal,
at the vertexx (or x′). They verify that for every lozenge, the sum of the angles on the
dual diagonals isπ . Then the conic angle at a vertex is given by the sum of the angles
over the incident edges.

Every discrete conformal structure(�, �) defines a conformal structure on the asso-
ciated topological surface by pasting lozenges together according to the combinatorial
data (though most of the vertices will be conic singularities). Conversely,

Theorem 4. Every closed Riemann surface accepts a critical map.

Proof. We first produce critical maps for cylinders of any modulus: Consider a row of
n squares and glue back its ends to obtain a cylinder, its modulus, the ratio of the square
of the distance from top to bottom by its area is1

n
.

Stackingm such rows upon each other, one gets a cylinder of modulusm
n

.
Squares can be bent into lozenges yielding a continuous family of cylinders of moduli

ranging from zero to2
n

(see Fig. 12). Hence we can get cylinders of any modulus.

Fig. 12. Two bent rows

Dehn twists can be performed on these critical cylinders, see Fig. 13.

φ

θ

2π cosθ
n

Fig. 13. Performing a Dehn twist

Gluing three cylinders together along their bottom (n has to be even), one can produce
trinions of any modulus (see Fig. 14) and these trinions can be glued together according
to any angle. Hence, every Riemann surface can be so produced [Bus].��
Remark 7. An equilateral surface is a Riemann surface which can be triangulated by
equilateral triangles with respect to a flat metric with conic singularities. Equilateral
surfaces are the algebraic curves overQ̄ [VoSh] so are dense among the Riemann surfaces.
Cutting every equilateral triangle into nine, three times smaller, triangles (see Fig. 15),
one can couple these triangles by pairs so that they form lozenges, hence a critical map.

In Figs. 16–19 are some examples of critical decompositions of the plane. In Fig. 20,
a higher genus example, found in Coxeter [Cox1], of the cellular decomposition of a
collection of handlebodies (the genus depends on how the sides are glued pairwise) by
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Fig. 14. Gluing three cylinders into a trinion

Fig. 15. An equilateral triangle cut in nine yielding lozenges

ten regular pentagons, the centre is a branched point of order three; together with its
dual, they form a critical map. It is the case for any cellular decomposition by just one
regular tile when its vertices are co-cyclic. This decomposition gives rise to a critical
sequence using the Penrose inflation rule [GS87]. Figure 21 illustrates this inflation rule
sequence on a simpler genus two example where each outer side has to be glued with
the other parallel side.

3.4. Physical interpretation.

Theorem 5. A translationally invariant discrete conformal structure (�, ρ) on � the
double square or triangular/hexagonal lattices decomposition of the plane or the genus
one torus, is critical and flat if and only if the Ising model defined by the interaction
constants Ke := 1

2Arcsinhρe on each edge e ∈ �1 is critical as usually defined in
statistical mechanics [McCW].

Proof. We prove it by solving another problem which contains these two particular
cases, namely the translationally invariant square lattice with period two [Yam]. At a
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Fig. 16. A 1-parameter family of critical deformations of the square lattice

Fig. 17. A 2-parameters family of critical deformations of the triangular/hexagonal lattices. This family, key
to the solution of the triangular Ising model, induced Baxter to set up the Yang–Baxter equation [Bax]. Our
notion of criticality fits beautifully into this framework
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Fig. 18. The order 5 Penrose quasi crystal
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Fig. 19. Lozenge patchworks

Fig. 20. Higher genus critical handlebody

d)a) b) c)

Fig. 21. Sequence of critical maps of a genus two handlebody using Penrose inflation rule
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particular vertex, the flat critical condition on the four conformal parameters is:

4∑
i=1

arctanρi = π,

which is obviously invariant by all the symmetries of the problem, including duality.
Whenρi = ρi+2, we get the usual period one Ising model criticality on the square lattice

sinh 2Kh sinh 2Kv = 1,

and likewise when one of the four parameters degenerates to zero or infinity, the three
remaining coefficients fulfill

sinh 2KI sinh 2KII sinh 2KIII = sinh 2KI + sinh 2KII + sinh 2KIII

which is (a form of) the criticality condition for the triangular/hexagonal Ising model.
The case shown in Fig. 16 occurs whenρ1 = ρ3 = 1, implyingρ2ρ4 = 1. ��

We see here that flat criticality, when the angles at conic singularitites are multiples
of 2π , is more meaningful than criticality in general. This theorem is important because
it shows that statistical criticality is meaningful even at the finite size level. It is well
known [KW] that for lattices, it corresponds to self-duality, which has a meaning for finite
systems; here we see that self-duality corresponds to a compatibility with holomorphy.
In a sense, our notion of criticality defines self-duality for more complex graphs than
lattices. Furthermore, we will see in Sect. 4 that criticality implies the existence of
a discrete massless Dirac spinor, which is the core of the Ising model. Although we
saw that criticality implies a continuous limit theorem, the thermodynamic limit is not
necessary for criticality to be detected, and to have an interesting meaning.

It is easy to produce higher genus flat critical maps and compute their critical tem-
perature, the examples in Figs. 20–21 have four kinds of interactions corresponding to
the diagonals of the two kinds of quadrilateral tiles. They are critical when the angles of
the quadrilaterals areπ5 ,

2π
5 , 3π

5 , and4π
5 , corresponding to Ising interactions

sinh 2Kn = tan
nπ

10
. (3.2)

The author had made no attempt to verify these values numerically.
A general way is, considering a critical genus one torus made up of a translationally

invariant lattice, to cut two parallel segments of equal length and seam them back,
interchanging their sides. This creates two conic singularities where an extra curvature
of −2π is concentrated at each point, yielding a genus two handlebody. Repeating the
process, we may produce critical handlebodies of arbitrarily large genus if we start with
a very fine mesh. One has to beware that our continuous limit theorem applies only
to fixed genus, it cannot grow with the refinement of the mesh. This explains why the
union-jack lattice (the square lattice and its diagonals) or the three dimensional Ising
model, which can be modelled as a genusmnp surface for a 2m×2n×2p cubic network,
are beyond the scope of our technique as far as a continuous limit theorem is concerned.
With this restriction in mind, we see that both the existence and the value of a critical
temperature is essentially a local property and neither depends on the genus nor on the
modulus of the handlebody. It is not the case for more interesting quantities such as the
partition function, which can be obtained in principle from the discrete Dirac spinor that
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Fig. 22. The diamond graph of a critical labyrinth lattice

criticality provides, defined in Sect. 4. But such a calculus is beyond the scope of this
article.

Apart from the standard lattices, the critical temperature of other well known graphs
can be computed using our method, for example the labyrinth [BGB], whose diamond is
pictured in Fig. 22, has the topology of the square lattice but has five different interactions
strengths controlled by two binary words, labelling the columns and rows by 0’s and 1’s.
And also new ones such as the “street graph” depicted in Fig. 23. Its double row transfer
matrix appears to be the product of three commuting transfer matrices, two triangular
and a square one.

Other cases such as the Kagomé [Syo] or more generally lattices of chequered
type [Uti] can be handled using a technique called electrical moves [CdV96] which
enables us to move around, and causes appearing or disappearing conic singularities of
a flat metric. This will be the subject of a subsequent article, explaining the relationship
between discrete holomorphy, electrical moves and knots and links. These electrical
moves act in the space of all the graphs with discrete conformal structures in a similar
way to that of the Baxterisation processes in the spectral parameter space of an integrable
model (see [AdABM]).We are going to see that the link with statistical mechanics is even
deeper than simply pointing out a submanifold of critical systems inside the huge space
of all Ising models, as the similarity with the continuous case extends to the existence
of a discrete Dirac spinor near criticality.
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Fig. 23. The “street” lattice

3.5. Polynomial ring.

Definition 5. Let (�, �) be a critical map. In a given flat map Z : U → C on the simply
connected U , choose a vertex z0 ∈ �0, and for a holomorphic function f , define the
holomorphic functions f † and f ′ by the following formulae:

f †(z) := ε(z)f̄ (z),

where f̄ denotes the complex conjugate and ε(�) = +1, ε(�∗) = −1,

f ′(z) := 4

δ2

(∫ z

z0

f †dZ

)†

.

See [Duf] for similar definitions. Notice thatf ′ is defined up toε if one changes the
base point.

Proposition 13. Let (�, �)be a critical map. In a given flat map Z : U → C on the
simply connected U , for every holomorphic function f ∈ �(�), df = f ′dZ. We hence
call f ′ the derivative of f .

Consider an edge(x, y) ∈ ♦1, x ∈ �0, y ∈ �∗0,

f ′(y) = 4

δ2

(∫ x

z0

f †dZ +
∫ y

x

f †dZ

)†y

= −f ′(x)+ 4

δ2

(
f̄ (x)− f̄ (y)

2
(Z(y)− Z(x))

)†y

= −f ′(x)− 2

δ2 (f (x)− f (y))(Z̄(y)− Z̄(x)).

So
∫
(x,y)

f ′dZ = −f (x)−f (y)

δ2 (Z̄(y)− Z̄(x))(Z(y)− Z(x)) = f (y)− f (x).
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Definition 6. Let U be a simply connected flat region and z0 ∈ U . Define inductively
the holomorphic functions Zk(z) := ∫ z

z0

1
k
Zk−1dZ given Z0 := 1. As the space of

holomorphic functions on U is finite dimensional, these functions are not free; let PU

be the minimal polynomial such that PU(Z) = Zn + . . . = 0.

Conjecture 6. The space of holomorphic functions onU , convex, is isomorphic to
C[Z]/PU .

We won’t define here the notion of convexity, see [CdV96]. The question is whether
the set(Zk) generates the space of holomorphic functions. The problem is that zeros are
not localised, and as the power ofZk increases, the set of its zeros spread on the plane
and get out ofU . Figure 24 is an example on the unit square lattice withU the square
[−10,10]⊕ [−10,10]i, the degree increases withk until 16 where four zeros get out of
the square. So a definition of the degree of a function by a Gauss formula is delicate.

43

Z15 and its zeros Z16 and its zeros

Fig. 24. The zeros ofZ16 get out of the square[−10,10] ⊕ [−10,10]i

4. Dirac Equation

Although we believe our theory can be applied to a lot of different problems, our moti-
vation was to shed new light on statistical mechanics and the Ising model in particular.
This statistical model has been linked with Dirac spinors since the work of Kaufman [K]
and Onsager and Kaufman [KO]. We refer among others to [McCW81,SMJ,KC]. Hence
we are interested in setting up a Dirac equation in the context of discrete holomorphy.
To achieve this goal we first have to define the discrete analogue of the fibre bundle
on which spinors live. We therefore have to define a discrete spin structure. Physics
provides us with a geometric definition [KC] based on paths in a certainZ2-homology,
that we generalise to our need (higher genus, boundary, arbitrary topology). We begin
by showing that such an object in the continuum is indeed a spin structure, then define
the discrete object. We then set up the Dirac equation for discrete spinors, show that
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it implies holomorphy and that the existence of a solution is equivalent to criticality.
The Ising model gives us an object which satisfies the discrete Dirac equation, namely
the fermion,C = σµ as defined in [KC], corresponding to a similar object defined
previously by Kaufman [K]. It fulfills the Dirac equation at criticality, but also off crit-
icality, corresponding to amassive Dirac spinor. We will end this article by describing
off-criticality, as defined by the author’s Ph.D. advisor, Daniel Bennequin.

4.1. Universal spin structure. A spin structure [Mil] on a principal fibre bundle(E,B)

over a manifoldB, with SO(n) as a structural group, is a principal fibre bundle(E′, B),
of structural group Spin(n), and a mapf : E′ → E such that the following diagram is
commutative:

E′ × Spin(n)→ E′
↘

↓ f × λ ↓ f B

↗
E × SO(n) → E

whereλ is the standard 2-fold covering homomorphism from Spin(n) to SO(n).
In this paper we consider only spin structures on the tangent bundle of a surface. On

a generic Riemann surface, there is not a canonical spin structure. We are going to
describe a surfacê, 22−χ()-fold covering of, on which there exists a preferred spin
structure. It allows us to define every spin structure on as a quotient of this universal
spin structure. We will treat the continuous case and then the discrete case.

Definition 7. Let  be a differentiable surface with a base-point y0; ̂ is the set of
pairs (z, [λ]2), where z ∈  is a point and [λ]2 the homology of a path λ from y0 to z

considered in the relative homology H1(, {y0, z})⊗ Z2.

̂ is the 22−χ() covering associated to the intersectionH of the kernels of all the
homomorphisms fromπ1() to Z2, that is to say the quotient of the universal covering
by the subgroupH ⊂ π1() of loops whose homology is null modulo two.

Choosev0 a tangent vector aty0. For each pointz ∈ , definez :=  \ {y0, z} �
S1�S1, the blown up of aty0 andz (add only one circle in the casey0 = z). Consider
the set of oriented paths inz, from the point corresponding to the vectorv0 at y0 to
the directions atz (the vectorv0 is needed only whenz = y0). Define an equivalence
relation∼z (see Fig. 25) on this set by stating that two pathsλ, λ′ are equivalent if and
only if λ− λ′ is a cycle and[λ− λ′]2 = 0 in the homologyH1( \ {z},Z2).

z
z

v0

2. z = y01. z #= y0

Fig. 25. Paths of different classes with respect to∼z for z #= y0 andz = y0
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Definition 8. The universal spin structure S of  is the set of pairs (z, [λ]∼z ), with
z ∈  and [λ]∼z the ∼z-equivalence class of the path λ from y0 to z in z.

Theorem 7. S is a spin structure on ̂ and is the only one such that the action of the
fundamental group π1() on ̂ can be lifted to. Moreover it is the pull-back of any spin
structure on .

Proof. The proof is in three steps, we check thatS is a spin structure, we define a
spin structureS0 through group theory and we show that both are equal to a third spin
structureS1.

There is an obvious projection fromS to ̂ defined by(z, [λ]∼z ) �→ (z, [λ]2). The
fibre of this projection at(z, [λ]2) is the set of∼z-equivalence classes of paths fromy0

to the blown-up circle atz. To each class is associated the tangent direction atz soSz

is a covering ofSTz(̂). As H1( \ {z},Z2) is 23−χ() dimensional (a loop aroundz
is not homologically trivial), for each point inST (̂), there are two different lifts. The
path inSz corresponding to turning aroundz once yields theZ2-deck transformation.
HenceS is a spin structure on̂.

Let G := π1() andG′ := π1(ST ); theS1-fibre bundleST () →  induces a
short exact sequenceZ ↪→ G′ →→G. Every double covering ofST is defined by the
kernelS′ of an homomorphismu fromG′ to Z/2, moreover, forS′ to be a spin structure,
its intersection with the subgroupZ must be 2Z.

Likewise, the fibration̂ →  implies that the fundamental groupH ′ := π1(ST ̂)

of the directions bundle of̂ is the subgroup ofG′ overH := π1(̂),

Z → H ′ → H

↓ ↓ ↓
Z → G′ → G

, (4.1)

The intersection of the subgroupsH ′ andS′ is a well defined spin structureS0 on̂:
Indeed, consider another spin structureS′′ = Ker (v : G′ → Z/2) on, its intersection
with Z is 2Z hence the kernel ofu−v contains the whole subgroupZ, that is to sayu−v

comes from a homomorphism ofG to Z/2 and we haveS′′ ∩ H ′ = S′ ∩ H ′. In other
words,S0 is the unique spin structure on̂ which is the pull-back of a spin structure on
 and it is the pull-back of any spin structure.

Let z ∈  be a point, consider the set of paths inST from the base point(y0, v0)

to any direction atz. Consider on this set the equivalence relation∼′z defined by fixed
extremitiesZ/2-homology. The class[λ]∼′z of a pathλ from (y0, v0) to (z, v) is its
homology class inH1(ST , {(y0, v0), (z, v)})⊗Z/2. The projectionST →→ splits
H1(ST , {(y0, v0), (z, v)})⊗ Z/2 into

Z/2→ H1(ST , {(y0, v0), (z, v)})⊗ Z/2→ H1(, {y0, z})⊗ Z/2, (4.2)

hence the setS1 of pairs(z, [λ]∼′z ) for all pointsz ∈  and all pathsλ, is a spin structure

on ̂.
Let S′ be a spin structure on, it defines an element inZ/2 for each loop inST.

So each path inST beginning at(y0, v0) defines, through the splitting 4.2, an element
in S1 which is then the pull-back ofS′ to ̂, henceS0 = S1.

On the other handS = S1 because there is a continuous projection fromS toS1: For
an element(z, [λ]∼z ), consider aC1-pathλ ∈  representing the class. Lift it to a path
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in ST by the tangent direction at each point, its class[λ]∼′z only depends on[λ]∼z and
gives us an element inS1. ��

4.2. Discrete spin structure.

Definition 9. Let ϒ be a cellular complex of dimension two, a spin structure on ϒ is a
graphϒ ′, double cover of the 1-skeleton of ϒ such that the lift of the boundary of every
face is a non-trivial double cover. They are considered up to isomorphisms. Let SD be
the set of such spin structures.

A spinor ψ on ϒ ′ is an equivariant complex function on ϒ ′ regarding the action of
Z/2, that is to say, for all ξ ∈ ϒ ′0, ψ(ξ̄) = −ψ(ξ) if ξ̄ represents the other lift.

Remark 8. Usually, a spinor field is a section of a spinor bundle, that is to say a square
root of a tangentvector field. Here, we consider square roots ofcovectors; we should
saycospinors.

A discrete spin structure is encoded by a representation of the cycles ofϒ ,Z1(ϒ) :=
Ker ∂ ∩ C1(ϒ), into Z/2 which associates toγ ∈ Z1(ϒ), the valueµ(γ ) = 0 if it can
be lifted inϒ ′ to a cycle andµ(γ ) = 1 if it can not. By construction, the value of the
boundary of a face is 1 and the value of a cycle which is the boundary of a 2-chain ofϒ

is the number of faces enclosed, modulo two.

We are going to show that this structure is indeed a good notion of discrete spin
structure. First, there are as many discrete spin structures on a surface as there are in the
continuous case:

Proposition 14. On a closed connected oriented genus g surface , the set SD of in-
equivalent discrete spin structures of a cellular decomposition ϒ is of cardinal 22g . The
space of representations of the fundamental group of the surface into Z/2 acts freely
and transitively on SD .

We explicitly build discrete spin structures and count them: LetT be a maximal tree of
ϒ , that is to say a sub-complex of dimension one containing all the vertices ofϒ and a
maximal subset of its edges such that there is no cycle inT . Choose 2g edges(ek)1≤k≤2g

in ϒ \ T such that the 2g cycles(γk) ∈ Z1(ϒ)2g extracted from(T ∪ ek)1≤k≤2g form a
basis of the fundamental group of (andϒ). Let T+ := T ∪k ek and considerT ′, the
sub-complex of the dualϒ∗ formed by all the edges inϒ∗ not crossed byT+. It is a
maximal tree ofϒ∗. Likewise we defineT ′+ := T ′ ∪k e

∗
k .

We construct inductively a spin structureϒ ′: its first elements are a double copy of
T and we add edges without any choice to make as we take leaves out ofT ′+. When only
cycles are left, a choice concerning an edgeek has to be taken, opening a cycle inT ′+.
The process goes on untilT ′+ is empty.

These choices are completely encoded by a representationµ such as in the remark,
and the 2g values(µ(γk))1≤k≤2g determine the spin structure. On the other hand, this
representation defines the spin structure and there are 22g such different representations.
Hence the choices of the maximal tree and the edgesek are irrelevant.

Because a cycle inϒ belongs to a class in the fundamental group of the surface (up
to a choice of a path to the base point, irrelevant for our matter), the representations of
the fundamental group intoZ/2 obviously act on spin structures: A representationρ :
π1()→ Z/2 associates to a spin structure defined by a representationµ : Z1(ϒ)→
Z/2, the spin structure defined by the representationρ(µ) such thatρ(µ)(γ ) := µ(γ )+
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ρ([γ ]), where[γ ] ∈ π1() is the class of the cycleγ in the fundamental group. This
action is clearly free, and transitive because the set of representations is of cardinal 22g.

Given� = � � �∗ a double cellular decomposition, we introduce a cellular decom-
position which is the discretised version of the tangent directions bundle of both� and
�∗:

Definition 10. The triple graph ϒ is a cellular complex whose vertices are unoriented
edges of ♦, ϒ0 = {{x, y}/(x, y) ∈ ♦1}. Two vertices {x, y}, {x′, y′} ∈ ϒ0 are neigh-
bours in ϒ iff the edges (x, y) and (x′, y′) are incident (that is to say x = x′ or x = y′
or y = x′ or y = y′), and they bound a common face of ♦. There are two edges in ϒ

for each edge in �. For this to be a cellular decomposition of the surface in the empty
boundary case, one needs to add faces of three types, centred on vertices of �, of �∗ and
on faces of ♦ (see Fig. 26).

��
��
��
��

��
��
��
��

x x′

y

y′

Fig. 26. The triple graphϒ

Remark 9. The topology of the usual tangent directions bundle is not at all mimicked by
the incidence relations ofϒ , the former is 3 dimensional and the latter is a 2-cellular
complex.

Let (x0, y0) ∈ ♦1 be a given edge. All the complexes�,�∗,♦, ϒ are lifted tô.

Definition 11. The discrete universal spin structure ϒ̂ ′ is the following 1-complex: Its
vertices are of the form ((x, y), [γ y

y0]), where (x, y) ∈ ϒ0 is a pair of neighbours in♦ and

γ
y

y0 is a path from y0 to y on �∗, avoiding the faces x∗ and x0∗. We are interested only in

its relative homology class modulo two, that is to say [γ y
y0] ∈ H1(�

∗ \x∗, {y0, y})⊗Z2.
We will denote a point by ((x, y), γ

y

y0) and identify it with ((x, y), γ ′y
y0) whenever γ

y

y0

and γ ′y
y0 are homologous.

Two points ((x, y), γ y

y0) and ((x′, y′), γ y0

y′ ) are neighbours in ϒ̂ ′ if

– x = x′, (y, y′) ∈ �∗1 and γ
y0

y −γ
y0

y′ +(y, y′) is homologous to zero inH1(�
∗\x∗)⊗Z2,

– y = y′, (x, x′) ∈ �∗1 and γ
y0

y − γ
y0

y′ is homologous to zero in H1(�
∗ \ x∗)⊗ Z2.
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ϒ̂ ′ is a double covering of̂ϒ and it is connected around each face (see Fig. 27). It is a
discrete spin structure on̂ϒ in the sense defined above. Once a basis of the fundamental
groupπ1(ϒ) is chosen, every representation of the homology group of into Z2 allows
us to quotient this universal spin structure into a double covering ofϒ , yielding a usual
spin structureϒ ′.

���
���
���
��� ������

Fig. 27. Double covering around faces ofϒ

4.3. Dirac equation. A spinor changes sign between the two lifts inϒ ′ of a vertex ofϒ ,
in other words it is multiplied by−1 when it turns around a face. The faces ofϒ which
are centred on diamonds are four sided. We set up thespin symmetry equation for a
functionζ onϒ ′0, on a positively oriented face(ξ1, ξ2, ξ3, ξ4) ∈ ϒ2 around a diamond,
lifted to an 8-term cycle(ξ+1 , ξ+2 , ξ+3 , ξ+4 , ξ−1 , ξ−2 , ξ−3 , ξ−4 ) ∈ Z1(ϒ

′):

ζ(ξ+3 ) = iζ(ξ+1 ). (4.3)

It implies obviously thatζ is a spinor, that is to sayζ(ξ−• ) = −ζ(ξ+• ).

The coherent system of anglesφ given by a semi-critical structure locally provides a
spinor respecting the spin symmetry away from conic singularities: Define half angles
θ on oriented edges ofϒ in the following way: Each edge(ξ, ξ ′) ∈ ϒ1 cuts an edge
a ∈ �1, setθ(ξ, ξ ′) := ±φ(a)

2 whether(ξ, ξ ′) turns in the positive or negative direction
around the diamond. Choose a base pointξ0 ∈ ϒ ′0, defineζ by ζ(ξ0) = 1 and

ζ(ξ) := expi
∑
λ∈γ

θ(λ) (4.4)

for any pathγ from ξ0 to ξ . The sum of the half angles are equal toπ around the faces of
♦ and half the conic angle around a vertex, so if it is a regular flat point, we get2π

2 = π

again, henceζ is a well defined spinor. As diagonals of the faces of♦ are orthogonal,
ζ fulfills the spin symmetry. Moreover, if the conic angles are congruous to 2π modulo
4π , ζ can be extended to any simply connected region; if the fundamental group acts by
translations,ζ is defined on the wholeϒ ′.
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We are going to define a propagation equation which comes from the Ising model.
It is fulfilled by the fermion defined by Kaufman [K] which is known to converge to
a Dirac spinor near criticality. We will use the definitionψ = σµ given by Kadanoff
and Ceva [KC]. The Dirac equation has a long history in the Ising model, beginning
with the work of Kaufman [K] and Onsager and Kaufman [KO], we refer among others
to [McCW81,SMJ,KC]. The equation that we need is defined explicitly in [DD], hence
we will name it theDotsenko equation, even though it might be found elsewhere in
other forms. It is fulfilled by the fermion at criticality as well as off criticality. But this
equation is only a part of the full Dirac equation. For a functionζ onϒ ′0, with the same
notations as before, and ifa ∈ �1 is the diagonal of the diamond, between(ζ2, ζ3) and
(ζ4, ζ1) (see Fig. 28):

ζ(ξ+1 ) =
√

1+ ρ(a)2ζ(ξ+2 )− ρ(a)ζ(ξ+3 ). (4.5)

A check around the diamond shows that it also implies thatζ is a spinor: We write
the Dotsenko equation inξ+2 andξ+3 ,

ζ(ξ+2 ) =
√

1+ ρ(a∗)2ζ(ξ+3 )− ρ(a∗)ζ(ξ+4 ),

ζ(ξ+3 ) =
√

1+ ρ(a)2ζ(ξ+4 )− ρ(a)ζ(ξ−1 ),

hence, as
√

1+ ρ(a)2
√

1+ ρ(a∗)2 = ρ(a)+ ρ(a∗),

ζ(ξ+1 ) =ρ(a∗)ζ(ξ+3 )−
√

1+ ρ(a∗)2ζ(ξ+4 )

=ρ(a∗)(
√

1+ ρ(a)2ζ(ξ+4 )− ρ(a)ζ(ξ−1 ))−
√

1+ ρ(a∗)2ζ(ξ+4 )

=− ζ(ξ−1 ).

TheDirac equation is the conjunction of the symmetry (4.3) and the Dotsenko (4.5)
equations. We will see that this same equation describes the massive and massless Dirac
equation, the mass measuring the distance from criticality.

a

√
1+ ρ2

a

−ρa

ξ3

ξ2ξ1

Fig. 28. The Dotsenko equation

Given two spinors ζ , ζ ′, their pointwise product is no longer a spinor but a regular
function on ϒ . As there are two edges in ϒ for each edge in �, there is an obvious
averaging map from 1-forms on ϒ to 1-forms on �: We define dϒζζ ′ ∈ C1(�) by the
following formula, with the same notation as before,

2
∫
a

dϒζζ ′ := ζ(ξ3)ζ
′(ξ3)− ζ(ξ2)ζ

′(ξ2)+ ζ(ξ4)ζ
′(ξ4)− ζ(ξ1)ζ

′(ξ1).

dϒζζ ′ is by definition an exact 1-form on ϒ but its average is not a priori exact on �.
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Fig. 29. The 1-form on � associated to two spinors.

Proposition 15. If ζ and ζ ′ respect whether the spin symmetry or the Dotsenko equation,
then dϒζζ ′ is a closed 1-form. If ζ is a Dirac spinor and ζ ′ fulfills the Dotsenko equation,
then dϒζζ ′ is holomorphic, dϒ ζ̄ ζ ′ anti-holomorphic and every holomorphic 1-form on
� can be written this way on a simply connected domain, uniquely up to a constant.

A sufficient condition for dϒζζ ′ to be closed on � is that, with the same notations as
above, ζ(ξ3)ζ

′(ξ3) − ζ(ξ2)ζ
′(ξ2) = ζ(ξ4)ζ

′(ξ4) − ζ(ξ1)ζ
′(ξ1) because

∮
∂y∗ dϒζζ ′ for

a vertex y ∈ �0 is a sum of such differences on the edges of ϒ around y. This is so if
there exists a 2× 2-matrix A such that(

ζ(ξ+3 )

ζ(ξ+2 )

)
= A

(
ζ(ξ+4 )

ζ(ξ+1 )

)
,

a similar formula for ζ ′, and tA

(
1 0
0 −1

)
A =

(
1 0
0 −1

)
. The solutions are of the form

A =
(
ε
√

1+ λ2 λ

ελ
√

1+ λ2

)
for a complex number λ ∈ C, ε = ±1 and a determination

of
√

1+ λ2. This is the case for the spin symmetry,λ = −i, ε = +1 and for the Dotsenko
equation, λ = ρ(a), ε = −1,

√
1+ λ2 > 0.

If ζ is a Dirac spinor and ζ ′ fulfills the Dotsenko equation, then∫
a∗

dϒζζ ′ = ζ(ξ+4 )ζ ′(ξ+4 )− ζ(ξ+3 )ζ ′(ξ+3 )

= iζ(ξ+2 )(
√

1+ ρ(a)2ζ ′(ξ+3 )− ρ(a)ζ ′(ξ+2 ))− iζ(ξ+1 )ζ ′(ξ+3 )

= iζ(ξ+2 )(
√

1+ ρ(a)2ζ ′(ξ+3 )− ρ(a)ζ ′(ξ+2 ))

− i(
√

1+ ρ(a)2ζ(ξ+2 )− ρ(a)ζ(ξ+3 ))ζ ′(ξ+3 )

= iρ(a)
(
ζ(ξ+3 )ζ ′(ξ+3 )− ζ(ξ+2 )ζ ′(ξ+2 )

) = iρ(a)

∫
a

dϒζζ ′.

So dϒζζ ′ is holomorphic. Of course, dζ̄ ζ ′ is anti-holomorphic. Conversely, if dϒζζ ′ is
holomorphic with ζ a Dirac spinor, then ζ ′ fulfills the Dotsenko equation.

Given a holomorphic 1-form α ∈ �(1,0)(�), define αϒ on ϒ1 by the obvious map∫
({x,y},{y,x′}) αϒ := ∫

(x,x′) α. It is a closed 1-form on ϒ because α is closed on �,
so there exists a function a on any simply connected domain of ϒ0, unique up to an
additive constant, such that dϒa = αϒ . A check shows that the only spinors ζ ′′ such
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that dϒζζ ′′ = 0 on � are the one proportional to ζ̄ . It is consistent with the fact that the
Dirac spinor is of constant modulus (see Eq. (4.6)). Hence the function ζ ′ := a/ζ on ϒ ′
is the unique spinor (up to a constant times 1/ζ ∼ ζ̄ ) such that dϒζζ ′ = α.

Notice that for ζ a Dirac spinor, the holomorphic 1-form associated to it on � is
locally, for a given flat coordinate Z, dϒζζ = λdZ, with λ ∈ C a certain constant.

4.4. Existence of a Dirac spinor.

Theorem 8. There exists a Dirac spinor on a double map iff it is critical for a given flat
metric with conic angles congruous to 2π modulo 4π and such that the fundamental
group acts by translations. The Dirac spinor is unique up to a multiplicative constant.

Proof. Let ζ be a non-zero Dirac spinor. Consider a positively oriented face(ξ1, ξ2, ξ3, ξ4)

∈ ϒ2 around a diamond with diagonals a, a∗ as in Fig. 28, lifted to an 8-term cycle
(ξ+1 , ξ+2 , ξ+3 , ξ+4 , ξ−1 , ξ−2 , ξ−3 , ξ−4 ) ∈ C1(ϒ

′). The equation

ei
φ(a)

2 = ρ(a∗)+ i√
1+ ρ(a∗)2

defines an angle φ(a) ∈ (0, π) for every edge a ∈ �1.
The Dotsenko and symmetry equations combine into

ζ(ξ+2 ) = ρ(a)+ i√
1+ ρ(a)2

ζ(ξ+1 ). (4.6)

The fact that ζ is a spinor implies that, summing the four angles around the diamond,
we get ei(φ(a)+φ(a∗)) = −1. As each angle is less than π , their sum is equal to π . The
same consideration around a vertex x ∈ �0, yields exp i

∑
(x,x′)∈�1

φ(x,x′)
2 = −1. So

φ is a coherent system of angles and the map is critical with conic angles congruous to
2π modulo 4π .

Conversely, given φ a coherent system of angles with conic angles congruous to
2π modulo 4π , the preceding construction described by Eq. (4.4) gives the only Dirac
spinor. ��

In this case, dZ is a well defined holomorphic 1-form on the whole surface.

Corollary 9. Let (�, ρ) be a discrete conformal structure and P a set of vertices, con-
taining among others the vertices v such that the sum

∑
e∼v Arctanρ(e), summed over

all edges e incident to v, is greater than 2π . The discrete conformal structure is critical
with P as conic singularities if and only if there exist Dirac spinors on every simply
connected domain containing no point of P .

We define in which sense a discrete spinor converges to a continuous spinor. We don’ t
define these spinors on specific spin structures but rather on the universal spin structure
S.

Consider a sequence of finer and finer critical maps such as in Theorem 3. Choose a
converging sequence of base points (x0

k , y
0
k ) ∈ kϒ0 on each critical map such that the

direction sequence (

−−→
x0
k y

0
k

d(x0
k ,y

0
k )
) converges to a tangent vector (x0, v0).
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Consider a sequence of points (xk, yk) ∈ kϒ0, defining a sequence of points (xk)

converging to x in  and a converging sequence of directions v = lim
−−→
xkyk

d(xk,yk)
. By

compacity of the circle, there exist such sequences for every point x ∈  and the
criticality implies that it is in at least three directions for flat points, separated by angles
less than π .

The different limits allow us to identify, after a certain rank, the relative homology
groups H1(

k�∗ \ x∗k , {y0
k , yk})⊗Z2 with H1(x, {(x0, v0), (x, v)})⊗Z2, the classes of

paths in the blown-up of  at x0 and x.

Definition 12. We will say that a sequence (ζk)k∈N of spinors converges if and only if,
for any converging sequences,

(
(xk, yk) ∈ kϒ0

)
k∈N defining a limit tangent vector, and

([λk])k∈N of classes of paths in k�∗ from y0
k to y, avoiding the face x∗k , the sequence of

values (ζk(xk, [λk])) converges.

Remark 10. It defines a continuous limit spinor ζ by equivariance: Let x ∈ ̂, the set
Dx of directions in which there exist converging sequences of discrete directions is by
definition a closed set. Let u, v two boundary directions of Dx such that the entire arc A

of directions between them is not in Dx . Consider [(x, [λ]x), (x, [λ′]x)] ⊂ S a lift of A.
The circle S1 acts on the directions, hence on the ∼x-classes, let ψ ∈ (0, π) the angle
such that (x, eiψ [λ]x) = (x, [λ′]x). Define

ζ(x, eiφ[λ]x) := eiv(φ)ζ(x, [λ]x),

where v(φ) = φ
ψ

ζ(x,[λ′]x)
ζ(x,[λ]x) (v(φ) = φ

2 for Dirac spinors).

Theorem 10. Given a sequence of critical maps such as in Theorem 3 with Dirac spinors
on all of them, they can be normed so that they converge to the usual Dirac spinor on
the Riemann surface.

In a local flat map Z, the square of the discrete Dirac spinor on kϒ̂ ′ is (up to a multiplica-
tive constant) the 1-form dZ evaluated on the edges. Hence their sequence converges.

4.5. Massive Dirac equation, discrete fusion algebra and conclusions. For complete-
ness and motivation, we describe below the situation off-criticality where elliptic inte-
grals come into play, and investigate a form of the discrete fusion algebra in the Ising
model. This work was done by Daniel Bennequin and will be the subject of a subsequent
article.

A massive system in the continuous theory is no longer conformal. In the same
fashion, Daniel Bennequin defined a massive discrete system of modulus k as a discrete
double graph (�, ρ) such that, for each pair (a, a∗) of dual edges,

ρ(a)ρ(a∗) = 1

k
. (4.7)

The massless case corresponds to k = 1. We showed that criticality was equivalent to
a coherent system of angles φ(a) such as shown in Fig. 8, defined by tan φ(a)

2 = ρ(a),
and adding up to 2π at each vertex of the double, except at conic singularities. The Dirac
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spinor was constructed using the half angles φ(a)
2 . Similarly, for every edge, we define

the massive “half angle” u(a) as the elliptic integral

u(a) :=
∫ φ(a)

2

0

dϕ

�′(ϕ)
, (4.8)

where the measure is deformed by

k2 + k′2 = 1, (4.9)

�(ϕ) :=
√

1− k2 sin2 ϕ, (4.10)

�′(ϕ) :=
√

1− k′2 sin2 ϕ. (4.11)

Using these non-circular half angles, and the corresponding “square angle” Ik′ :=∫ π
2

0
dϕ

�′(ϕ) , one can construct a massive Dirac spinor wherever the following “fl atness”
condition is fulfilled:

∑
a∈∂F

(Ik′ − u(a)) = Ik′ mod 4Ik′ for each face F ∈ �2, (4.12)

∑
a.v

(u(a)) = Ik′ mod 4Ik′ for each vertex v ∈ �0. (4.13)

Daniel Bennequin noticed that the fusion algebra of the Ising model could be under-
stood at the finite level: Consider a trinion made of cylinders of a square lattice, of width
m and n, glued into a cylinder of width m+n. It has been known since Kaufman [K] that,
in the transfer matrix description of the Ising model, the configuration space of the Ising
model on each of the three boundaries is a representation of spin groups spin(m), spin(n)
and spin(m+n) respectively. If m is odd, there exists a unique irreducible representation
� of spin(m) but when m is even, there are two irreducible representations, �+ and �−.
A pair of pants gives us a map spin(m)× spin(n)→ spin(m+n), in the case of a pair of
pants of height zero, it’s the inclusion given by the usual product. The representations of
spin(m+n) induce representations of the product group that can be split into irreducible
representations. If the three numbers are even,

�+ → �+ ⊗�+ +�− ⊗�−, (4.14)

�− → �+ ⊗�− +�− ⊗�+, (4.15)

while if only one of them is even,

�→ �+ ⊗�+�− ⊗�, (4.16)

and if m and n are both odd,

�+ → �⊗�, (4.17)

�− → �⊗�. (4.18)
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Let us compile these data in an array and relabel � by σ , �+ by 1 and �− by ε:

1 ε σ

1 1 ε σ

ε ε 1 σ

σ σ σ 1+ ε.

(4.19)

This is read as follows, the 1 + ε in the slot σ ⊗ σ for example, means that the
representation 1 and the representation ε of spin(m+ n) both induce a factor σ ⊗ σ in
the representation in the product group spin(m)× spin(n).

We get exactly the fusion rules of the Ising model. The only difference compared
with the continuous case is that the algebra is not closed at a finite level. The columns,
rows and entries are not representations of the same group, rather we have a product of
representations of spin(n) and spin(m) as a factor of a representation of spin(n+m).

These results provide evidence that a discrete conformal field theory might be looked
for: the discrete Dirac spinor at criticality is the discrete version of the conformal block
associated with the field C and some sort of fusion algebra can be identified at the finite
level. The program we contemplate is, first to investigate other statistical models and see
if there are such patterns. If that is the case, we must then mimic in the discrete setup
the vertex operator algebra of the continuous conformal theory. This can be attempted
by defining a discrete operator algebra, in a similar fashion to Kadanoff and Ceva [KC],
and splitting this algebra according to its discrete holomorphic and anti-holomorphic
parts. The hope is that some aspects of the powerful results and techniques defined by
Belavin, Polyakov and Zamolodchikov [BPZ] will still hold. A very interesting issue
would be, as we have done for the Ising model, to realize the fusion rules of a theory in
the discrete setup, yielding its Verlinde algebra.
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