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Abstract. We propose a method that we call auto-adaptive convolution which extends the
classical notion of convolution in pictures analysis to function analysis on a discrete set. We
define an averaging kernel which takes into account the local geometry of a discrete shape
and adapts itself to the curvature. Its defining property is to be local and to follow a normal
law on discrete lines of any slope. We used it together with classical differentiation masks to
estimate first and second derivatives and give a curvature estimator of discrete functions.

1 Introduction

The discretization of a smooth object loses some features of the original geometrical characteristics.
An important problem is to estimate derivatives of digital functions, for example the tangent space
at a point or the curvature of the shape. There exists many approaches based on line segmentation
[11, 7, 14] or on filtering [19, 13, 8]. New approaches to derivative estimation [12, 8] are based on
convolution product with a diffusion kernel and give striking estimations of derivatives on noisy
curves. Those convolutions use binomial kernels which are not adaptive to the local geometry of the
discrete object. In [8], a surface kernel has been proposed where the computed weights take into
account the local disposition of the adjacent voxels. Ours work builds on this approach.

The main issue is to compute convolution masks best suited for a particular discrete object.
We propose kernels that adapt themselves to the geometry. Those masks enable us to give a good
estimation of derivatives and curvature of discretized functions.

This article is laid out as follows: We introduce convolution product in Sec. 3 and define our
auto-adaptive process in Sec. 4 as a random process defining our convolution kernel. We investigate
discrete lines in Sec. 5 and prove that their masks are equivalent to normal laws. We normalize their
deviations by allowing some optimized tunnel effect in Sec. 5.3, recovering Euclidean properties for
lines of any slopes. Finally we show the usefulness of our approach by giving estimations of derivative
and curvature of discretized functions in Sec. 6.

2 Diffusion Processes

Heat kernel or random walks have been widely used in image processing, for example lately by
Sun, Ovsjanikov and Guibas [18] and Gebal, Bærentzen, Aanæs and Larsen [9] in shape
analysis. It is indeed a very precious tool because two manifolds are isometric if and only if their
heat kernels are the same (in the non degenerate case).



The heat kernel kt of a manifold M maps a couple of points (x, y) ∈ M ×M to a positive real
number kt(x, y) which describes the transfer of heat from y to x in time t. Starting from a (real)
temperature T on M , the temperature after a time t at a point x is given by a convolution of the
initial temperature distribution with the diffusion kernel:

Ht f(x) =
∫

M

f(y) kt(x, y) dy.

The heat equation is driven by the diffusion process, the evolution of the temperature in time is
governed by the (spatial) Laplace-Beltrami operator ∆M : ∂f(t,x)

∂t = −∆Mf(t, x) which presides
to the diffusion on the manifold, for example random walks.

The first issue in order to use these ideas in the discrete setup is to define a good discrete
Laplacian, or equivalently, a good diffusion process. It should be reasonably robust to noise, to
outliers (points which are added by mistake) and to missing data. This situation is understood in
the realm of polyhedral surfaces and triangulations, and a time appraised discrete Laplacian, based
on sound theoretical grounds is known for a long time, the so-called cotangent weights Laplacian [15].
In this article, we define a diffusion process in 2D-Digital Geometry, where the space is composed
of pixels.

3 Convolution Products

Estimation of geometrical properties is an important goal of discrete geometry. There exists many
methods to estimate the length [4], or the curvature of discrete curves [11, 7, 14, 3] such as the
discretized graph of a function. A method is to recognize maximal straight segments [6] but it is
sensitive to noise. Our aim is to extend the pioneer work of [8] on product convolution technique
to produce adaptive averaging masks for an arbitrary connected set of pixels representing the
quantization of a curve in the plane. Commonly, the convolution product smooths a function g by
an averaging function f , usually concentrated around the origin which slides along the line, Z in
the discrete setup: f ∗ g(x) =

∑
t∈Z f(x− t).g(t).

In the case of functions defined on a less homogeneous set of pixels E, no simple addition is
defined, so we replace the sliding function by a 2-points kernel of limited support (a mask):

Definition 1 (Mask product).
The product f ∗ g of a kernel f : E×E → R and a discrete function g : E → F to a vector space
F, is given by:

f ∗ g : E → F (1)

x 7→
∑
y∈E

f(x, y).g(y). (2)

Convolution with itself widens the mask’s range: f (n) ∗g = f ∗ (f (n−1) ∗g). The averaging kernel
1
2

1
2 is for example widened into the binomial 1

2n
1 n · · ·

“
n
p

”
· · · n 1 .

These definitions can be extended to the 2D case where such convolution masks are used in
noisy digital objects, blurring sharp details but otherwise limiting the effect of noise.

In this work we introduce masks whose weights are suitable for any 1D-curve and any shape.
Rémy Malgouyres and Sébastien Fourey [8] defined mask weights for discrete surfaces in 3D-
space that are computed taking into account the neighbors of the voxels. Likewise, our masks are
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computed according to the local geometry of a set of pixels. Those masks are adaptive and allow us
to smooth a function with suitable weights for the studied curve. They are based on auto-adaptive
diffusion processes.

4 Auto-adaptive Process

We setup the diffusion of a walker wandering on the discrete object, in order to recover its local
geometry. This auto-adaptive process is a local Markov process, a stochastic process in discrete
time where the probability of transition between pixels depends only on the immediate past. The
walker goes from a pixel to the next through the corners they have in common.

Definition 2 (Standard adaptive process).
We call standard adaptive process, the Markov chain with the probabilities of transition from
pixel to pixel defined by the composition of transitions from a pixel of the set to its four corners and
back from a corner to adjacent pixels of the set constrained by:

1. Equiprobability 1
4 to go from a pixel to one of its corners;

2. Equiprobability to move from a corner to an adjacent pixel of the set.

1/4 1/4

1/4 1/4

(a) From pixel to corners.

1/2 1/21/2 1/2

1/2 1/2 1/2 1/2

(b) From corners to adjacent
pixels.

1
2

1

(c) On Z, the binomial coeffi-
cients are recovered.

Fig. 1: A walker has a probability of 1
4

to pick up a corner of a pixel, then 1
k

to select a pixel among k
possible, ending up in the binomial coefficients {1, 2, 1} for the random walk on Z.

This standard choice amounts to walkers with no memory and only local knowledge, the celebrated
short-sighted drunken man. We note this process Am

s for a walker starting at any given point, with
m the number of iterations of the process.

Remark 3. Am
s is the stochastic matrix of the studied discrete object. We obtain a mask of length

2m+1 centered on the pixel i if we multiply the matrix Am
s by a position vector vi = (0, . . . , 0, 1︸︷︷︸

i−th position

, 0, . . . , 0)T .

In the sequel, we call vx the position vector of the pixel x.

We illustrate the definition with examples (see Figure 2b) of masks computed on discrete lines.
After m steps the process builds a mask of length 2m + 1.

We call our process standard because of the equiprobability condition. In the next section, we
will modify these probabilities to uniformize the diffusion on discrete lines. Note that the standard
adaptive process on a finite connected discrete object is ergodic.

On the integer line Z, the diffusion leads to the Gaussian binomial masks An
s (x, y) =

(
n

|x−y|
)
.

We prove next that on discrete lines, it is a more involved Gaussian mask.
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5 Convolution Masks on Discrete Lines

We investigate here the auto-adaptive standard masks on discrete lines of different slopes.
We recall the definition of arithmetics discrete lines and we prove that the weights of the asso-

ciated auto-adaptive masks have a Gaussian distribution. But their deviations differ for different
slopes.

5.1 Auto-adaptive Masks on Discrete Lines

Definition 4 (Discrete line [16]).
A discrete line of slope

a

b
with a ∧ b = 1, inferior limit µ and arithmetic thickness ω is the set of

pairs (x, y) ∈ Z2 such that
µ ≤ ax − by < µ + ω

with a, b, ω and µ integers.

In discrete geometry there are two adjacencies commonly used, the connectivity by edge, called
4-adjacency and the connectivity by vertex, called 8-adjacency. We are interested in naive lines
(ω = max(|a|, |b|)), i.e. the thinner 8-adjacent connected lines for a given slope.

25 50 75 100

0.05

0.1

(a) Statistic distribution of weights for masks of length
101, 201 and 801 on the discrete line of slope 2

9

1 7

35 42 35

7 1

(b) Example of standard adaptive process on the
discrete line of slope 3

9
with 128 walkers.

Fig. 2: Examples of walkers diffusion on discrete lines.

Example results in Figure 2a show that for a mask large enough, the statistic distribution can
be estimated by a continuous normal law with the same mean and deviation. The proof of this
observation resides on ergodicity and the application of the Central Limit Theorem. We first need
a technical definition:

Definition 5 (Equivalence class).
We assign to a pixel i the pair of adjacencies of its left and right neighbors and denote [i] its induced

equivalence class.

Theorem 6. The standard auto-adaptive process Am
s computed on a discrete line D(a, b, µ, ω) is

equivalent to a normal law when m →∞.

See its proof in the appendix on p.12.
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Fig. 3: There are only four equivalence classes appearing on an 8-connected line in the first octant.

5.2 Curvilinear Abscissa Versus Integer Index

The standard adaptive process gives us good normal laws but they are not completely satisfactory
because their deviation depends on the line slope: pixels which are only 8-connected act as filters
(see Fig. 4b). We measure the dispersion of walkers on a discrete line to compare the dispersion
between two discrete lines of different slopes. In Fig. 4b, we have used a discrete index i with
respect to which we computed the spatial deviation. It is a relevant index for graphs of discrete
functions f : Z → Z, but it is not for arbitrary curves. We need to take into consideration the
curvilinear abscissa of the underlying curve. This abscissa is easy to compute for lines with the help
of projection (see Fig. 9a) on p. 7.

The difference between the index and the curvilinear abscissa can be as big as a speeding factor√
2 for diagonal lines, which are no longer the minimum of this curvilinear deviation (see Fig. 4b).

50 100 150 200

50

(a) Curves of deviation obtained
from two hundred lines of in-
creasing slope. The minimum is
reached for the line of slope
1 with only 8-connected pixels
acting as filters that slowdown
the walkers

50 100 150 200

48.2

48.9

45.4

49.6

46.1

50.3

46.8

(b) The minimum dispersion is
reached for lines mixing 4 and
8-connectivities, where the low
slope doesn’t increase yet the
curvilinear abscissa but where
enough upwards steps disrupt
the diffusion.

(c) Compare previous deviations
graphs (a) and (b) with the
standard deviation computed on
thirty discrete lines for the fuzzy
matrix corresponding to λ = 0.3
and µ = 0.4, at the same vertical
scale.

Fig. 4: Standard deviations of masks for discrete lines of different slopes with different methods.

5.3 Standardization of Standard Deviation for any Slope

To balance the effect of digitization which creates narrow links for diagonal lines and links for
horizontal and vertical lines, we will allow the walker to step outside the discrete line. We thicken
discrete lines and we modify the probability transition in this thick virtual, fuzzy part. We consider
three natural sets associated with a thin discrete line, the line itself (see Fig. 5), a thicker one
obtained by adding all the 4-adjacent pixels (see Fig. 6), and a larger one by adding all the 8-
adjacent pixels (see Fig. 7).
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By definition of discrete lines, we could increase the arithmetic thickness ω. But ω depends on
the discrete line under study, and the number of pixels added depends on the slope as well. We
want, on the contrary, to define a local thickening procedure without taking into account global
features like the arithmetic thickness, to apply it on arbitrary set.

We build this way three Markov processes, associated with matrices, M0, M1 and M2 of
increasing dimensions by adding all the pixels neighbors.

Fig. 5: Discrete standard line of
slope 2

5

Fig. 6: Add the 4-connected pix-
els of the line

Fig. 7: Add the 8-connected pix-
els of the line

Definition 7 (Fuzzy Matrix).
Let M0, M1 and M2 the matrices of the discrete lines respectively the naive thin line, its thickened
version with the addition of 4-connected neighbors and the fatter line with 8-connected neighbors.
Let M ′

0 and M ′
1 the matrices induced by M0 and M1, padded by columns and rows of zeros and

a diagonal of 1 for pixels not belonging to these sets, so that the three matrices have the same
dimension as M2. We define F a function with two parameters λ and µ defined by:

F : (λ, µ) 7→ (1 − (λ + µ))M ′
0 + λM ′

1 + µM ′
2

We call F the fuzzy matrix of parameters λ and µ.
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(c) 4-4 class thickened
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Fig. 8: Computed projection masks of the four equivalent classes on naive discrete lines (Fig. 3). First, we
compute the thickened mask of the fuzzy matrix for λ = 0, µ = 0.5, close to the minimum dispersion. In
white we have the ghost pixels, in blue the primary points. Then, to give an example we project on the line
2x− 5y = 0 to obtain the final mask on the line.

The fuzzy matrix is still associated with a stochastic process but on a larger set of pixels: we
allow the walker to go outside the main discrete line so the process, when restricted to the discrete
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line, is no longer stochastic, because at the end of the process, many walkers appear in ghost pixels.
We bring them back on line by a simple projection onto the associated real line of the same slope,
as illustrated in Figure 9a. We obtain two sets of points; the first corresponds to points belonging to
the original naive discrete line called primary points, and the others correspond to the ghost points
(see Fig. 8). We affect ghost walkers to primary points according to the distance between their
projection point and the two nearest primary points (see Figure 9b). We do not lose any walker
and we take into account the position of their ghost pixels.

k

t
0

t

(a) Projection on the underlying line.

2 / 3

3 / 4

1 / 4

1 / 2

1 / 2

1 / 4 3 / 4

2 / 3

1 / 3

1 / 3

(b) Ghost points (in white) are split according to their dis-
tance from the two nearest primary points (in blue)

Fig. 9: Projection of walkers on the underlying line and repartition onto primary points.

For fixed λ and µ, we computed the deviations of our fuzzy diffusion process on lines of increasing
slopes and computed the standard deviation of these deviations. We plotted this dispersion as a
function of λ and µ (see Fig. 10a). We found experimentally the best values for λ and µ to have
minimal dispersion.

(a) Computation of the values of the dispersion
of standard deviations as a function of λ and µ.

(b) Zoom on the minimum part of the graph.

Fig. 10: We get a minimal dispersion for the values λ = 0.3 and µ = 0.4.

The general shape of this dispersion and the location of its minima don’t depend much on the
size of the mask once it is big enough (a few pixel wide) and on the number of lines (we used up to
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50 lines): We found (see Figure 10a) λ = 0.3 and µ = 0.4, with a long valley of acceptable values
up to λ = 0, µ = 0.5. In particular, good values are given when there are not much differences in
probability between the 4 and 8-connected added neighbors.

As we can see in Figure 4c, the fuzzy process with suitable λ and µ gives masks with approxi-
mately the same standard deviation for any line.

With these values, we have now a local fuzzy process, which is adaptive to the shape of the
underlying set and which has been tailored to recover the Euclidean geometry of discrete lines.

Therefore, given a curve, which is by definition locally modeled on a line, its discretization with
a step finer than its feature size, can be analyzed by our mask, of a proper standard deviation
between the discretization step and the feature size, and give back the Euclidean geometry of the
curve. We are going to show in the next section that it indeed allows us to compute derivative and
second derivative of discrete functions with great accuracy.

6 Derivative and Curvature Estimation

Fuzzy process are expensive in terms of computation because we need to increase significantly the
number of points of the studied object. We will show that, in order to compute derivatives of
discretized functions, the standard auto-adaptive kernel, which is cheaper, is already very efficient.
But fuzzy processes are clearly the most suitable and we can improve the results. We will study
tangent estimation and we will show our results on the function x 7→ sin(x).

First we will introduce how we obtained the set of studied pixels for the discretized graph of a
real function, then we will show how we compute the derivation kernel according to the standard
auto-adaptive process on a digital curve. Finally we will give a curvature estimator and we will
display the results computed on the discrete sinus function.

6.1 Derivative Function Estimation

We use a classical method of discretization called grid intersect quantization (GIQ) [17].
In order for this procedure to give us a connected set of pixels, we rely here on a pre-processing

that flattens the function in order to have a derivative of magnitude less than 1. We will describe
in a future article how to deal with supercover graphs [1].

Let ϕ be a digital function defined on I ⊂ Z, and Am
s (ϕ) the fuzzy process on its digital graph.

We want to approximate the derivative function ϕ′ according to the discrete values of ϕ.

There are three popular discrete derivation masks: the centered δ0 :
−2−1 0 1 2

1
2 − 1

2 , the right-sided

δ+ :
−2−1 0 1 2

1 −1 and the left-sided δ− :
−2−1 0 1 2

1 −1 . We will specify for each estimation the mask
used. Our convolution kernel Am

s (ϕ) smooths the function ϕ, before and after the application of
the derivation operator D1.

Definition 8 (Derivative estimator). Let ϕ be a discrete function and Am
s (ϕ) be the kernel of

the auto-adaptive process. Then the estimated derivative of the function ϕ at the point x is given
by:

D1(x) = [Am
s (ϕ) ∗ δ∗ ∗Am

s (ϕ)] (x)

with δ∗ one of the three derivation kernels.
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The convolution product is not commutative, and we can increase several times the support
of the mask to the right or the left of D1 in order to raise the smoothing effect of the kernel and
improve the estimation on noisy functions to the price of an erosion of the small scale data. As an
example in Fig. 11, we give an estimation of the derivative function x 7→ sin(x) with the centered
kernel δ0.
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(a) Estimation of the discrete adaptive derivative
function of x 7→ sin(x) and the values of the real
function x 7→ cos(x), computed according a mask
of length 61. We haven’t hidden the boundary ef-
fects. The erosion is mild.
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-40
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(b) Estimation of the discrete derivative function
of x 7→ 20

x
sin(2x) of order one and two, computed

according a mask of length 30.

Fig. 11: Estimation of derivative for different functions.

6.2 Curvature Estimation

We define a derivation kernel to compute derivatives of higher order used in the curvature.

Definition 9 (Derivative of higher order). Let ϕ be a discrete function and Am
s (ϕ) be the

auto-adaptive process computed on ϕ. Let δ∗ be a derivation kernel, then the derivation kernel of
order n is defined as

Dn(x) =

Am
s (ϕ) ∗δ∗ ∗Am

s (ϕ) ∗ . . . ∗Am
s (ϕ)︸ ︷︷ ︸

n times

 (x)

As an example we give the estimated second derivative of x 7→ sin(x) (see Fig. 12a) for the
centered derivation kernel.

We recall the classical definition of the curvature for a real function in the plane. Let (x, y(x))
be a function graph with x ∈ I ⊂ R. Then the curvature is given by Γ (x) = y′′(x)

(1 + y′2(x))
3
2

. The

curvature estimation for a discrete function is based on this formula and the estimation of ϕ′ and
ϕ′′:

Γ (x) =
D2(x)

(1 + D1(x)2)
3
2
.
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(a) Comparison between the values of x 7→ sin(x), its discretization
(in green), its continuous first and second derivative (in blue and
black), and their estimations with the kernel A10

s .
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(b) Comparison between the real
(blue) and discretised (red) cur-
vatures of the function shown in
Fig. 12a.

Fig. 12: Second order derivative and curvature are amazingly accurate (mask of size 10). A small mask gives
good estimations although artifacts are visible, shifts on the first derivative (around 30, 50, 80 and 100 for
example) and erosion on the second order derivative.

We computed the estimated curvature of the discretised function x 7→ sin(x) and we compared it
with the real curvature. As we can see in Fig. 12b, for a typical mask of convolution, we obtain a
curvature close to the exact curvature.

The result is encouraging because we recover, in spite of the noise induced by the discretization,
a good estimate of the curvature. Moreover, experiments reveal that our estimator gives results
comparable to many other estimators: Tangent estimators based on recognition discrete lines [11,
7, 14] are sensitive to noise and our Gaussian approach should not. On the other hand, methods
based on filtering [19, 13] use convolution masks which are not adaptive to the local geometry. Our
approach is more faithful to the discrete object and is versatile: we can intensify the smoothing or
reduce it according to prior knowledge on the data or revise the data once the local feature size has
been roughly estimated. The performance of the fitting in comparison to the size of the masks, the
local feature size and the intensity of the final convolution will be studied in a forthcoming paper.

7 Conclusion

We defined an averaging operator based on diffusion on a discrete set. The distribution of weights on
discrete lines is equivalent to a normal law and we standardize its diffusion to have approximately
the same standard deviation for any slopes, recovering their Euclidian geometry. The computed
masks smooth out correctly discretisation noise, and provide a first step in recovering the intrinsic
1D-geometry of the underlying object: convolved with differentiation kernel, we build a derivative
estimator that we use to estimate tangent vector and curvature.

This estimator will be investigated in the future to account for discretised functions with non-
connected discretised function graphs. More generally, we will describe in a forthcoming paper how
to define a parameterisation of discrete curves by curvilinear abscissa for an arbitrary discrete set
modeled on an unknown 1D curve. We will then generalize our method to digital surfaces in 3D.
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Appendix Proof of Theorem 6

Proof. Contrary to the case on Z the random variable Xt ∈ {−1, 0,+1} that drives the wandering
at time t, (left, stay put or right), is not equal for each pixel, hence for each time. These pixels are
distributed in few classes determined by the ring of pixels nearby (see Definition. 5 on p. 4). The
position evolution at time t, Pt = Pt−1 + XPt−1 brings into play the random variable Xt that
depends on t through the position Pt−1. We can write it in the form of:

1
T

PT =
1
T

T∑
t=1

Xt

Since the system is ergodic [2], this time average of X along a trajectory up to T is equal to its
space average at the given time T . Therefore we can find an equivalent of this form according to
the position i:

1
T

PT =
1
T

T∑
t=1

Xt 'T→∞

+∞∑
i=−∞

P(PT = i)Xi

P(PT = i) represents the probability for the walker to be at time T on pixel i. The transition
random variable Xi depends on the position i only through its equivalence class [i]. Let λ[i] be the
proportion of pixels in the equivalence class [i] on the discrete line. Then we can write this sum in
the form of:

+∞∑
i=−∞

P(PT = i)Xi =
∑
[i]

∑
i∈[i]

P(PT = i)

 X[i] 'T→∞
∑
[i]

λ[i]X[i]

We build a sequence of random variables Pt with λ[i] proportion of pixels in the class [i] on the
discrete line, independent of the time. We have:

PT ' T
∑
[i]

λ[i]X[i]

We conclude by using the Central Limit Theorem, that 1√
T

PT follows a normal law. ut
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