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Linear and nonlinear theories of discrete analytic functions.

Integrable structure and isomonodromic Green’s function

Alexander I. Bobenko ∗ Christian Mercat † Yuri B. Suris ‡

February 1, 2008

Abstract. Two discretizations, linear and nonlinear, of basic notions of the complex analysis are

considered. The underlying lattice is an arbitrary quasicrystallic rhombic tiling of a plane. The linear

theory is based on the discrete Cauchy-Riemann equations, the nonlinear one is based on the notion of

circle patterns. We clarify the role of the rhombic condition in both theories: under this condition the

corresponding equations are integrable (in the sense of 3D consistency, which yields also the existense of zero

curvature representations, Bäcklund transformations etc.). We demonstrate that in some precise sense the

linear theory is a linearization of the nonlinear one: the tangent space to a set of integrable circle patterns

at an isoradial point consists of discrete holomorphic functions which take real (imaginary) values on two

sublattices. We extend solutions of the basic equations of both theories to Zd, where d is the number of

different edge slopes of the quasicrystallic tiling. In the linear theory, we give an integral representation

of an arbitrary discrete holomorphic function, thus proving the density of discrete exponential functions.

We introduce the d-dimensional discrete logarithmic function which is a generalization of Kenyon’s discrete

Green’s function, and uncover several new properties of this function. We prove that it is an isomonodromic

solution of the discrete Cauchy-Riemann equations, and that it is a tangent vector to the space of integrable

circle patterns along the family of isomonodromic discrete power functions.

1 Introduction

There is currently much interest in finding discrete counterparts of various structures of the classical
(continuous, smooth) mathematics. In the present paper we are dealing with the discretization of
the classical complex analysis.

There are two approaches to this problem. The first one, which we shall call the linear theory,
is based on a discretization of the Cauchy-Riemann equations. Since the latter are linear, straight-
forward discretizations are linear as well. A discretization preserving apparently the most number
of important structural features has been developed in [F, D1, D2, M1, K]. The first two references
are dealing with discrete holomorphic functions f : Z

2 → C on the regular square lattice, satisfying
the following discrete Cauchy-Riemann equations:

fm,n+1 − fm+1,n = i(fm+1,n+1 − fm,n). (1)

∗Institut für Mathematik, Fachbereich II, TU Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany. E–mail:
bobenko@math.tu-berlin.de. Partially supported by the DFG Research Center “Mathematics for key technologies”
(FZT86) in Berlin.
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A pioneering step was undertaken by Duffin [D2], where the combinatorics of Z
2 was given up in

favor of arbitrary planar graphs with rhombic faces. A far reaching generalization of these ideas is
given in [M1], where the linear theory is extended to discrete Riemann surfaces. Planar graphs with
rhombic faces are called critical in [M1]. Kenyon [K] developed a theory of the Dirac operator and
constructed Green’s function in the framework of the linear theory on critical graphs. See [CY, G]
for combinatorial, resp. numerical aspects of Green’s functions on graphs.

The second approach, which we will call the nonlinear theory, is based on the ideas by Thurston
[T], and declares circle patterns to be natural discrete analogs of analytic functions [BeS, DS, Sch, S].
One of the most important achievements of this theory is the proof that the Riemann map can
be (constructively) approximated by circle packings [RS, MR, HS]. The variational approach to
circle patterns is discussed in detail in [BSp]. The word “nonlinear” refers to the basic feature of
equations describing circle patterns. Often, the so-called cross-ratio system is used for this. For a
function f : Z

2 → C on the regular square lattice, this system was introduced in [NC]:

(fm+1,n − fm,n)(fm+1,n+1 − fm,n+1)

(fm,n+1 − fm,n)(fm+1,n+1 − fm+1,n)
= −1. (2)

For circle patterns with more sophisticated combinatorics, a generalization of this system to an
arbitrary quad-graph (planar graph with quadrilateral faces) is required [BS].

It is not difficult to see in what sense solutions of equations like (1), (2) can be considered as
discretized analytic functions. Indeed, assume that Z

2 is embedded in the complex plane C with
the grid size ε, i.e., the pair (m,n) ∈ Z

2 corresponds to (m+ in)ε ∈ C. Then restrictions of analytic
functions to this grid satisfy the corresponding equations up to O(ε2). More precisely, if f : C → C

is analytic, then
f(z + iε) − f(z + ε)

f(z + ε+ iε) − f(z)
= i+O(ε2),

and (
f(z + ε) − f(z)

)(
f(z + ε+ iε) − f(z + iε)

)
(
f(z + iε) − f(z)

)(
f(z + ε+ iε) − f(z + ε)

) = −1 +O(ε2).

Similar relations hold on more general graphs.
For a long time, the linear and the nonlinear theories of discrete analytic functions were consid-

ered separately. In the present paper, we show that in some precise sense the former is a linearization
of the latter. We work in the set-up of rhombic tilings of a plane. The theory becomes especially
rich for quasicrystallic tilings, – those with a finite number of different edge slopes. This class
includes double periodic tilings (which are naturally considered on a torus), as well as non-periodic
ones, like the Penrose tiling. We clarify the importance of rhombic embeddings of quad-graphs in
both the linear and the nonlinear theories. Namely, we show that the rhombic property implies
(actually, is almost synonymous with) integrability. Note that interrelations of circle patterns with
the theory of integrable systems were already uncovered and studied in [BP, AB1, AB2, BHS, BH].
Note also that some of the ideas behind our unified treatment of integrability of linear and non-
linear systems, such as the use of zero curvature representations in both situations, are similar to
the philosophy of Fokas’s unified transform method for linear and nonlinear differential equations
based on the Riemann-Hilbert boundary problem [Fo]. Our main results are the following.

• Discrete Cauchy-Riemann equations on a rhombically embedded quad-graph D, with weights
given by quotients of diagonals of the corresponding rhombi, are integrable. Integrability is
understood here as 3D consistency [BS]. Therefore, discrete holomorphic functions on rhombic
embeddings can (and should) be extended to multidimensional lattices. In particular, discrete
holomorphic functions on a quasicrystallic rhombic embedding D with d different edge slopes
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can be considered as restrictions of discrete holomorphic functions on Z
d to a certain two-

dimensional subcomplex ΩD in Z
d.

• Cross-ratio equations on a rhombically embedded quad-graph D, with cross-ratios read off the
corresponding rhombi, are integrable as well. Therefore, solutions of the cross-ratio equations
on a quasicrystallic rhombic embedding D are naturally extended to Z

d.

• For a circle pattern, the centers and the intersection points of the circles yield a solution
of cross-ratio equations, with the cross-ratios depending on the pairwise intersection angles
of the circles. We say that a circle pattern is integrable, if the corresponding cross-ratio
system is integrable. The combinatorics and intersection angles belong to an integrable circle
pattern, if and only if they admit an isoradial realization. This latter realization gives a
rhombic immersion of the corresponding quad-graph, and generates also a dual isoradial
circle pattern. An integrable circle pattern can be alternatively described by the radii of the
circles and the rotation angles of the configurations at the intersection points with respect to
the isoradial realization. These data comprise a solution of an integrable Hirota system.

• The tangent space to the set of integrable circle patterns, at the point corresponding to an
isoradial pattern, coincides with the space of discrete holomorphic functions on the corre-
sponding rhombically embedded quad-graph, which take real (resp. pure imaginary) values
on the white (resp. black) vertices. This holds in the description of circle patterns in terms
of circle radii and rotation angles at the intersection points (Hirota equations). Discrete
holomorphic functions obtained from these ones by discrete integration, comprise the tan-
gent space to the set of integrable circle patterns, described in terms of circle centers and
intersection points (cross-ratio equations).

• We define (in the linear theory) discrete exponential functions on Z
d, and prove that they are

dense in the space of discrete holomorphic functions, growing not faster than exponentially.

• We define (in the linear theory) a discrete logarithmic function on Z
d, or, better, on a branched

covering of certain d-dimensional octants 1 Sm ⊂ Z
d, m = 1, . . . , 2d. On each such octant, the

discrete logarithmic function is discrete holomorphic, with the distinctive property of being
isomonodromic, in the sense of the integrable systems theory. We show that the real part of
the discrete logarithmic function restricted to a surface ΩD in Z

d coming from a quasicrystallic
quad-graph D is nothing but Green’s function found in [K]. The integral representation of
Green’s function given in [K] is derived within the isomonodromic approach.

• We define (in the nonlinear theory) discrete power functions wγ−1 (resp. zγ) on the same
branched covering of octants Sm ⊂ Z

d, m = 1, . . . , 2d, where the discrete logarithmic function
is defined. On each such sector, discrete wγ−1 (resp. zγ) is an isomonodromic solution of
the Hirota (resp. cross-ratio) system. The tangent vector to the space of integrable circle
patterns along the curve consisting of patterns wγ−1, at the isoradial point corresponding to
γ = 1, is shown to be the discrete logarithmic function.

In conclusion, we point out some generalizations of the concepts and results of this paper for the
non-rhombic case.

Acknowledgements. Numerous discussions and collaboration with Boris Springborn were
very important for this research. We thank also Tim Hoffmann, Ulrich Pinkall and Günter Ziegler
for discussions.

1We use this term for a subset of Z
d defined by fixing one of 2d possible combinations of signs of the coordinates.

An octant in the proper sense corresponds to d = 3, while by d = 2 this object is called quadrant.
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2 Discrete harmonic and discrete holomorphic functions on graphs

We denote by V (G), E(G) and ~E(G) the sets of vertices, undirected and directed edges of a graph
G, respectively. Let there be given a complex-valued function ν : E(G) → C on the edges. Then the
Laplacian ∆ corresponding to the weight function ν is the operator acting on functions f : V (G) → C

by

(∆f)(x0) =
∑

x∼x0

ν(x0, x)(f(x) − f(x0)). (3)

Here the summation is extended over the set of all vertices x connected to x0 by an edge. We will
use the notation star(x0) = star(x0;G) for the set of all edges of G incident to x0, see Fig. 1.

Definition 1 A function f : V (G) → C is called discrete harmonic (with respect to the weights
ν), if ∆f = 0.

Of course, the most interesting case of these notions is that of real positive weights ν : E(G) → R+.

x0

x1

x2

x3

x4

x5

Figure 1: The star of the vertex x0 in the graph G .

In the continuous case, there is a canonical correspondence between harmonic and holomorphic
functions on C: the real and the imaginary parts of a holomorphic function are harmonic, and any
real-valued harmonic function can be considered as a real part of a holomorphic function. This
relation can be generalized for functions on graphs, but these two classes of functions live then on
different graphs. Discrete holomorphic functions live on quad-graphs.

Definition 2 A cell decomposition D of the plane C is called a quad-graph, if all its faces are
quadrilaterals.

A more general version of this definition deals with cell decompositions of an arbitrary oriented
surface. So, quad-graphs are not just graphs, but are additionally assumed to be embedded in an
oriented surface; we will deal with the case of C only.

To establish a relation with discrete harmonic functions, we consider the latter ones on graphs
G with an additional structure, namely on those that come from general (not necessarily quadri-
lateral) cell decompositions of C. We will denote by F (G) the set of faces (2-cells) of G. To any
such G there corresponds canonically a combinatorial quad-graph called its double (or diamond
[M1]), constructed from G and its dual G∗. Recall that, in general, a dual cell decomposition G∗

is only defined up to isotopy, but it can be fixed uniquely with the help of the Voronoi/Delaunay
construction. The dual G∗ is characterized as follows. Vertices of G∗ are in a one-to-one cor-
respondence to faces of G, see Fig. 2. Each e ∈ E(G) separates two faces of G, which in turn
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correspond to two vertices of G∗. It is declared that these two vertices are connected by the edge
e
∗ ∈ E(G∗) dual to e. Finally, the faces of G∗ are in a one-to-one correspondence with the ver-

tices of G: if x0 ∈ V (G), and x1, . . . , xn ∈ V (G) are its neighbors connected with x0 by the edges
e1 = (x0, x1), . . . , en = (x0, xn) ∈ E(G), then the face of G∗ corresponding to x0 is defined by its
boundary e

∗
1 ∪ . . . ∪ e

∗
n (cf. Fig. 3). If one assigns a direction to an edge e ∈ E(G), then it will be

assumed that the dual edge e
∗ ∈ E(G∗) is also directed, in a way consistent with the orientation

of the underlying surface, namely so that the pair (e, e∗) is oriented directly at its crossing point.
This orientation convention implies that e

∗∗ = −e.

Figure 2: Vertex of G∗ dual to a face of G.

x0

x1

x2

x3

x4

x5

Figure 3: Face of G∗ dual to a vertex of G.

Now the double D is constructed from G, G∗ as follows. The set of vertices of the double D
is V (D) = V (G) ⊔ V (G∗). Each pair of dual edges, say e = (x0, x1) ∈ E(G) and e

∗ = (y0, y1) ∈
E(G∗), defines a quadrilateral (x0, y0, x1, y1). These quadrilaterals constitute the faces of the cell
decomposition (quad-graph) D, see Fig. 4. The edges of D belong neither to E(G) nor to E(G∗).
A star of a vertex x0 ∈ V (G) produces a flower of adjacent quadrilaterals from F (D) around the
common vertex x0, see Fig. 5.

Observe that the double D is automatically bipartite, since its vertices V (D) are decomposed
into two complementary halves, V (D) = V (G) ⊔ V (G∗) (“black” and “white” vertices), such that
the ends of each edge from E(D) are of different colours. An arbitrary quad-graph embedded
in C is automatically bipartite, and the above construction can be reversed for it, to produce a
cell decomposition G along with its dual G∗. The decomposition of V (D) into V (G) and V (G∗) is
unique, up to interchanging the roles of G and G∗. Edges of G (say) connect two “black” vertices
along the diagonal of each face of D.

x0 x1

y0

y1

Figure 4: A face of the double D

x0
y0

x1
y1

x2

y2

x3

y3

x4

y4 x5

Figure 5: Faces of D around vertex x0.
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Let there be given a function ν : E(G) → C on undirected edges of G. (It is assumed that
both directed representatives ±e of any edge carry the same value ν(e) = ν(−e) as the underlying
undirected one.) Extend the function ν to undirected edges of G∗ according to the rule

ν(e∗) = 1/ν(e). (4)

Definition 3 A function f : V (D) → C is called discrete holomorphic (with respect to the
weights ν), if for any positively oriented quadrilateral (x0, y0, x1, y1) ∈ F (D) there holds:

f(y1) − f(y0)

f(x1) − f(x0)
= iν(x0, x1) = −

1

iν(y0, y1)
. (5)

These equations are called discrete Cauchy-Riemann equations.

Again, the most interesting case corresponds to the real positive weights ν : E(G) ⊔ E(G∗) → R+.
The theory of discrete holomorphic functions was developed in [M1]. In [K] a discrete Dirac operator
was introduced, the kernel of which consists of discrete holomorphic functions. In the present paper,
like in [M1], our attention belongs not to the discrete Dirac operator but to its kernel only. The
next statement follows immediately.

Proposition 4 a) If a function f : V (D) → C is discrete holomorphic, then its restrictions to
V (G) and to V (G∗) are discrete harmonic.

b) Conversely, any discrete harmonic function f : V (G) → C admits a family of discrete
holomorphic extensions to V (D), differing by an additive constant on V (G∗). Such an extension is
uniquely defined by a value at one arbitrary vertex y ∈ V (G∗).

3 Rhombic embeddings and labelings of a quad-graph

The paper [KS] studies rhombic embeddings of a quad-graph D in C, i.e., embeddings with the
property that each face of D is mapped to a rhombus. A combinatorial criterion for the existence
of a rhombic embedding of a given quad-graph D found in [KS] is as follows.

Definition 5 A strip S in D is a path {a∗j}
∞
j=−∞ in D∗ with the following property: for any two

consecutive dual edges a
∗
j , a

∗
j+1 ∈ S ⊂ E(D∗) with the common point a

∗
j∩a

∗
j+1 = qj ∈ V (D∗) ≃ F (D),

the corresponding edges aj, aj+1 ∈ E(D) are two opposite sides of the quadrilateral qj. The edges
{aj}

∞
j=−∞ are called the traverse edges of the strip S.

Theorem 6 [KS] A planar quad-graph D admits a rhombic embedding in C if and only if the
following two conditions are satisfied:

• No strip crosses itself or is periodic.

• Two distinct strips cross each other at most once.

A rhombic embedding determines rhombus angles that are naturally assigned to the edges of G
and G∗, see Fig. 6. Such systems of rhombus angles φ : E(G) ⊔ E(G∗) → (0, π) are characterized,
according to [KS], by the following two conditions: first,

φ(e∗) = π − φ(e), ∀e ∈ E(G), (6)
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x0 x1

y0

y1

φ(e)

φ(e∗)

Figure 6: A rhombic embedding of a quadrilateral (x0, y0, x1, z1) ∈ F (D), e = (x0, x1), e
∗ = (y0, y1)

and, second,

∑

e∈star(x0;G)

φ(e) = 2π,
∑

e
∗∈star(y0;G∗)

φ(e∗) = 2π, ∀x0 ∈ V (G), y0 ∈ V (G∗). (7)

As mentioned in [KS], to each rhombic embedding of D there corresponds a set of parallelogram
embeddings (wherein each face is mapped to a parallelogram), which are obtained by replacing each
traverse edge of a strip with a real multiple (a different multiple for each strip).

Definition 7 A labeling is a function α : ~E(D) → C such that α(−a) = −α(a) for any a ∈ ~E(D),
and the values of α on two opposite and equally directed edges of any quadrilateral from F (D) are
equal to one another.

~

> }

=

x0 x1

y0

y1

α1

−α1

−α0

α0

Figure 7: Labeling of directed edges

x0 x1

y0

y1

α2
1

α2
1

α2
0

α2
0

Figure 8: Labeling of undirected edges

This definition is illustrated in Fig. 7. Note that if edges of any given face of D are directed
as on this figure (from black to white), then any two opposite edges carry opposite labels. For
any labeling α : ~E(D) → C of directed edges, the function α2 can be considered as a labeling of
undirected edges, i.e., as a function α2 : E(D) → C such that its values on two opposite edges of any
quadrilateral from F (D) are equal to one another, see Fig. 8. Conversely, any labeling of undirected
edges comes as a square of some labeling of directed edges.

The existence of a labeling α : ~E(D) → C is equivalent to the existence of a parallelogram
immersion of the quad-graph D. Indeed, given a parallelogram immersion p : V (D) → C, one
defines canonically a labeling by

α(x, y) = p(y) − p(x), ∀(x, y) ∈ ~E(D). (8)

Conversely, given a labeling α : ~E(D) → C, the formula (8) correctly defines a function p : V (D) →
C and assures that the p-image of any quadrilateral face of D is a parallelogram. If the labels α
take values in S

1 = {θ ∈ C : |θ| = 1}, then the corresponding immersion is rhombic.
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Definition 8 A parallelogram immersion p : V (D) → C of a quad-graph D is called quasicrys-

tallic, if the set of values of the corresponding labeling α : ~E(D) → C, defined by (8), is finite, say
A = {±α1, . . . ,±αd}.

It will be supposed that any two non-opposite elements of A are linearly independent over R. This
implies, in particular, that all parallelograms are non-degenerate.

It will be of a central importance for us that any quasicrystallic parallelogram immersion p can
be seen as a sort of a projection of a certain two-dimensional subcomplex (combinatorial surface)
ΩD of a multi-dimensional regular square lattice Z

d. The vertices of ΩD are given by a map
P : V (D) → Z

d constructed as follows. Fix some x0 ∈ V (D), and set P (x0) = 0. For all other
vertices of D, their images in Z

d are defined recurrently by the property:

• For any two neighbors x, y ∈ V (D), if p(y) − p(x) = ±αi ∈ A, then P (y) − P (x) = ±ei ,

where ei is the i-th coordinate vector of Z
d. The edges and faces of ΩD correspond to edges and

faces of D. So, the combinatorics of ΩD is that of D, and therefore Theorem 6 can be used to
decide whether a given two-dimensional subcomplex of Z

d corresponds in this way to some rhombic
embedding of a quad-graph in C.

4 3D consistency

We now study a question about integrability of the discrete Cauchy-Riemann equations (5). These
equations are just a specific linear issue of general equations on quad-graphs [BS]

Φ(f(x0), f(y0), f(x1), f(y1)) = 0, (9)

relating four fields f sitting on the four vertices of an arbitrary (oriented) face (x0, y0, x1, y1) ∈ F (D)
of a quad-graph D. Here the function Φ may depend on some parameters (in the case of discrete
Cauchy-Riemann equations these are the weights ν), and it is supposed that equation (9) is uniquely
solvable for any one of the fields in terms of other three (which is, of course, the case for discrete
Cauchy-Riemann equations with non-vanishing weights ν).

The approach pushed forward in [BS] is based on the idea that integrability of such equations
on quad-graphs is synonymous with their 3D consistency. To describe the latter notion, we extend
the planar quad–graph D into the third dimension. Formally speaking, we consider the second
copy D̂ of D and add edges connecting each vertex x ∈ V (D) with its copy x̂ ∈ V (D̂). On this way
we obtain a “three-dimensional quad-graph” D, whose set of vertices is

V (D) = V (D) ⊔ V (D̂),

whose set of edges is
E(D) = E(D) ⊔ E(D̂) ⊔ {(x, x̂) : x ∈ V (D)},

and whose set of faces is

F (D) = F (D) ⊔ F (D̂) ⊔ {(x, y, ŷ, x̂) : (x, y) ∈ E(D)}.

Elementary building blocks of D are cubes (x0, y0, x1, y1, x̂0, ŷ0, x̂1, ŷ1), as shown on Fig. 9.
Clearly, if D is bipartite, then so is D: each x̂ ∈ V (D̂) has the colour opposite to the colour of

its counterpart x ∈ V (D). Hence, we can extend the “black” graph G to a 3D object G, with edges

E(G) = E(G) ⊔ E(Ĝ∗) ⊔ {(x, ŷ) : x ∈ V (G), y ∈ V (G∗), (x, y) ∈ E(D)}.

Edges of E(G) within Fig. 9 are (x0, x1), (ŷ0, ŷ1), (x0, ŷ0), (x0, ŷ1), (x1, ŷ0), and (x1, ŷ1), forming
the black tetrahedron. Similarly, we have a 3D white graph G∗.
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x0

x̂0

y0

ŷ0

x1

x̂1

y1

ŷ1

Figure 9: Elementary cube of D

Definition 9 Equation (9) is called 3D consistent if it can be imposed on all faces of any ele-
mentary cube of D, in such a manner that opposite faces carry one and the same equation (i.e.,
the same parameters).

This should be understood as follows. Consider an elementary cube of D, as on Fig. 9. Suppose
that the values of the function f are given at the vertex x0 and at its three neighbors y0, y1, and
x̂0. Then equation (9) uniquely determines the values of f at x1, ŷ0, and ŷ1. After that equation
(9) delivers three a priori different values for the value of the field f at the vertex x̂1, coming from
the faces (y0, x1, x̂1, ŷ0), (x1, y1, ŷ1, x̂1), and (x̂0, ŷ0, x̂1, ŷ1), respectively. The 3D consistency means
that these three values for f(x̂1) actually coincide, independently on the choice of initial conditions.

As discussed in detail in [BS], the 3D consistency of a given system (9) allows one to construct
Bäcklund transformations and to find in an algorithmic way a zero curvature representation for it,
which are traditionally considered as main attributes of integrability. Briefly, the constructions are
as follows.

1) Given a solution f : V (D) → C to (9) and an arbitrary value f(x̂0) = f̂0 at some vertex
x̂0 ∈ D̂, the 3D consistency allows one to extend the solution f to the whole of V (D). Its restriction
to V (D̂) is thus a well-defined function f : V (D̂) → C which also solves the original equation (9).
Setting f̂(x) = f(x̂) for all x ∈ V (D), one can interpret this function as f̂ : V (D) → C, and this f̂
is called the Bäcklund transformation of f (defined by the value f̂0 and the parameters sitting
on the vertical faces).

2) Suppose that the function Φ(u1, u2, u3, u4) in (9) is affine-linear in all its arguments, so
that this equation can be solved uniquely for an arbitrary argument ui in terms of other three
arguments, the solution being given by a fractional-linear function. For an arbitrary edge a =
(x, y) ∈ ~E(D), consider the vertical face (x, y, ŷ, x̂) ∈ F (D) over this edge. The solution of equation
Φ(f(x), f(y), f(ŷ), f(x̂)) = 0 can be written as

f(ŷ) = L(f(y), f(x)) · f(x̂), (10)

where L(f(x), f(y)) ∈ PGL2(C), and the standard notation for the action of PGL2(C) on C by
Möbius transformations is used: (

a b
c d

)
· u =

au+ b

cu+ d
.

One assigns the matrix above to the edge a, so that L(a) = L(f(y), f(x)). Now it follows from the
3D consistency that for an arbitrary face (x0, y0, x1, y1) ∈ F (D) one has:

L(f(x1), f(y0))L(f(y0), f(x0)) = L(f(x1), f(y1))L(f(y1), f(x0)). (11)

This expresses the flatness of the discrete connection L on D with values in PGL2(C), hence (11)
is called the zero curvature representation of system (9). It is often possible to use suitable
normalizations in order to lift this representation to the one with values in GL2(C).
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5 3D consistent Cauchy-Riemann equations

To apply the notion of the 3D consistency to the discrete Cauchy-Riemann equation (5), one has
to explain how to impose it on the vertical faces of D. For this, we assume that the function ν is
extended to E(G) ⊔ E(G∗), still satisfying the condition ν(e∗) = 1/ν(e), and with an additional
condition that opposite edges carry the same values of ν.

An interesting problem is, of course, to find functions ν on the “ground floor” E(G) ⊔ E(G∗)
which can be extended to the edges of E(G) ⊔ E(G∗) lying in the “vertical” faces to give a 3D
consistent system.

Theorem 10 The function ν : E(G) ⊔ E(G∗) → C can be extended to E(G) ⊔ E(G∗) giving a 3D
consistent system of discrete Cauchy-Riemann equations, if and only if the following condition is
satisfied:

∏

e∈star(x0;G)

1 + iν(e)

1 − iν(e)
= 1,

∏

e
∗∈star(y0;G∗)

1 + iν(e∗)

1 − iν(e∗)
= 1, ∀x0 ∈ V (G), y0 ∈ V (G∗). (12)

Proof. Consider a flower of quadrilaterals around x0, with ek = (x0, xk), e
∗
k = (yk−1, yk) (in

notations of Fig. 5). Build the extension of this flower to the third dimension (for one of its petals
corresponding to k = 1 this extension is shown on Fig. 9). Denote

ν(yk−1, yk) = ν(e∗k) = νk, ν(yk, x̂0) = µk. (13)

Lemma 11 Discrete Cauchy-Riemann equations are 3D consistent on the cube over the k-th petal,
if and only if

1 + νkµk−1 − νkµk + µk−1µk = 0. (14)

Proof of Lemma 11. Consider the elementary cube on Fig. 9, corresponding to k = 1. On the
first step of checking the 3D consistency we find:

f(x1) = f(x0) + iν1(f(y0) − f(y1)),

f(ŷ0) = f(x0) + iµ0(f(y0) − f(x̂0)),

f(ŷ1) = f(x0) + iµ1(f(y1) − f(x̂0)).

On the second step we find (from the condition that opposite faces support the same equations):

f(x̂1) = f(x̂0) + iν1(f(ŷ0) − f(ŷ1)),

= f(y1) + iµ0(f(x1) − f(ŷ1)),

= f(y0) + iµ1(f(x1) − f(ŷ0)).

After simple computations we find:

f(x̂1) = (1 + ν1µ0 − ν1µ1)f(x̂0) − ν1µ0f(y0) + ν1µ1f(y1),

= −µ0µ1f(x̂0) − ν1µ0f(y0) + (1 + ν1µ0 + µ0µ1)f(y1),

= −µ0µ1f(x̂0) + (1 − ν1µ1 + µ0µ1)f(y0) + ν1µ1f(y1).

Comparison of these expressions leads to 1 + ν1µ0 − ν1µ1 + µ0µ1 = 0, which proves the lemma.

10



Continuing the proof of Theorem 10, we derive from (14):

µk =
νkµk−1 + 1

νk − µk−1
=

(
νk 1
−1 νk

)
· µk−1,

where the standard notation for the action of PGL2(C) on C by Möbius transformations is used.
Starting with an arbitrary µ0, we can define all µk’s consecutively. This procedure is consistent, if
running around x0 returns the value of µ0 we started with. This holds for any µ0, if and only if

the matrix product
x∏

k

(
νk 1
−1 νk

)
is a scalar matrix. It is easy to see by induction that the above

matrix product may be presented as

(
A B
−B A

)
with A =

1

2

(∏

k

(νk + i) +
∏

k

(νk − i)
)
, B =

1

2i

(∏

k

(νk + i) −
∏

k

(νk − i)
)
.

Therefore, a necessary and sufficient condition for this matrix to be scalar is

B = 0 ⇔
∏

k

νk + i

νk − i
= 1,

which is equivalent to the first equality in (12), because of νk = ν(e∗k) = 1/ν(ek). The second
condition in (12) is proved similarly, by considering a flower of quadrilaterals around y0 ∈ V (G∗).

As pointed out above, the most interesting case is when ν takes values in R+. In this case we
will use the notation

ν(e) = tan
φ(e)

2
, φ(e) ∈ (0, π). (15)

The condition ν(e∗) = 1/ν(e) is translated in this case into (6). The integrability condition (12)
takes in this case the form

∏

e∈star(x0;G)

exp(iφ(e)) = 1,
∏

e
∗∈star(y0;G∗)

exp(iφ(e∗)) = 1, ∀x0 ∈ V (G), y0 ∈ V (G∗). (16)

The latter condition is a generalization of (7), and is equivalent to saying that the system of angles
φ : E(G) ⊔ E(G∗) → (0, π) comes from a realization of the quad-graph D by a rhombic ramified
embedding in C. Flowers of such an embedding can wind around its vertices more than once.

Lemma 12 Let a quad-graph D be a double for a pair of dual cell decompositions G, G∗. Let
Φ : E(G) ⊔ E(G∗) → C be a function satisfying

Φ(e∗) = −1/Φ(e), ∀e ∈ E(G). (17)

Then the necessary and sufficient condition for the existence of a labeling α : ~E(D) → C such that,
in the notations of Fig. 7,

Φ(e) = Φ(x0, x1) =
α1

α0
⇔ Φ(e∗) = Φ(y0, y1) = −

α0

α1
, (18)

is given by the equations

∏

e∈star(x0;G)

Φ(e) = 1,
∏

e
∗∈star(y0;G∗)

Φ(e∗) = 1, ∀x0 ∈ V (G), y0 ∈ V (G∗). (19)

11



Proof. The necessity is obvious. To prove sufficiency, we construct α by assigning an arbitrary
value (say, α = 1) to some edge of D, and then extending it successively using either of the equations
(18) and the definition of labeling. Conditions (19) assure the consistency of this procedure.

Corollary 13 Integrability condition (12) for the function ν : E(G) ⊔ E(G∗) → C is equivalent
to the following one: there exists a labeling α : ~E(D) → C of directed edges of D, such that, in
notations of Fig. 7,

ν(y0, y1) =
1

ν(x0, x1)
= i

α1 + α0

α1 − α0
. (20)

Under this condition, the 3D consistency of the discrete Cauchy-Riemann equations is assured by
the following values of the weights ν on the edges of E(G) ⊔ E(G∗) lying in the vertical faces:

ν(y, x̂) =
1

ν(x, ŷ)
= i

λ+ α

λ− α
, (21)

where α = α(x, y), and λ ∈ C is an arbitrary number having the interpretation of the label carried
by all vertical edges of D: λ = α(x, x̂) = α(y, ŷ).

Proof. Apply Lemma 12 with the function

Φ(e) =
1 + iν(e)

1 − iν(e)
, (22)

which satisfies (17) due to the property (4) of the weights ν. Note that in the case ν(e) ∈ R+ the
notation (15) implies that Φ(e) = exp(iφ(e)). The formula (18) with the function (22) is clearly
equivalent to (20). To prove the second statement, we use notations of Lemma 11, in particular
the formula 1+ ν1µ0 − ν1µ1 +µ0µ1 = 0. According to (20), we have: ν1 = iα1+α0

α1−α0
. Parametrize the

(arbitrary) value of µ0 as µ0 = iλ+α0

λ−α0
. Then it follows from the above formula that µ1 = iλ+α1

λ−α1
.

An easy induction proves (21) for all edges in the vertical faces.

So, integrability of the discrete Cauchy-Riemann equations is equivalent to the existence of a
labeling α of directed edges satisfying (20). Let p : V (D) → C be a parallelogram realization of D
defined by p(y) − p(x) = α(x, y). Then discrete holomorphic functions are characterized by

f(y1) − f(y0)

f(x1) − f(x0)
=
α1 − α0

α1 + α0
=
p(y1) − p(y0)

p(x1) − p(x0)
. (23)

In other words, the quotient of diagonals of the f -image of any quadrilateral (x0, y0, x1, y1) ∈ F (D)
is equal to the quotient of diagonals of the corresponding parallelogram. In the case of positive
weights ν ∈ R+, the labels α take values in S

1, and have a geometric interpretation of edges of a
rhombic realization of D.

Proposition 14 The discrete Cauchy-Riemann equations (23) admit a zero curvature representa-
tion (11) in GL2(C)[λ], with transition matrices along (x, y) ∈ ~E(D) given by

L(y, x, α;λ) =


λ+ α −2α(f(x) + f(y))

0 λ− α


 , where α = p(y) − p(x). (24)
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Proof. This result is easy to check. It can be also systematically derived using the procedure
outlined at the end of Sect. 4. Indeed, setting λ = p(x̂)− p(x), one writes the equation (23) on the
vertical face (x, y, ŷ, x̂) as

f(x̂) − f(y)

f(ŷ) − f(x)
=
λ− α

λ+ α
⇔ f(ŷ) =

λ+ α

λ− α
f(x̂) +

(
f(x) −

λ+ α

λ− α
f(y)

)
= M(y, x, α;λ) · f(x̂),

where

M(y, x, α;λ) =


λ+ α (λ− α)f(x) − (λ+ α)f(y)

0 λ− α


 .

One easily shows that these matrices form a zero curvature representation with values in GL2(C)[λ],
i.e., that (11) holds literally, and not only projectively (up to a scalar factor). Finally, observe that
the matrices L in (24) are gauge equivalent to the matrices M :

L(y, x, α;λ) =

(
1 −f(y)
0 1

)
M(y, x, α;λ)

(
1 f(x)
0 1

)
.

This finishes the proof.

The main result of the present section can be formulated as follows. Discrete Cauchy-Riemann
equations on a quad-graph D are integrable if and only if they come from a parallelogram immersion
of D in C, weights iν being the quotients of diagonals of the corresponding parallelograms. In the
case of real positive weights ν the parallelograms are actually rhombi.

6 Extension of discrete holomorphic functions to Z
d

To exploit analytic possibilities provided by 3D consistency of the discrete Cauchy-Riemann equa-
tions, we restrict our considerations to quasicrystallic rhombic embeddings D, with the set of labels
A = {±α1, . . . ,±αd}. Construct the two-dimensional subcomplex ΩD in Z

d corresponding to D, as
explained at the end of Sect. 3. Extend the labeling α : ~E(D) → C to all edges of Z

d, assuming that
all edges parallel to (and directed as) ek carry the label αk. Now, 3D consistency of the discrete
Cauchy-Riemann equations allows us to impose them not only on ΩD, but on the whole of Z

d.

Definition 15 A function f : Z
d → C is called discrete holomorphic, if it satisfies, on each

elementary square of Z
d, the equation

f(n + ej + ek) − f(n)

f(n + ej) − f(n + ek)
=
αj + αk

αj − αk
. (25)

Obviously, for any discrete holomorphic function f : Z
d → C, its restriction to V (ΩD) ∼ V (D)

is a discrete holomorphic function on D. To justify the reverse procedure, i.e., the extension of
an arbitrary discrete holomorphic function on D to Z

d, keeping the property of being discrete
holomorphic, more thorough considerations are necessary.

Definition 16 For a given set V ⊂ Z
d, its hull H(V ) is the minimal set H ⊂ Z

d containing V
and satisfying the condition: if three vertices of an elementary square belong to H, then so does the
fourth vertex.
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This notion is tailored for arbitrary 3D consistent four-point equations of the type (9), including
the discrete Cauchy-Riemann equations. It is not difficult to show by induction that the hull of an
arbitrary connected subcomplex of Z

d is a brick, i.e., a set of the type

Πa,b =
{
n = (n1, . . . , nd) ∈ Z

d : ak ≤ nk ≤ bk, k = 1, . . . , d
}
, (26)

where a = (a1, . . . , ad), b = (b1, . . . , bd) are some integer vectors, with infinite values ak = −∞,
bk = ∞ allowed. (Observe that Definition 15 is equally well applicable to functions on bricks.)
However, there exist combinatorial surfaces Ω (two-dimensional subcomplexes of Z

d), like the one
shown on Fig. 10, that support discrete holomorphic function which cannot be extended to Z

d: the
recursive process of extending an arbitrary discrete holomorphic function from V (Ω) to its hull
H(V (Ω)) will lead to contradictions. The reason for this is a non-monotonicity of Ω: it contains
pairs of points which cannot be connected by a path in Ω with all edges lying in one octant.
However, such surfaces do not come from rhombic embeddings. We will prove the absence of
contradictions in the case of ΩD.

Figure 10: A non-monotone surface in Z
3

Proposition 17 For a combinatorial surface ΩD in Z
d coming from a rhombic embedding of a

quad-graph D, set

ak = ak(ΩD) = min
n∈V (ΩD)

nk, bk = bk(ΩD) = max
n∈V (ΩD)

nk, k = 1, . . . , d. (27)

(In case that nk are unbounded from below or from above on V (ΩD), set ak(ΩD) = −∞, resp.
bk(ΩD) = ∞.) Then H(V (ΩD)) = Πa,b, and an arbitrary discrete holomorphic function on ΩD can
be extended to a discrete holomorphic function on Πa,b in a unique and unambiguous way.

For a proof of this proposition, a more detailed study of the surface ΩD will be necessary. In order
to fix the ideas, we will assume, without loss of generality, that the circular order of the points
±αk on the positively oriented unit circle S

1 is the following: α1, . . . , αd,−α1, . . . ,−αd. We set
αk+d = −αk for k = 1, . . . , d, and then define αm for all m ∈ Z by 2d-periodicity.

Consider the set Am = {αm, . . . , αm+d−1} of d consecutive edge slopes. The opening angle of
the sector spanned by αm and αm+d−1 is in (0, π). The set Am contains exactly one member ǫkαk of
each pair ±αk, k = 1, . . . , d. This associates to any m ∈ Z the set of signs ǫ = (ǫ1, . . . , ǫd), ǫk = ±1,
which will be denoted by ǫ(m). The sets of signs ǫ(m) repeat 2d-periodically, therefore not all
possible sets of signs appear among them, but only the following 2d different ones. If m ∈ [1, d],
then the corresponding ǫ = ǫ(m) is given by

ǫk(m) =

{
−1, 1 ≤ k < m,
+1, m ≤ k ≤ d,
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and if m ∈ [d+ 1, 2d], then

ǫk(m) =

{
+1, 1 ≤ k < m− d,
−1, m− d ≤ k ≤ d.

Fix an arbitrary x0 ∈ V (D), and define the “sector” Um on the embedding plane C of the
quad-graph D as the set of all points of V (D) which can be reached from x0 along paths with all
edges from Am = {αm, . . . , αm+d−1}.

This can be re-formulated in terms of ΩD as follows. Recall that the map P which identifies
ΩD with D depends on the choice of the point x0 ∈ V (D) corresponding to 0 ∈ V (ΩD). The map
P sends Um to the set of the points of V (ΩD) which can be reached from 0 along paths in V (ΩD)
with all edges from {ǫ1e1, . . . , ǫded}, where ǫk = ǫk(m) for k = 1, . . . , d. To formulate it in a still
another way, put into a correspondence to any set of signs ǫ = (ǫ1, . . . , ǫd) the d-dimensional octant

Sǫ = (ǫ1Z+) × . . .× (ǫdZ+) ⊂ Z
d. (28)

In case of ǫ = ǫ(m), use the notation S
ǫ(m) = Sm. Then the definition of Um is equivalent to saying

that Um = P−1(V (ΩD) ∩ Sm). The following statement will be of a key importance.

Lemma 18 The union
⋃2d

m=1 Um covers the whole of the quad-graph D. Equivalently, the combi-

natorial surface ΩD coming from a rhombic embedding of D lies entirely in
⋃2d

m=1 Sm.

Proof. Clearly, Um lies within the sector of the embedding plane with the tip at x0, spanned
by the directions αm and αm+d−1. The set Am can be ordered: αm ≺ . . . ≺ αm+d−1. The lower
boundary U−

m (upper boundary U+
m) of Um can be described as the path in D from the point x0

obtained by following, at each vertex of the path, the edge with the least (resp. the largest) slope
from Am available at this vertex, with respect to the above mentioned ordering in Am. The fact
that D is embedded implies that all vertices of D between U−

m and U+
m belong to Um. Indeed,

suppose that there are vertices between U−
m and U+

m which cannot be reached from x0 along a path
with all edges from Am. Take such a vertex x, combinatorially nearest to x0. It cannot be reached
from x0 along a path with the last edge from Am. Then one of the corners of one of the faces
adjacent to x is free from edges from Am and therefore has an internal angle larger than π, in a
contradiction with embeddedness. Thus, Um can be described as a set of vertices between U−

m and
U+

m. Further, observe that the boundaries of the sectors Um are interlaced: Um contains all U−
r

with r ∈ [m+ 1,m+ d− 2], and all U+
r with r ∈ [m− d+ 2,m− 1]. This yields that the union of

all Um’s covers the whole of D.

See Fig. 11 for an illustration.
We say that a subset I ⊂ Πa,b is an initial values locus, if, prescribing arbitrarily values of f

on I, one can extend f in virtue of the 3D consistent Cauchy-Riemann equations in a unique and
unambiguous way from I to the whole of Πa,b (cf. [AV]). We will use two types of initial values
loci.

• Any monotone path from a to b, with all edges directed positively:

I1 = {nr}
N
r=0 with n0 = a, nN = b, and nr+1 − nr ∈ {e1, . . . , ed}. (29)

• The intersection of Πa,b with all coordinate axes:

I2 =

d⋃

k=1

{
n = nek : ak ≤ n ≤ bk

}
. (30)
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0

Figure 11: Sectors of the dual kagome lattice, d = 3, αk = exp((2k − 1)πi/6).

Proof of Proposition 17. We have to show that, for any set of signs ǫ, the values of f on
V (ΩD) ∩ Sǫ determine f uniquely on the hull Πa,b ∩ Sǫ.

First, we prove this for ǫ = ǫ(m), so that Sǫ = Sm. For the sake of notational simplicity,
we do this for m = 1 only, i.e., for the hull H(V (ΩD) ∩ S1) = Π0,b. Indeed, an arbitrary point
n ∈ V (ΩD) ∩ S1 can be reached from 0 along a path in V (ΩD) with all edges from {e1, . . . , ed}.
This is a path of the type I1, as in (29), hence it is an initial value locus for the brick Π0,n. Since
the union of the bricks Π0,n over all n ∈ V (ΩD) ∩ S1 exhausts the brick Π0,b, our claim is proved.

The bricks Πa,b ∩ Sǫ with ǫ 6= ǫ(m) do not contain points of V (ΩD) in their interior. However,
on the first step of the proof, we obtain values of f on all the coordinate axes. This gives an initial
values locus of the type I2, as in (30), for any brick of this type.

Note that intersections of ΩD with bricks correspond to combinatorially convex subsets of D, as
defined in [M2].

7 Discrete exponential functions

A particularly important discrete holomorphic function on Z
d is the discrete exponential function,

defined as

e(n; z) =

d∏

k=1

(z + αk

z − αk

)nk

. (31)

For d = 2, this function was considered in [F, D1]. The discrete Cauchy-Riemann equations for the
discrete exponential function are easily checked: they are equivalent to a simple identity

(z + αj

z − αj
·
z + αk

z − αk
− 1
)/(z + αj

z − αj
−
z + αk

z − αk

)
=
αj + αk

αj − αk
.

At a given n ∈ Z
d, the discrete exponential function is rational with respect to the parameter z,

with poles at the points ǫ1α1, . . . , ǫdαd, where ǫk = sign nk.
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Equivalently, one can identify the discrete exponential function by its initial values on the axes:

e(nek; z) =
(z + αk

z − αk

)n
. (32)

A still another characterization says that e(·; z) is the Bäcklund transformation of the zero solution
of discrete Cauchy-Riemann equations on Z

d, with the “vertical” parameter z.
Restriction of the function e(·; z) to V (ΩD) ∼ V (D) is a discrete exponential function on D

defined and studied in [M1, M2, K]. Note that the latter depends on the choice of the point
x0 ∈ V (D). A question posed in [K] asks whether discrete exponential functions are dense in the
space of discrete holomorphic functions on D. We now show that the answer to this question is in
affirmative, in some natural class of functions (growing not faster than exponentially).

Theorem 19 Let f be a discrete holomorphic function on V (D) ∼ V (ΩD), satisfying

|f(n)| ≤ exp(C(|n1| + . . .+ |nd|)), ∀n ∈ V (ΩD), (33)

with some C ∈ R. Extend it to a discrete holomorphic function on H(V (ΩD)). Then inequality
(33) holds for all n ∈ H(V (ΩD)), possibly with some larger constant C. There exists a function g
defined on the disjoint union of small neighborhoods around the points ±αk ∈ C and holomorphic
on each one of these neighborhoods, such that

f(n) − f(0) =
1

2πi

∫

Γ
g(λ)e(n;λ)dλ, ∀n ∈ H(V (ΩD)), (34)

where Γ is a collection of 2d small loops, each one running counterclockwise around one of the
points ±αk.

Proof. In order to extend f from V (ΩD) to H(V (ΩD)), one makes elementary steps based on eq.
(15). For instance, within the octant S1 these elementary steps consist of calculating the left-hand
side of the following equation through the quantities on the right-hand side:

f(n + ej + ek) = f(n) +
αj + αk

αj − αk

(
f(n + ej) − f(n + ek)

)
.

(In other octants everything is similar, but notations become slightly more complicated.) A simple
induction shows that if the constant C in (33) satisfies the inequality

1 + 2max
j 6=k

∣∣∣∣
αj + αk

αj − αk

∣∣∣∣ exp(C) ≤ exp(2C),

then (33) propagates in the extension process. This proves the first statement of the theorem.
To prove the second one, it is enough to find g(λ) such that (34) holds on the coordinate axes,

that is,

f (k)
n − f(0) = Res

λ=αk

g(λ)

(
λ+ αk

λ− αk

)n

, f
(k)
−n − f(0) = Res

λ=−αk

g(λ)

(
λ− αk

λ+ αk

)n

, ∀n > 0, (35)

where f
(k)
n are the restrictions of f : H(V (ΩD)) → C to the coordinate axes:

f (k)
n = f(nek), ak(ΩD) ≤ n ≤ bk(ΩD).
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Set g(λ) =
∑d

k=1(gk(λ) + g−k(λ)), where the functions g±k(λ) vanish everywhere except in small
neighborhoods of the points ±αk, respectively, and are given there by convergent series

gk(λ) =
1

2λ

(
f

(k)
1 − f(0) +

∞∑

n=1

(λ− αk

λ+ αk

)n(
f

(k)
n+1 − f

(k)
n−1

)
)
, (36)

and a similar formula for g−k(λ). (Convergence of these series is assured by the exponential growth

of f
(k)
n .) The easy-to-check formula

Res
λ=αk

1

λ

(λ+ αk

λ− αk

)n
= 1 − (−1)n, n ≥ 0,

shows that the so defined function g satisfies (35).

8 Isomonodromic discrete logarithmic function

We first give a construction of the discrete logarithmic function on D which is equivalent to Kenyon’s
one [K]. This function is defined, after fixing some point x0 ∈ V (D), by the formula

f(x) =
1

2πi

∫

Γ

log(λ)

2λ
e(x;λ)dλ, ∀x ∈ V (D). (37)

Here the integration path Γ is the same as in Theorem 19, and fixing x0 is necessary for the
definition of the discrete exponential function on D. To make (37) a valid definition, one has to
specify which branch of log(λ) is chosen around each point ±αk. This choice depends on x, and is
done as follows.

For each m ∈ Z, assign to αm = exp(iθm) ∈ S
1 a certain value of argument θm ∈ R: choose a

value θ1 of the argument of α1 arbitrarily, and then extend it according to the rule

θm+1 − θm ∈ (0, π), ∀m ∈ Z.

Clearly, there holds θm+d = θm + π, and therefore also θm+2d = θm + 2π. It will be convenient to
consider the points αm, supplied with the arguments θm, as belonging to the Riemann surface Λ̃
of the logarithmic function (a branched covering of the complex λ-plane).

The definition domain of the discrete logarithmic function is a branched covering

Ũ =

∞⋃

m=−∞

Ũm

of the quad-graph D. Here Ũm is the sector Um equipped with additional data – the interval

log(αr) ∈ [iθm, iθm+d−1], r = m, . . . ,m+ d− 1 (38)

of length less than π for the logarithms of the slopes of edges αm, . . . , αm+d−1. If m increases by
2d, the interval on the right-hand side of (38) is shifted by 2πi. Two sectors Ũm1

and Ũm2
have a

non-empty intersection, if and only if |m1−m2| < d. It follows from Lemma 18 that Ũ is, indeed, a
branched covering of D. Definition (37) should be read as follows: for x ∈ Ũm, the poles of e(x;λ)
are exactly the points αm, . . . , αm+d−1 ∈ Λ̃. Therefore, one can assume that the integration path Γ
consists of d small loops around these points, and the values of log(λ) at these points satisfy (38).

18



Proposition 20 [K] The discrete logarithmic function on D, restricted to V (G), coincides with
discrete Green’s function on G, up to a constant factor 2π.

Proof. It is not difficult to see that the restriction of the discrete logarithmic function to black
points does not branch: it is a well-defined real-valued function on V (G). Clearly, this function is
harmonic everywhere except the origin. At the origin, its Laplacian equals to the increment of f
upon running once around the origin through its white neighbors. The values of f at the vertices
neighboring to the origin are nothing but the arguments of the corresponding edges. Therefore, the
above mentioned increment is equal to 2π. In order to obtain asymptotic results for the discrete
logarithmic function, one can deform the integration path Γ into a connected contour lying on a
single leaf of the Riemann surface of the logarithm, and then use standard methods of the complex
analysis [K]. This possibility is due to the fact that functions gk in integral representation (34) of an
arbitrary discrete holomorphic function, defined originally in disjoint neighborhoods of the points
αr, in the case of the discrete logarithmic function are actually restrictions of a single analytic
function log(λ)/(2λ) to these neighborhoods.

Now we extend the discrete logarithmic function to Z
d. To this end, recall that the sector Um of

D is nothing but the preimage w.r.t. P of the part of ΩD lying in the octant Sm ⊂ Z
d. Therefore,

it is natural to introduce a branched covering

S̃ =

∞⋃

m=−∞

S̃m

of the set
⋃2d

m=1 Sm ⊂ Z
d. Here S̃m is the octant Sm equipped with the set of values of log(ǫkαk)

satisfying (38). Recall that ǫk = ǫk(m), k = 1, . . . , d, are the signs of the coordinate semi-axes of
Sm, defined in Sect. 6. By definition, S̃m1

and S̃m2
intersect, if the underlying octants Sm1

and
Sm2

have a non-empty intersection spanned by the common coordinate semi-axes, and the data
log(ǫkαk) for these common semi-axes match. It is easy to see that S̃m1

and S̃m2
intersect, if and

only if |m1 −m2| < d.

Definition 21 The discrete logarithmic function on S̃ is given by the formula

f(n) =
1

2πi

∫

Γ

log λ

2λ
e(n;λ)dλ, ∀n ∈ S̃, (39)

where the integration path Γ consists, for n ∈ S̃m, of d loops around αm, . . . , αm+d−1, and the
branch of the logarithm on Γ is defined by inequality (38).

The discrete logarithmic function on D can be described as the restriction of the discrete logarithmic
function on S̃ to a branched covering of ΩD ∼ D. This holds for an arbitrary quasicrystallic quad-
graph with the set of edge slopes A.

Now we are in a position to give an alternative definition of the discrete logarithmic function.
Clearly, it is completely characterized by its values f(nǫkek) on the coordinate semi-axes of an
arbitrary octant S̃m.

Proposition 22 For the discrete logarithmic function on S̃, each of d sequences f
(k)
n = f(nǫkek),

k = 1, . . . , d, solves the difference equation

n(fn+1 − fn−1) = 1 − (−1)n, (40)

with the initial conditions

f
(k)
0 = f(0) = 0, f

(k)
1 = f(ǫkek) = log(ǫkαk). (41)
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Explicitly,

f
(k)
2n =

n∑

ℓ=1

2

2ℓ− 1
, f

(k)
2n+1 = log(ǫkαk), k = 1, . . . , d, n ≥ 0. (42)

Here ǫk = ǫk(m), and the values log(ǫkαk) are chosen in the interval (38).

Proof. According to eq. (36), the values f
(k)
n , with f

(k)
0 = 0, are defined by the expansion near

λ = ǫkαk,

log(λ) = log(ǫkαk) + log
( λ

ǫkαk

)
= f

(k)
1 +

∞∑

n=1

(λ− ǫkαk

λ+ ǫkαk

)n
(f

(k)
n+1 − f

(k)
n−1). (43)

This is equivalent to

f
(k)
1 = log(ǫkαk), f

(k)
n+1 − f

(k)
n−1 =

1 − (−1)n

n
. (44)

The solution to these recurrent relations is given by (42).

Observe that values (42) at even (resp. odd) points imitate the behaviour of the real (resp.
imaginary) part of the function log(λ) along the semi-lines arg(λ) = arg(ǫkαk). This can be easily
extended to the whole of S̃. Restricted to black points n ∈ S̃ (those with n1 + . . . + nd even), the
discrete logarithmic function models the real part of the logarithm. In particular, this restricted
function is real-valued and does not branch: its values on S̃m depend on m (mod 2d) only. In
other words, it is a well defined function on Sm. On the contrary, the discrete logarithmic function
restricted to white points n ∈ S̃ (those with n1 + . . .+ nd odd) takes purely imaginary values, and
increases by 2πi, as m increases by 2d. Hence, this restricted function models the imaginary part
of the logarithm.

It turns out that recurrent relations (40) are characteristic for an important class of solutions of
the discrete Cauchy-Riemann equations, namely for the isomonodromic ones. Recall the definition
of this class. For a discrete holomorphic function f : Z

d → C, the transition matrices are (cf. (24)),

Lk(n;λ) =


λ+ αk −2αk(f(n + ek) + f(n))

0 λ− αk


 . (45)

The moving frame Ψ(·, λ) : Z
d → GL2(C)[λ] is defined by prescribing some Ψ(0;λ), and by extend-

ing it recurrently according to the formula

Ψ(n + ek;λ) = Lk(n;λ)Ψ(n;λ). (46)

Finally, define the matrices A(·;λ) : Z
d → GL2(C)[λ] by

A(n;λ) =
dΨ(n;λ)

dλ
Ψ−1(n;λ). (47)

These matrices are defined uniquely after fixing some A(0;λ).

Definition 23 A discrete holomorphic function f : Z
d → C is called isomonodromic 2, if, for

some choice of A(0;λ), the matrices A(n;λ) are meromorphic in λ, with poles whose positions and
orders do not depend on n ∈ Z

d.
2This term originates in the theory of integrable nonlinear differential equations, where it is used for solutions

with a similar analytic characterization [IN].
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It is clear how to extend this definition to functions on the covering S̃.

Theorem 24 The discrete logarithmic function is isomonodromic.

This is an immediate consequence of the following statement, which we formulate for functions on
S1 = (Z+)d for notational simplicity, but which holds actually for any octant Sǫ.

Proposition 25 Let

A(0;λ) =
1

λ

(
0 1
0 0

)
, (48)

and let there be d sequences {f
(k)
n }∞n=0 satisfying, for all k = 1, . . . , d, the recurrent relation (40).

Then the discrete holomorphic function f : (Z+)d → C, defined by the values f(nek) = f
(k)
n on the

coordinate semi-axes, is isomonodromic. At any point n ∈ (Z+)d there holds:

A(n;λ) =
A(0)(n)

λ
+

d∑

l=1

(B(l)(n)

λ+ αl
+
C(l)(n)

λ− αl

)
, (49)

with

A(0)(n) =


0 (−1)n1+...+nd

0 0


 , (50)

B(l)(n) = nl


1 −(f(n) + f(n− el))

0 0


 , C(l)(n) = nl


0 f(n + el) + f(n)

0 1


 . (51)

Moreover, at any point n ∈ (Z+)d there holds an isomonodromic constraint,

d∑

l=1

nl

(
f(n + el) − f(n− el)

)
= 1 − (−1)n1+...+nd . (52)

Proof. The matrices A satisfy a recurrent relation, which results by differentiating (46),

A(n + ek;λ) =
dLk(n;λ)

dλ
L−1

k (n;λ) + Lk(n;λ)A(n;λ)L−1
k (n;λ). (53)

Fix some k = 1, . . . , d, and consider the matrices A(nek;λ) along the kth coordinate semi-axis.
Formula (53) shows that singularities of A(nek;λ) are poles at λ = 0 and at λ = ±αk. It is easy to
see that the pole λ = 0 remains simple for all n > 0. As one can show (see Lemma 43 in Appendix
A), the recurrent relation (40) for fn = f(nek) assures that the poles λ = ±αk are simple for all
n > 0. So, under condition (40) there holds:

A(nek;λ) =
A(0)(nek)

λ
+
B(k)(nek)

λ+ αk
+
C(k)(nek)

λ− αk
, (54)

i.e., eq. (49) is valid on the kth coordinate semi-axis, with B(l)(nek) = C(l)(nek) = 0 for l 6= k. The
proof continues by induction, whose scheme follows filling out the hull of the coordinate semi-axes:
each new point is of the form n + ej + ek, j 6= k, with three points n, n + ej and n + ek known
from the previous steps, where the statements of the proposition are assumed to hold. So, suppose
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that (49) holds at n + ej , n + ek. The new matrix A(n + ej + ek;λ) is obtained by two alternative
formulas,

A(n + ej + ek;λ) =

(
dLk(n + ej;λ)

dλ
+ Lk(n + ej;λ)A(n + ej;λ)

)
L−1

k (n + ej;λ), (55)

and the one with interchanged roles of k and j. Eq. (55) shows that all poles of A(n + ej + ek;λ)
remain simple, with the possible exception of λ = ±αk, whose orders might increase by 1. The
same statement holds with k replaced by j. Therefore, all poles remain simple, and (49) holds at
n + ej + ek. The proof of formulas (50), (51) and of the constraint (52) is based on computations
presented in Appendix A.

The reason for considering isomonodromic solutions on octants like (Z+)d is clear from (40):
indeed, this second-order ordinary difference equation has a special form, enforcing that its solution
on the semi-axis n ≥ 0 is completely defined by the values at n = 0, 1, and does not depend on f−1.
Thus, a discrete holomorphic function from Proposition 25 is uniquely defined by its initial values

f(0) = f0 and f(ek) = f
(k)
1 for k = 1, . . . , d.

Remark. The isomonodromic constraint (52) was found in [NRGO], without any relation
to the discrete logarithmic function. Observe that our formulation allows us to avoid a major
computational problem arising in [NRGO] in this context, namely that of compatibility of the
constraint with the discrete Cauchy-Riemann equations.

Summing up: discrete Green’s function on a quasicrystallic quad-graph is the real part (i.e.,
restriction to V (G)) of the discrete logarithmic function. The latter can be extended to a function
on a branched covering of certain octants Sm ⊂ Z

d, m = 1, . . . , 2d. On each such octant, the discrete
logarithmic function is discrete holomorphic, with the distinctive property of being isomonodromic.
This function is uniquely defined either by the integral representation (39), or by the values on the
coordinate semi-axes (42), or else by the initial values (41) and the constraint (52).

9 3D consistent cross-ratio equations

The cross-ratio system is one of the simplest and at the same time one of the most fundamental
and important nonlinear integrable systems on quad-graphs. Recall the definition of the cross-ratio
of four complex numbers:

q(z0, z1, z2, z3) =
(z0 − z1)(z2 − z3)

(z1 − z2)(z3 − z0)
, (56)

which yields the property
q(z0, z1, z2, z3) = 1/q(z1, z2, z3, z0). (57)

Let there be given a function Q : E(G) ⊔ E(G∗) → C satisfying the condition

Q(e∗) = 1/Q(e), ∀e ∈ E(G). (58)

Definition 26 A function z : V (D) → C is said to solve the cross–ratio equations on D cor-
responding to the function Q, if for any positively oriented face (x0, y0, x1, y1) of D there holds:

q(z(x0), z(y0), z(x1), z(y1)) = Q(x0, x1) = 1/Q(y0, y1). (59)
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Like in Sect. 5, an interesting question is on the 3D consistency of the system of cross-ratio
equations corresponding to a given function Q.

Theorem 27 The function Q : E(G) ⊔E(G∗) → C can be extended to E(G) ⊔E(G∗) giving a 3D
consistent system of cross-ratio equations, if and only if the following condition is satisfied:

∏

e∈star(x0;G)

Q(e) = 1,
∏

e
∗∈star(y0;G∗)

Q(e∗) = 1, ∀x0 ∈ V (G), y0 ∈ V (G∗). (60)

Proof. We proceed as in the proof of Theorem 10. Consider a flower of quadrilaterals around x0,
with ek = (x0, xk), e

∗
k = (yk−1, yk). Build the extension of this flower to the third dimension, as in

Sect. 4. Denote
Q(x0, xk) = Q(ek) = Qk, Q(x0, ŷk) = µk. (61)

Then there holds a statement analogous to Lemma 11: the cross-ratio equations are 3D consistent
on the cube over the k-th petal, if and only if

µk−1 = Qkµk. (62)

This is donstraightforward, as in the proof of Lemma 11. For the cube over the petal with k = 1,
one determines on the first step the values of z at x1, ŷ0 and ŷ1 from

q(z(x0), z(y0), z(x1), z(y1)) = Q1,

q(z(x0), z(y0), z(ŷ0), z(x̂0)) = µ0,

q(z(x0), z(y1), z(ŷ1), z(x̂0)) = µ1.

On the second step one has three alternative values for z(x̂1) from

q(z(x̂0), z(ŷ0), z(x̂1), z(ŷ1)) = Q1,

q(z(y1), z(x1), z(x̂1), z(ŷ1)) = µ0,

q(z(y0), z(x1), z(x̂1), z(ŷ0)) = µ1.

A direct computation shows that these three values for z(x̂1) coincide if and only if µ0 = Q1µ1,
and then

x̂1 =
µ0y0(y1 − x̂0) + µ1y1(x̂0 − y0) + x̂0(y0 − y1)

µ0(y1 − x̂0) + µ1(x̂0 − y0) + (y0 − y1)
.

Thus, (62) is proved. This relation yields immediately that running around x0 returns back an
(arbitrary) initial µ0, if and only if the first condition in (60) holds. The second one follows
similarly.

Corollary 28 The integrability condition (60) for the function Q : E(G)⊔E(G∗) → C is equivalent
to the existence of a labeling α2 : E(D) → C of undirected edges of D, such that, in notations of
Fig. 8,

Q(x0, x1) =
1

Q(y0, y1)
=
α2

0

α2
1

. (63)

This formula assures the 3D consistency of the cross-ratio equations, if one assumes that all vertical
edges of D carry one and the same label λ2 ∈ C.
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Let the labeling α2 come from a labeling α : ~E(D) → C of directed edges. Let p : V (D) → C be
a parallelogram realization of D defined by p(y) − p(x) = α(x, y). Then the cross-ratio equations
are written as

q(z(x0), z(y0), z(x1), z(y1)) =
α2

0

α2
1

= q(p(x0), p(y0), p(x1), p(y1)). (64)

In other words, the cross-ratio of the vertices of the f -image of any quadrilateral (x0, y0, x1, y1) ∈
F (D) is equal to the cross-ratio of the vertices of the corresponding parallelogram.

Proposition 29 The cross-ratio equations (64) admit a zero curvature representation with the
values in GL2(C)[λ], with transition matrices along (x, y) ∈ ~E(D) given by

L(y, x, α;λ) =


 1 z(x) − z(y)

λα2/(z(x) − z(y)) 1


 , where α = p(y) − p(x). (65)

Proof. This result is easy to check. To derive it systematically using 3D consistency and the
procedure outlined at the end of Sect. 4, observe that eq. (64) on the vertical face (x, y, ŷ, x̂) can
be written as

q(z(x), z(y), z(ŷ), z(x̂)) = λα2 ⇔ z(ŷ) − z(y) = L(y, x, α;λ) · (z(x̂) − z(x)),

where λ = (p(x̂)−p(x))−2, and the matrices L(y, x, α;λ) are as in (65). One easily shows that these
matrices L form a zero curvature representation with values in GL2(C)[λ], i.e., that (11) holds as
it stands, and not only up to a scalar factor.

The main result of the present section can be formulated as follows. Integrable cross-ratio
equations on a quad-graph D come from parallelogram immersions of D in C, the coefficients Q
being the cross-ratios of the corresponding parallelograms. In the case of unitary values Q ∈ S

1 the
parallelograms are actually rhombi.

10 Circle patterns and the cross-ratio system

Definition 30 A Delaunay decomposition of C is a cell decomposition G such that the boundary
of each face is a polygon inscribed in a circle, and these circles have no vertices in their interior.
These circles build a circle pattern with the combinatorics of G.

The vertices z : V (G) → C of a Delaunay decomposition are the intersection points of the circles
of the corresponding pattern. The circle of the pattern corresponding to a face y ∈ F (G) will be
denoted by C(y). If two faces y0, y1 ∈ F (G) have a common edge (x0, x1), then the circles C(y0)
and C(y1) intersect in the points z(x0), z(x1). In other words, the edges of G correspond to pairs
of neighboring (intersecting) circles of the pattern. Similarly, if several faces y1, y2, . . . , ym of G
meet at one vertex x0 ∈ V (G), then the corresponding circles C(y1), C(y2), . . . , C(ym) also have a
common intersection point z(x0).

Given a circle pattern with the combinatorics of G, we can extend the function z to the vertices
of the dual graph G∗, setting

z(y) = center of the circle C(y), y ∈ F (G) ≃ V (G∗).

After this extension, the map z is defined on all of V (D) = V (G)⊔V (G∗), where D is the double of
G. Consider a face of the double. Its vertices x0, x1, y0, y1 correspond to the intersection points and
to the centers of two neighboring circles C0, C1 of the pattern. The following statement is obtained
by a simple computation.
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Figure 12: Circle pattern

Lemma 31 If φ is the intersection angle of C0, C1, as on Fig. 13, then

q(z(x0), z(y0), z(x1), z(y1)) = exp(2iφ). (66)

z(y0) z(y1)

z(x0)

z(x1)

C1C0

φ

ψ

Figure 13: Two intersecting circles

It will be convenient to assign the intersection angle φ of C(y0), C(y1) to the edge (y0, y1) ∈ E(G∗).
Extend the function φ : E(G∗) → (0, π) to E(G) by setting φ(e) = π − φ(e∗).

Proposition 32 Let G be Delaunay decomposition of a plane, and consider a circle pattern with
the combinatorics of G and with the intersection angles φ : E(G∗) → (0, π). Let {z(x) : x ∈ V (G)}
and {z(y) : y ∈ V (G∗)} consist of intersection points of the circles, resp. of their centers. Then
z : V (D) → C satisfies a system of cross-ratio equations with the function Q : E(G) ⊔ E(G∗) → S

1

defined as Q(e) = exp(2iφ(e)). There holds:

∏

e∈star(x0;G)

exp(2iφ(e)) = 1, ∀x0 ∈ V (G). (67)
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The following condition is necessary and sufficient for the integrability of the system of cross-ratio
equations: ∏

e
∗∈star(y0;G∗)

exp(2iφ(e∗)) = 1, ∀y0 ∈ V (G∗), (68)

i.e., for each circle of the pattern the sum of its intersection angles with all neighboring circles of
the pattern vanishes (mod π).

Proof. The relation (67) is obvious for geometrical reasons: for an arbitrary common intersection
point of circles of the pattern, the sum of their consecutive pairwise intersection angles vanishes
(mod π). Now the claim follows from Theorem 27.

We can formulate the main result of this section as follows. Combinatorial data G and inter-
section angles φ : E(G∗) → (0, π) belong to an integrable circle pattern, if and only if they admit
an isoradial realization. This latter realization gives a rhombic immersion of the double D, and
generates also a dual isoradial circle pattern with the combinatorial data G∗ and intersection angles
φ : E(G) → (0, π).

11 Hirota system

We have seen that integrable circle patterns deliver solutions z : V (D) → C to integrable cross-
ratio systems. These solutions are characterized as follows: the z-image of any quadrilateral
(x0, y0, x1, y1) from F (D) is a kite with two pairs of sides of equal length (incident to the white
vertices z(y0), z(y1)), and with the prescribed angle π − φ at the black vertices z(x0), z(x1). The
following transformation of the cross-ratio system is useful in order to single out this class of kite
solutions.

Definition 33 Let α : ~E(D) → C be a labeling, and let p : V (D) → C be the corresponding
parallelogram realization of D defined by p(y)−p(x) = α(x, y). A function w : V (D) → C is said to
solve the corresponding Hirota system, if for any positively oriented face (x0, y0, x1, y1) ∈ F (D)
there holds, in the notations of Fig. 7:

α0w(x0)w(y0) + α1w(y0)w(x1) − α0w(x1)w(y1) − α1w(y1)w(x0) = 0, (69)

or, in a more invariant fashion,

w(x0)w(y0)
(
p(y0) − p(x0)

)
+ w(y0)w(x1)

(
p(x1) − p(y0)

)
+

w(x1)w(y1)
(
p(y1) − p(x1)

)
+w(y1)w(x0)

(
p(x0) − p(y1)

)
= 0. (70)

Obviously, a black-white scaling, i.e., a transformation w → cw on V (G) and w → c−1w on V (G∗)
with a constant c, maps solutions of the Hirota system into solutions. We will identify solutions
related by such a transformation.

Proposition 34 Let w : V (D) → C be a solution of the Hirota system. Then the relation

z(y) − z(x) = α(x, y)w(x)w(y) = w(x)w(y)
(
p(y) − p(x)

)
, ∀(x, y) ∈ ~E(D), (71)

correctly defines a unique (up to an additive constant) function z : V (D) → C which is a solution of
the cross-ratio system (64). Conversely, for any solution z of the cross-ratio system (64), relation
(71) defines a function w correctly and uniquely (up to a black-white scaling); this function w solves
the Hirota system (69).
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Proof. Simple calculation based on closing conditions around the quadrilateral (x0, y0, x1, y1).

Proposition 35 Let all α ∈ S
1, so that p : V (D) → C is a rhombic realization of D. Let z :

V (D) → C be a solution of the corresponding cross-ratio system (64). It corresponds to a circle
pattern, if and only if the corresponding function w satisfies the condition

w(x) ∈ S
1, w(y) ∈ R+, ∀x ∈ V (G), y ∈ V (G∗). (72)

The values w : V (G∗) → R+ have then the interpretation of the radii of the circles.

Proof. The function z corresponds to a circle pattern, if and only if all elementary quadrilaterals
(z(x0), z(y0), z(x1), z(y1)) are of the kite form with the properties:

– the pairs of edges incident with white vertices have equal length,
– the angles at black vertices are equal to the corresponding angles of the underlying rhombi.

As easily seen, these conditions are equivalent to:

|w(x0)|

|w(x1)|
= 1 and

w(y0)

w(y1)
∈ R+,

respectively. This yields (72), possibly upon a black-white scaling.

Remark. The conditions (72) form an admissible reduction of the Hirota system corresponding
to a rhombic realization, in the following sense: if any three of the four points w(x0), w(y0), w(x1),
w(y1) satisfy the condition (72), then so does the fourth one. This is immediately seen, if one
rewrites the Hirota equation (69) in one of the equivalent forms:

w(x1)

w(x0)
=
α1w(y1) − α0w(y0)

α1w(y0) − α0w(y1)
⇔

w(y1)

w(y0)
=
α0w(x0) + α1w(x1)

α0w(x1) + α1w(x0)
. (73)

Proposition 36 a) Let α : ~E(D) → C be a labeling, and let p : V (D) → C be the corresponding
parallelogram realization of D defined by p(y) − p(x) = α(x, y). Then the corresponding Hirota
system is 3D consistent.

b) Let all α ∈ S
1, so that p : V (D) → C is a rhombic realization of D. Consider a solution

w : V (D) → C corresponding to a circle pattern with the combinatorics of G, i.e., satisfying (72).
Consider its Bäcklund transformation ŵ : V (D) → C with an arbitrary parameter λ ∈ S

1 and with
an arbitrary initial value ŵ(x0) ∈ R+ or ŵ(y0) ∈ S

1. Then there holds:

ŵ(x) ∈ R+, ŵ(y) ∈ S
1, ∀x ∈ V (G), y ∈ V (G∗), (74)

so that ŵ corresponds to a circle pattern with the combinatorics of G∗.

Proof. Statement a) is a matter of a direct computation. In the notations of Fig. 9, suppose
that the Hirota equation (69) holds on all faces of the cube, wherein the vertical edges carry the
(arbitrary) label λ. One finds that all three alternative ways to compute w(x̂1) lead to one and the
same result, namely

w(x̂1) =
λ(α2

0 − α2
1)w(y0)w(y1) + α1(λ

2 − α2
0)w(y0)w(x̂0) + α0(α

2
1 − λ2)w(y1)w(x̂0)

λ(α2
0 − α2

1)w(x̂0) + α1(λ2 − α2
0)w(y1) + α0(α2

1 − λ2)w(y0)
.

Statement b) follows from the Remark above.
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Proposition 37 The Hirota system (69) admits a zero curvature representation with the values in
GL2(C)[λ], with transition matrices along (x, y) ∈ ~E(D) given by

L(y, x, α;λ) =


 1 −αw(y)

−λα/w(x) w(y)/w(x)


 , where α = p(y) − p(x). (75)

Proof. The matrix (75) is obtained also directly from (65) by the substitution (71), followed by a
simple gauge transformation

L 7→

(
1 0
0 w(y)

)
L

(
1 0
0 1/w(x)

)
.

Alternatively, a systematic derivation of this result is based on the 3D consistency and the procedure
outlined at the end of Sect. 4.

The main result of the present section is as follows. Integrable circle patterns can be alternatively
described by solutions of the Hirota system with a special property of being real-valued on V (G) and
unimodular on V (G∗).

12 Linearization

Let α : ~E(D) → C be a labeling, and let p : V (D) → C be the corresponding parallelogram
realization of D defined by p(y) − p(x) = α(x, y). Then the formula

z0(x) = p(x), w0(x) = 1, ∀x ∈ V (D),

gives a (trivial) solution of the cross-ratio system (64) and the corresponding (trivial) solution of
the Hirota system. Suppose that z0 : V (D) → C belongs to a differentiable one-parameter family of
solutions zǫ : V (D) → C, ǫ ∈ (−ǫ0, ǫ0), of the same cross-ratio system, and denote by wǫ : V (D) → C

the corresponding solutions of the Hirota system. Denote

g =
dzǫ
dǫ

∣∣∣∣
ǫ=0

, f =

(
w−1

ǫ

dwǫ

dǫ

)

ǫ=0

. (76)

Proposition 38 Both functions f, g : V (D) → C solve discrete Cauchy-Riemann equations (23).

Proof. By differentiating (71), we obtain a relation between the functions f, g : V (D) → C:

g(y) − g(x) =
(
f(x) + f(y)

)(
p(y) − p(x)

)
, ∀(x, y) ∈ ~E(D). (77)

The proof of proposition is based on this relation solely. Indeed, the closeness condition for the
form on the right-hand side reads:

(
f(x0) + f(y0)

)(
p(y0) − p(x0)

)
+
(
f(y0) + f(x1)

)(
p(x1) − p(y0)

)
+(

f(x1) + f(y1)
)(
p(y1) − p(x1)

)
+
(
f(y1) + f(x0)

)(
p(x0) − p(y1)

)
= 0,

which is equivalent to (23) for the function f . Similarly, the closeness condition for f , that is,

(
f(x0) + f(y0)

)
−
(
f(y0) + f(x1)

)
+
(
f(x1) + f(y1)

)
−
(
f(y1) + f(x0)

)
= 0,
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yields:
g(y0) − g(x0)

p(y0) − p(x0)
−
g(x1) − g(y0)

p(x1) − p(y0)
+
g(y1) − g(x1)

p(y1) − p(x1)
−
g(x0) − g(y1)

p(x0) − p(y1)
= 0.

Under the condition p(y0) − p(x0) = p(x1) − p(y1), this is equivalent to (23) for g.

Remark. This proof shows that, given a discrete holomorphic function f : V (D) → C, relation
(77) correctly defines a unique, up to an additive constant, function g : V (D) → C, which is also
discrete holomorphic. Conversely, for any g satisfying the discrete Cauchy-Riemann equations (23),
relation (77) defines a function f correctly and uniquely (up to an additive black-white constant);
this function f also solves the discrete Cauchy-Riemann equations (23). Actually, formula (77)
expresses that the discrete holomorphic function f is the discrete derivative of g, so that g is
obtained from f by discrete integration. This operation was considered in [D1, D2, M1].

Summarizing, we have the following statement.

Theorem 39 a) A tangent space to the set of solutions of an integrable cross-ratio system, at
a point corresponding to a rhombic embedding of a quad-graph, consists of discrete holomorphic
functions on this embedding. This holds in both descriptions of the above set: in terms of variables
z satisfying the cross-ratio equations, and in terms of variables w satisfying the Hirota equations.
The corresponding two descriptions of the tangent space are related by taking the discrete derivative
(resp. anti-derivative) of discrete holomorphic functions.

b) A tangent space to the set of integrable circle patterns of a given combinatorics, at a point
corresponding to an isoradial pattern, consists of discrete holomorphic functions on the rhombic
embedding of the corresponding quad-graph, which take real values at white vertices and purely
imaginary values at black ones. This holds in the description of circle patterns in terms of circle
radii and rotation angles at intersection points (Hirota equations).

13 Isomonodromic discrete power function

Like in Sect. 6, one can consider functions z : Z
d → C and w : Z

d → C, satisfying, on each
elementary square of Z

d, the cross-ratio and the Hirota equation, respectively, and ask about
isomonodromic solutions. As shown in [AB1, AB2, BH], this leads to a discrete analog of the
power function. Since the latter references contain a detailed presentation of these results in terms
of the cross-ratio variables z, we restrict ourselves here to similar results in terms of the Hirota
variables w. (Recall that transition matrices in these two formulations actually coincide, up to a
simple gauge transformation by diagonal matrices which do not depend on λ.)

Transition matrices for the Hirota system on Z
d are:

Lk(n;λ) =


 1 −αkw(n + ek)

−λαk/w(n) w(n + ek)/w(n)


 . (78)

With these transition matrices, isomonodromic solutions are defined in exactly the same manner
as in Sect. 8.

Proposition 40 Let

A(0;λ) =
1

λ

(
−γ/2 0

0 γ/2

)
, (79)

and let there be d sequences {w
(k)
n }∞n=0 satisfying, for all k = 1, . . . , d, the recurrent relation

n
wn+1 − wn−1

wn+1 + wn−1
=
(
γ − 1

2

)(
1 − (−1)n

)
. (80)
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Then the solution w : (Z+)d → C of the Hirota system, defined by the values w(nek) = w
(k)
n on the

coordinate semi-axes, is isomonodromic. At any point n ∈ (Z+)d there holds:

A(n;λ) =
A(0)(n)

λ
+

d∑

l=1

B(l)(n)

λ− α−2
l

, (81)

with

A(0)(n) =


−γ/2 ∗

0 γ/2


 , (82)

B(l)(n) =
nl

w(n + el) + w(n − el)


w(n + el) αlw(n + el)w(n − el)

1/αl w(n − el)


 . (83)

The upper right entry of the matrix A(0)(n), denoted by the asterisk in (82), is actually given by

A
(0)
12 (n) = −

d∑

l=1

B
(l)
12 (n). (84)

Moreover, at any point n ∈ (Z+)d there holds an isomonodromic constraint,

d∑

l=1

nl
w(n + el) − w(n − el)

w(n + el) + w(n − el)
=
(
γ − 1

2

)(
1 − (−1)n1+...+nd

)
. (85)

Proof. The scheme of the proof is the same as for Proposition 25. Fix some k = 1, . . . , d,
and consider the matrices A(nek;λ) along the kth coordinate semi-axis. It follows from formula
(53) that singularities of A(nek;λ) are poles at λ = 0 and at λ = α−2

k . While the pole λ = 0
automatically remains simple for all n > 0, this is not necessarily so for the pole λ = α−2

k . As one
can show (see Lemma 44 in Appendix B), the recurrent relation (80) for wn = f(nek) assures that
the pole λ = α−2

k is simple for all n > 0, and

A(nek;λ) =
A(0)(nek)

λ
+
B(k)(nek)

λ− α−2
k

, (86)

i.e., eq. (81) is valid on the kth coordinate semi-axis, with B(l)(nek) = 0 for l 6= k. To prove that
eq. (81) is valid also elsewhere, one argues by induction: suppose that (81) holds at n+ ej, n+ ek.
Then eq. (55) shows that all poles of A(n + ej + ek;λ) remain simple, with the possible exception
of λ = α−2

k , whose order might increase by 1. The same statement holds with k replaced by j.
Hence, all poles remain simple. Therefore, (81) holds at n + ej + ek, possibly up to a term which
does not vanish with λ → ∞. Such a term is absent, if the right-hand side of (53) vanishes with
λ→ ∞, that is, if

(
0 0
1 0

)(
A(0)(n) +

d∑

l=1

B(l)(n)

)(
0 0
1 0

)
= 0. (87)

Clearly, the latter equation is equivalent to (84). Computations towards the proof of (84), as well
as of (82), (83) and of constraint (85), are presented in Appendix B.

Remark. Again, the isomonodromic constraint (85) was found in [NRGO]. In the approach of
that paper, consistency of the constraint with the Hirota equations (called lattice MKdV there) is a
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difficult problem, only manageable with the help of a computer system for symbolic manipulations.
In our formulation, this comes for free, as a natural consequence of the construction based on the
3D consistency of the Hirota system.

A solution of the Hirota system given in Proposition 40 is completely defined by its initial values

w(0) = w0 and w(ek) = w
(k)
1 for k = 1, . . . , d. The choice

w0 = 1, w
(k)
1 = exp(iρk) , k = 1, . . . , d, (88)

with arbitrary constants ρk, leads to the following solution on the semi-axes:

w
(k)
2n =

n∏

ℓ=1

ℓ− 1 + γ

ℓ− γ
, w

(k)
2n+1 = exp(iρk). (89)

Observe the asymptotics at n→ ∞,

w
(k)
2n = c(γ)n2γ−1

(
1 +O(n−1)

)
. (90)

The following special choice of ρk defines the discrete analog of the function w 7→ w2γ−1 on (Z+)d:

iρk = (2γ − 1) log αk, so that w(ek) = α2γ−1
k . (91)

Remark. In the variables z the initial values {z
(k)
n }∞n=0 on the semi-axes are given by the

following analog (and consequence) of (80):

n
(zn+1 − zn)(zn − zn−1)

zn+1 − zn−1
= γzn, (92)

and then the corresponding solution of the cross-ratio equation satisfies an analog of (85):

d∑

j=1

nj
(z(n + ej) − z(n))(z(n) − z(n − ej))

z(n + ej) − z(n − ej)
= γz(n). (93)

Recall also [AB1, AB2, BH] that the discrete analog of the function z 7→ z2γ on (Z+)d is charac-
terized by the constraint (92) and the following choice of the initial conditions:

z(0) = 0, z(ek) = α2γ
k , k = 1, . . . , d. (94)

Clearly, this choice of initial conditions is equivalent to (88), if one takes into account the basic
relation (71) between the variables z and w.

Like in Sect. 8, isomonodromic solutions similar to those of Proposition 40 can be defined not
only on (Z+)d but on any octant Sǫ. They are characterized by the initial data

w(0) = 0, w(ǫkek) = (ǫkαk)
2γ−1, k = 1, . . . , d, (95)

and give discrete analogs of the function w 7→ w2γ−1 on Sǫ. Such a solution is fixed by an inde-
pendent choice of branches of the function w2γ−1 at the points w = ǫkαk. This is equivalent to
choosing the branches of the function logw, because of w2γ−1 = exp((2γ − 1) logw).

Definition 41 The discrete power function w2γ−1 on S̃ is a complex-valued function whose
restriction to S̃m is defined as the unique isomonodromic solution w : Sm → C of the Hirota system
on the corresponding Sm with the initial data (95) fixed by the condition (38).
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Clearly, the discrete power function takes real values at the white points and unimodular values at
the black points, so that it corresponds to a circle pattern.

Proposition 42 The tangent vector to the space of integrable circle patterns along the curve con-
sisting of patterns w2γ−1, at the point corresponding to γ = 1/2, is the discrete logarithmic function.

Proof. We have to prove that the discrete logarithm f and the discrete power function w2γ−1 are
related by

f(n) =
(1

2

d

dγ
w2γ−1(n)

)
γ=1/2

.

It is enough to prove this on the coordinate semi-axes of each octant Sm. But this follows by
differentiating with respect to γ constraint (80) and initial conditions (95) at the point γ = 1/2,
where all w = 1: the results coincide with (40) and (41), respectively.

14 Concluding remarks

Results of Sect. 12 can be generalized to the case of linearization at an arbitrary (not necessarily
parallelogram) solution z0 of the cross-ratio system and the corresponding solution w0 of the Hirota
system. In this case the relation between derivatives (76), coming to replace eq. (77), reads:

g(y) − g(x) =
(
f(x) + f(y)

)(
z0(y) − z0(x)

)
, ∀(x, y) ∈ ~E(D). (96)

Arguments similar to those of the proof of Proposition 38 show that in this case the function f is
discrete holomorphic with respect to z0, i.e.,

f(y1) − f(y0)

f(x1) − f(x0)
=
z0(y1) − z0(y0)

z0(x1) − z0(x0)
, ∀(x0, y0, x1, y1) ∈ F (D).

The function g, in general, is no longer discrete holomorphic.
Thus, a tangent space to the set of integrable circle patterns of a given combinatorics, at an

arbitrary point, consists of functions, discrete holomorphic with respect to the kite-form embedding
z0 of the corresponding quad-graph. This holds for the description of circle patterns in terms of circle
radii and rotation angles at intersection points (Hirota equations). The elements of the tangent
space are characterized by the property of being real at white vertices and purely imaginary at
black ones.

A number of constructions of the present paper can be generalized to the case of kite-form
(rather than rhombic) embeddings coming from an integrable circle pattern. In particular, differ-
entiating the discrete w2γ−1 with respect to γ at a point γ 6= 1/2, one obtains a sort of the discrete
logarithmic (and Green’s) functions on the kite-form quad-graph corresponding to z2γ .

A Appendix: proof of Proposition 25

Lemma 43 Let the matrix A(0;λ) be as in (48). Fix some k = 1, . . . , d. Then singularities of the
matrices A(nek;λ) are poles at λ = 0, λ = ±αk. For n > 0, the poles λ = 0 and λ = −αk are
simple. The pole λ = αk is simple for all n > 0, if and only if recurrent relation (40) holds for
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fn = f(nek). In this case there holds (54) with

A(0)(nek) =


0 (−1)n

0 0


 , (97)

B(k)(nek) = n


1 −(fn + fn−1)

0 0


 , C(k)(nek) = n


0 fn+1 + fn

0 1


 . (98)

Proof proceeds by induction. Putting matrices (45) into the recurrent definition (53), one finds
immediately:

A11(nek;λ) =
n

λ+ αk
, A22(nek;λ) =

n

λ− αk
,

and the following recurrent relation for the upper right entry of the matrix A(·;λ),

A12((n+ 1)ek;λ) =
λ+ αk

λ− αk
A12(nek;λ) +

2αk(fn+1 + fn)

λ− αk

(
n+ 1

λ+ αk
−

n

λ− αk

)
.

Assume that there holds eq. (54). Then it holds also with n 7→ n+1, if and only if no higher order
pole appears at λ = αk by this transition, what is equivalent to

C
(k)
12 (nek) = n(fn+1 + fn). (99)

This has to be considered as a recursive definition of the sequence {fn} (isomonodromic constraint).
Under this condition, we find the recurrent relations for the upper right entries of the matrices A(0),
B(k), C(k):

A
(0)
12 ((n+ 1)ek) = −A

(0)
12 (nek), (100)

B
(k)
12 ((n+ 1)ek) = −(n+ 1)(fn+1 + fn), (101)

C
(k)
12 ((n+ 1)ek) = (n+ 1)(fn+1 + fn) +B

(k)
12 (nek) + C

(k)
12 (nek) + 2A

(0)
12 (nek). (102)

Now (100), (101) yield:

A
(0)
12 (nek) = (−1)n, B

(k)
12 (nek) = −n(fn + fn−1). (103)

Adding all three equations (100)–(102), we find that

A
(0)
12 (nek) +B

(k)
12 (nek) + C

(k)
12 (nek) = 1, (104)

and this together with (99), (103) implies explicit form (40) of the isomonodromic constraint.

Proof of Proposition 25, continued. As shown in the main text, the induction from n+ej,
n + ek to n + ej + ek proves formula (49). From the diagonal part of eq. (55) one easily derives
that for all n ∈ Z

d,

A11(n;λ) =
d∑

l=1

nl

λ+ αl
, A22(n;λ) =

d∑

l=1

nl

λ− αl
.

The following formula is an easy consequence of eq. (55) under the limit λ→ ∞:

A
(0)
12 (n) +

d∑

l=1

(
B

(l)
12 (n) + C

(l)
12 (n)

)
= 1. (105)
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It remains to show that the following relations propagate in the evolution defined by the recurrent
relation (55):

A
(0)
12 (n) = (−1)n1+...+nd , (106)

B
(l)
12 (n) = −nl(f(n) + f(n− el)), C

(l)
12 (n) = nl(f(n + el) + f(n)). (107)

Indeed, constraint (52) follows then immediately, because it coincides with (105), if one takes (106)–
(107) into account. Writing now the upper right entry of eq. (55) in length, we find the following
recurrent relations:

A
(0)
12 (n + ej + ek) = −A

(0)
12 (n + ej), (108)

B
(l)
12 (n + ej + ek) =

αl − αk

αl + αk
B

(l)
12 (n + ej) −

2αk

αl + αk
(nl + δlj + δlk)(f(n + ej + ek) + f(n + ej)),

(109)

C
(l)
12 (n + ej + ek) =

αl + αk

αl − αk
C

(l)
12 (n + ej) −

2αk

αl − αk
(nl + δlj)(f(n + ej + ek) + f(n + ej)),

(110)

the latter formula being valid for l 6= k only. For C
(k)
12 (n + ej + ek) there holds a similar but

much longer formula, which we actually will not need. Now, eq. (108) readily yields (106). By the
induction hypothesis, eqs. (109) and (110) with l 6= k can be rewritten as

B
(l)
12 (n + ej + ek) =

−(nl + δlj)

(
αl − αk

αl + αk
(f(n + ej) + f(n + ej − el)) +

2αk

αl + αk
(f(n + ej + ek) + f(n + ej))

)
,

C
(l)
12 (n + ej + ek) =

(nl + δlj)

(
αl + αk

αl − αk
(f(n + ej + el) + f(n + ej)) −

2αk

αl − αk
(f(n + ej + ek) + f(n + ej))

)
.

But the discrete Cauchy-Riemann equation for the corresponding elementary squares imply that
the latter two equations are equivalent to

B
(l)
12 (n + ej + ek) = −(nl + δlj)(f(n + ej + ek) + f(n + ej + ek − el)),

C
(l)
12 (n + ej + ek) = (nl + δlj)(f(n + ej + ek + el) + f(n + ej + ek)),

which coincide with (107) at n + ej + ek for l 6= k. By interchanging the roles of k and j, we see
that (107) at n + ej + ek holds also for l 6= j, and thus for all l = 1, . . . , d.

B Appendix: proof of Proposition 40

Lemma 44 Let the matrix A(0;λ) be as in (79). Fix some k = 1, . . . , d. Then singularities of the
matrices A(nek;λ) are poles at λ = 0, λ = α−2

k . The pole λ = 0 is simple. The pole λ = α−2
k is

simple for all n > 0, if recurrent relation (92) holds for wn = w(nek). In this case there holds (86)
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with

A(0)(nek) =


−γ/2 ∗

0 γ/2


 , (111)

B(k)(nek) =
n

wn+1 + wn−1


wn+1 αkwn+1wn−1

1/αk wn−1


 . (112)

The upper right entry of the matrix A(0)(nek), denoted in (111) by the asterisk, is given by

A
(0)
12 (nek) = −B

(k)
12 (nek). (113)

Proof. Assume that eq. (86) holds. Put matrices (78) into recurrent definition (53). It is easy to
see that no higher order pole appears at λ = α−2

k by the transition n 7→ n+ 1, if and only if

 1 −αkwn+1

−1/(αkwn) wn+1/wn


B(k)(nek)


 1 αkwn

1/(αkwn+1) wn/wn+1


 = 0.

This is equivalent to
(
1 −αkwn+1

)
B(k)(nek)


 1

1/(αkwn+1)


 = 0, (114)

or, written in length, to

B
(k)
22 (nek) −B

(k)
11 (nek) + αkwn+1B

(k)
21 (nek) −

1

αkwn+1
B

(k)
12 (nek) = 0. (115)

This is a recursive definition of the sequence {wn} (an isomonodromic constraint). Notice that this
is a quadratic equation for wn+1, unlike (99), which was a linear equation for fn+1.

Under condition (114), or (115), eq. (86) holds also by n 7→ n+ 1, possibly with an additional
λ-independent term on the right-hand side, which vanishes if and only if (113) holds. We will show
in a moment that this is indeed the case. One readily finds recurrent relations for the matrices
A(0)(nek) and B(k)(nek). For the matrix A(0)(nek) they read:

A(0)((n + 1)ek) =


1 −αkwn+1

0 wn+1/wn


A(0)(nek)


1 αkwn

0 wn/wn+1


 . (116)

This proves formula (111), with a recurrent relation for the upper right entry:

A
(0)
12 ((n+ 1)ek) = −γαkwn +

wn

wn+1
A

(0)
12 (nek). (117)

For the matrix B(k)(nek) the recurrent relations read, in components:

B
(k)
11 ((n+ 1)ek) = γ +B

(k)
22 (nek) −

1

αkwn+1

(
A

(0)
12 (nek) +B

(k)
12 (nek)

)
, (118)

B
(k)
22 ((n+ 1)ek) = 1 − γ +B

(k)
11 (nek) +

1

αkwn+1

(
A

(0)
12 (nek) +B

(k)
12 (nek)

)
, (119)

B
(k)
12 ((n+ 1)ek) = γαkwn −

wn

wn+1
A

(0)
12 (nek), (120)

B
(k)
21 ((n+ 1)ek) =

1 − γ

αkwn
+

1

α2
kwnwn+1

(
A

(0)
12 (nek) + 2B

(k)
12 (nek)

)

−
1

αkwn

(
B

(k)
22 (nek) −B

(k)
11 (nek)

)
. (121)
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Comparing now (120) with (117), we see that (113) holds for all n, as claimed above. Upon using
this fact and constraint (115), we can rewrite formulas (118)–(121) as follows:

B
(k)
11 ((n+ 1)ek) = γ +B

(k)
22 (nek), (122)

B
(k)
22 ((n+ 1)ek) = 1 − γ +B

(k)
11 (nek), (123)

B
(k)
12 ((n+ 1)ek) = γαkwn +

wn

wn+1
B

(k)
12 (nek), (124)

B
(k)
21 ((n+ 1)ek) =

1 − γ

αkwn
+
wn+1

wn
B

(k)
21 (nek). (125)

These relations together with constraint (115) define the sequence {wn} and the matrices B(k)(nek)
completely. First of all, there follows from (122), (123):

B
(k)
11 (nek) +B

(k)
22 (nek) = n, B

(k)
11 (nek) −B

(k)
22 (nek) =

(
γ − 1

2

)(
1 − (−1)n

)
. (126)

Further, there follows from (122)–(125):

B
(k)
11 ((n + 1)ek) −

1

αkwn
B

(k)
12 ((n + 1)ek) = B

(k)
22 (nek) −

1

αkwn+1
B

(k)
12 (nek), (127)

B
(k)
22 ((n + 1)ek) − αkwnB

(k)
21 ((n + 1)ek) = B

(k)
11 (nek) − αkwn+1B

(k)
21 (nek). (128)

Subtracting these two equations and taking (115) into account, we find, upon downshifting n:

B
(k)
11 (nek) −B

(k)
22 (nek) + αkwn−1B

(k)
21 (nek) −

1

αkwn−1
B

(k)
12 (nek) = 0. (129)

This yields that one of the solutions of eq. (115), considered as a quadratic equation for wn+1, is
wn+1 = −wn−1. We will be interested in the second one. To find it, add eqs. (115) and (129) and
derive, under the condition wn+1 + wn−1 6= 0:

B
(k)
12 (nek) = α2

kwn+1wn−1B
(k)
21 (nek). (130)

Due to (115), the right–hand sides of (127), (128) are equal to one another. Using there (130), we
finally come to

B
(k)
11 (nek) = αkwn+1B

(k)
21 (nek), B

(k)
22 (nek) = αkwn−1B

(k)
21 (nek). (131)

This together with (126) yields

B
(k)
21 (nek) =

n

αk(wn+1 + wn−1)
, (132)

and now both the expression (112) and explicit form (80) of the constraint (115) follow readily.

Proof of Proposition 40, continued. As demonstrated in the main text, if eq. (81) holds
at n + ej , n + ek, then it holds also at n + ej + ek, provided eq. (84) is valid. To prove eq. (84),
put expression (78) into eq. (55), and find recurrent relations for the matrices A(0)(n) and B(l)(n).
Upon use of the abbreviation Lj,k(λ) = Lk(n + ej ;λ), we have:

A(0)(n + ej + ek) = Lj,k(0)A
(0)(n + ej)Lj+k,−k(0), (133)

B(l)(n + ej + ek) = Lj,k(α
−2
l )

B(l)(n + ej)

1 − α2
kα

−2
l

Lj+k,−k(α
−2
l ), l 6= k, (134)

B(k)(n + ej + ek) = −Lj,k(α
−2
k )

(
A(0)(n+ ej) +

∑

l 6=k

B(l)(n + ej)

1 − α2
kα

−2
l

)
Lj+k,−k(α

−2
k )

+ lower triangular matrix. (135)
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Here we used the fact that L−1
j,k(λ) = Lj+k,−k(λ)/(1 − λα−2

k ). Taking into account that the upper
triangular part of the matrix Lj,k(λ) does not depend on λ (and coincides with Lj,k(0)), we see
that eqs. (133)–(135) imply the desired property (84), which proves formula (81) at n + ej + ek.

After eq. (81) has been proved, it is instructive to rewrite eq. (53) as

A(n + ek;λ)Lk(n;λ) − Lk(n;λ)A(n;λ) =
dLk(n;λ)

dλ
,

and consider the limit λ→ ∞ of this formula. Due to (78) and (81), this limit reads:

(
A(0)(n + ek) +

d∑

l=1

B(l)(n + ek)

)(
0 0
1 0

)
−

(
0 0
1 0

)(
A(0)(n) +

d∑

l=1

B(l)(n)

)
=

(
0 0
1 0

)
. (136)

Clearly, this equation contains more information than (87). More precisely, the diagonal terms of
(136) are equivalent to (87), while the lower left entry gives an additional identity.

Further, eq. (133) yields immediately that the matrix A(0)(n + ej + ek) retains the upper
triangular form (82). Turning to the matrices B(l)(n), observe first of all that formula (83) is
equivalent to

B(l)(n) ∼


αlw(n + el)

1



(
1 αlw(n − el)

)
, trB(l)(n) = nl, (137)

where the sign ∼ means “equal up to a scalar factor”. Suppose that this holds at the points
n + ej and n + ek for all l = 1, . . . , d. Then it follows from (134) that for all l 6= k the matrix
B(l)(n+ej +ek) is also of rank 1, and its trace is equal to trB(l)(n+ej) = nl + δjl = nl + δjl + δkl.
It remains to prove that

Lj,k(α
−2
l )

(
αlw(n + ej + el)

1

)
∼

(
αlw(n + ej + ek + el)

1

)
, (138)

(
1 αlw(n + ej − el)

)
Lj+k,−k(α

−2
l ) ∼

(
1 αlw(n + ej + ek − el)

)
. (139)

These equations, written in length, read:

w(n + ej)
αkw(n + ej + ek) − αlw(n + ej + el)

αkw(n + ej + el) − αlw(n + ej + ek)
= w(n + ej + ek + el), (140)

w(n + ej)
αkw(n + ej + ek) + αlw(n + ej − el)

αkw(n + ej − el) + αlw(n + ej + ek)
= w(n + ej + ek − el), (141)

and are nothing but the Hirota equations on the corresponding elementary squares. Thus, recurrent
relation (134) implies that formula (137) holds at n + ej + ek for l 6= k. By interchanging the roles
of j and k, formula (137) holds for l 6= j, and thus for all l = 1, . . . , d. It remains to prove the
isomonodromic constraint (85). But it is not difficult to see that it is a direct consequence of the
lower left entry of eq. (136), if one takes into account expressions (82) and (83).
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