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Abstract We introduce a new method to compute confor-
mal parameterizations using a recent definition of discrete
conformity, and establish a discrete version of the Riemann
mapping theorem. Our algorithm can parameterize triangu-
lar, quadrangular and digital meshes. It can also be adapted
to preserve metric properties. To demonstrate the efficiency
of our method, many examples are shown in the experiment
section.

Keywords Conformal parameterization · Digital surfaces ·
Riemann mapping theorem

1 Introduction

Parameterizations are one to one maps from 3D discrete sur-
faces to the Euclidean plane. Parameterizations are widely
used in computer graphics allowing one to simplify difficult
3D problems in easy 2D tasks. For instance, texture map-
ping, a very classical application, boils down to the trivial
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task of mapping an image on a rectangular domain. Param-
eterizations also allow to consider a mesh as the image of a
function from the plane to the 3D space, and thus work with
functions instead of 3D sets. Such a representation is useful
for applications as morphing, surface fitting, etc.

A parameterization should preserve the geometrical
properties of the mesh: angles (conformal map), areas (au-
thalic maps), lengths (isometric map), etc. It is known that
maps which are both conformal and authalic are isometric,
and only developable surfaces have an isometric flat param-
eterization. In practice, one often look for conformal maps.
Parameterization preserve angles, lengths ratios locally, and
more generally the local aspect of the mesh. It is often suffi-
cient to obtain a good parameterization.

In this paper we present a new algorithm to compute
conformal parameterizations using the definition of discrete
conformity as given in [9]. Theoretically, it is shown to be a
generalization of the cotan conformal coordinates methods
[4, 11] and it leads to a discrete version of the Riemann map-
ping theorem with closer boundary conditions than those
of classical conformal techniques. In practice, the algorithm
consists in minimizing a discrete energy measuring confor-
mity. It can be adapted to take care of metric properties
such as lengths and areas allowing to compute low-stretch
quasi-conformal parameterization with natural boundaries.
The energies being expressed in terms of the vertices coor-
dinates and not the angles as ABF method [12], it is also
possible to perform constrained texture mapping as shown
in Fig. 1(b).

The rest of the paper is organized as follows. In Sect. 2
we introduce the definition of discrete conformal maps for
quadrangular meshes and adaptations for triangular and dig-
ital meshes. In Sect. 3, we discuss boundary conditions en-
suring uniqueness. In particular we establish a discrete ver-
sion of the Riemann mapping theorem and give conditions
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Fig. 1 Examples of
(a) unconstrained texture
mapping of a mesh,
(b) constrained texture mapping
of a mesh, (c) unconstrained
texture mapping of a digital
surface

leading to the same solution as the cotan conformal coordi-
nates methods. In Sect. 4, we describe the minimization al-
gorithm used to compute parameterization in practice. Vari-
ous energies are introduced to preserve more or less angles,
areas, lengths or the boundary. Numerical illustrations and
comparative studies are given in Sect. 5.

2 Discrete Conformal Parameterizations

2.1 Case of Quadrangular Meshes

In real continuous theory, a surface parameterization is a bi-
jective application from the surface S in R

3 to the plane:
(x, y, z) ∈ S �→ (s(x, y, z), t (x, y, z)) ∈ R

2. For meshes, it
boils down to a point v′ = (s, t) assigned to each vertex
v = (x, y, z). In the sequel, we will identify v′ with the com-
plex number s + it .

Locally identifying each face (v0, v1, v2, v3) of a quad
mesh to points in the plane (in one way or another) one can
view the diagonals v2 −v0 and v3 −v1 as two complex num-
bers and compute the ratio ρ = v3−v1

i(v2−v0)
, which is defined

up to a global similarity. Following [9], we call this data a
discrete conformal structure and will say that a parameter-
ization is discrete conformal if it preserves the ratios ρ. In
other words, for all faces of the mesh, we require that

v′
3 − v′

1

v′
2 − v′

0
= iρ. (1)

Geometrically, such a parameterization preserves the angle
between the diagonals and the ratio of their lengths. Intu-
itively, it corresponds to the following characterization of
conformity: a map is conformal if and only if its derivative
is a similarity everywhere. For simplicity, we can rewrite (1)
as a linear equation

v′
3 − v′

1 = iρ
(
v′

2 − v′
0

)
. (2)

As a consequence, a conformal parameterization is a solu-
tion of a (complex valued) linear system.

Remark 1 Even if the four vertices of a quad are not in the
same plane we can define the ratio ρ. Indeed, the diagonals
in R

3, when not colinear, can be viewed as two vectors span-
ning a plane, wherein the complex ratio can be computed.
This choice amounts to defining the normal to the surface
as the cross-product of these diagonals. A prior knowledge
of the normal, therefore of the tangent plane, is another way
to identify the quad-face to a quadrilateral in the complex
plane, by projecting the vertices onto this tangent plane.
The ratio does not depend on the choice of the normal basis
identifying the tangent plane with the complex numbers. To-
gether, all these identifications of the tangent plane at each
quad, considered as local charts, form an atlas of the sur-
face.

2.2 Case of Triangular Meshes

In practice, for practical reasons, one often use triangular
meshes. The definition can be adapted to this case: we add
a new (combinatorial) dual point to each face and to each
boundary edge, a standard procedure in remeshing. Then for
each edge of the initial mesh we form a quadrangle by join-
ing the extremities of the edge with

1. the two dual points inside the adjacent faces if it is not a
boundary edge,

2. the dual points inside the adjacent face and on the edge if
it is a boundary edge.

A detailed version of these two steps is given in Fig. 2. On
the left, we display the initial triangular mesh and the dual
points, and on the right the obtained quadrangular faces.

By definition, quads consist of two triangles that do not
necessarily belong to the same plane. To determine the ρ co-
efficient, we rotate one of them until it belongs to the plane
of the second, that is to say we flatten them using the intrin-
sic metric of the polyhedral surface. Once we have this quad
structure and a ρ for each quad we look for a parameteriza-
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Fig. 2 Construction of a quadrangular mesh from a triangular one.
One dual point per face and boundary edge, displayed by a small bullet.
(a) Initial triangular mesh and dual points. (b) Resulting quadrangular
mesh, one quad per initial edge

Fig. 3 Definition of the ρ coefficient of a surfel, the one of the paral-
lelogram obtained by projecting the surfel on the tangent plane

tion using the way described in Sect. 2.1. In particular, we
parameterize both the initial vertices and the dual points.

Remark 2 The use of the extrinsic (as in Remark 1) or in-
trinsic distances does not seem to imply big differences as
noted in another context in [3].

2.3 Case of Digital Surfaces

The definition we gave in Sect. 2.1 needs to be adapted to pa-
rameterize digital surfaces whose faces are surfels. Indeed,
these faces are planar squares and all the ρ coefficients are
equal to 1. Therefore a more meaningful discrete confor-
mal structure has to be defined, using extrinsic or non local
data such as a given normal vector [10]. We compute first
a normal vector of each face using the method described in
[6]. It allows us to determine the tangent plane of the sur-
face in each surfel. Then, we project the four edgels on this
plane, obtaining a parallelogram which better approximates
the continuous surface than the initial surfel. Finally, we de-
fine the ρ coefficient of a surfel as the one of this projected
parallelogram. An example of the construction is depicted
in Fig. 3.

3 Boundary Conditions and Uniqueness

3.1 Solutions of the Conformal System

We denote by nf , ne, nb and nv respectively, the number of
faces, edges, boundary edges and vertices of the mesh. The
linear system (2) consists of 2nf real equations and 2nv real
unknowns. As a mesh always has more vertices than faces it
does not have a unique solution.

More precisely, the Euler characteristic of the disc is

1 = nf − ne + nv, (3)

and according to a classical mesh property

4nf = 2ne − nb. (4)

Adding 2 × (3) to (4) we obtain

2(nv − nf ) = nb + 2.

Hence, in order to ensure uniqueness we need nb + 2 real
constraints.

3.2 A Discrete Version of the Riemann Mapping Theorem

The Riemann mapping theorem states that each surface
which is homeomorphic to the closed unit disc admits a con-
formal parameterization. Moreover, the holomorphic map is
unique if one boundary is mapped to the other one and the
images of 3 boundary points are fixed [1, 2, 7, 13].

We can use the nb + 2 degrees of freedom of the linear
system to respect similar boundary conditions. First, we en-
force the boundary of the parameterization to remain on the
unit circle, adding nb real constraints. Unfortunately, it re-
mains 2 degrees of freedom and we can only fix the images
of two boundary vertices. Since discrete conformal maps
are known to converge to continuous conformal maps when
the faces sizes tends to 0 we would expect similar boundary
conditions. So we can wonder where the extra-freedom has
gone. The issue is that our system is over-determined. It can
be observed by freeding one of the fixed boundary points
from begin stuck to the circle. If we only ask it belongs to
the tangent line in this point, the solution will eventually be
very close to the circle. Therefore fixing three points will
give an optimal solution which is of a very low, but in gen-
eral non null, conformal energy. The process is displayed on
Fig. 4.

However, our boundary conditions, i.e. send the bound-
ary on the circle, fix 2 points and let the third one the tan-
gent line, are much closer to the Riemann theorem than
those of other classical discrete conformal algorithms. In-
deed, [5, 11] fix all the boundary points and [4, 8] fix two
boundary points but the other ones are not mapped on the
circle.
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Fig. 4 (a) Boundary conditions
of the Riemann theorem.
(b) Boundary conditions of the
discrete version

3.3 Generalization of the cotan Conformal Coordinates
Methods

In this section, we will show that discrete conformal param-
eterization are generalizations of the cotan conformal coor-
dinates methods [4, 11]. More precisely, we will show that
a convenient choice of the dual points and the additional
nb + 2 boundary constraints lead to the same parameteri-
zations as those computed with these methods.

We remind the reader that they apply to triangular meshes
and consist in solving a linear system.

The equations for interior points are the same for both
methods: for each interior point vi ,

∑

j :vj neighbour of vi

(cotαi,j + cotβi,j )
(
v′
j − v′

i

) = 0 (5)

where αi,j and βi,j are the opposite angles to the edge
[vi, vj ], as show on Fig. 5(a).

They differ for boundary points:

– in [11], the boundary is fixed, often on a convex boundary.
– in [4, 8], each boundary coordinate v′

i verifies

∑

�ijk

cotαi,j

(
v′
i − v′

j

) + cotβk,j

(
v′
i − v′

k

)

= i ×
∑

�ijk

(
v′
k − v′

j

)
, (6)

where the sum is over all the triangles �ijk = (vi, vj , vk)

containing vi . Two boundary coordinates have also to be
fixed to ensure invariance to translation and rotation.

Proposition 1 Consider the following choices of dual points
and boundary equations

(i) the dual points are the circumcenters of the faces and
the middles of the boundary edges

(ii) the coordinates of the initial (non dual) boundary ver-
tices and one of the dual boundary point are fixed.

(iii) the coordinates of two initial boundary points are fixed,
the coordinates of dual boundary points are in the mid-
dle of the image of boundary initial edges.

With the same choice of fixed points,

Fig. 5 (a) Definition of the angles in the cotan formula. (b) Notations
used in the proof of Proposition 1

1. conditions (i) and (ii) results in the same coordinates for
initial vertices as with the first cotan conformal coordi-
nates method.

2. conditions (i) and (iii) results in the same coordinates
for initial vertices as with the second cotan conformal
coordinates method.

Proof of 1 We remark that (ii) consists in nb

2 + 1 complex
linear equations, so due to the results of Sect. 3.1, there ex-
ists one paramaterization satisfying (i) and (ii). We only have
to show that the coordinates of initial vertices verify (5).

Consider two adjacent faces of the mesh (vi, vj , vk) and
(vi, vl, vj ). We denote by ci,j and di,j their circumcenters.
An example of the construction is shown on Fig. 5(b). We
begin by computing the conformal coefficient ρi,j of the
quad (vi, vl, vj , vk) constructed from the edge [vi, vj ]. We
also denote by mi,j the middle of [vi, vj ] and by αi,j and
βi,j the angles in vk and vl .

First, since the angle in mi,j is right, ρi,j is real:

ρi,j = ‖ci,j − mi,j‖
‖vj − vi‖ + ‖di,j − mi,j‖

‖vj − vi‖ ,

and

‖ci,j − mi,j‖
‖vj − vi‖ = 1

2
cot v̂ici,j vj .

Second, due to the inscribed angle theorem

v̂ici,j vj = αi,j .
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Hence

ρi,j = 1

2
(cotαi,j + cotβi,j ).

Adding the equations of (2) involving the vertex vi we ob-
tain

i

2

∑

j

(cotαi,j + cotβi,j )
(
v′
j − v′

i

) = i
∑

j

ρi,j

(
v′
j − v′

i

)

= i
∑

j

(
c′
i,j − d ′

i,j

) = 0, (7)

the last equality being true because the edges [c′
i,j , d

′
i,j ]

form a loop. So (5) is verified. �

Proof of 2 Similarly to the proof of 1, we only have to prove
that the solution verifies (6). For a boundary vertex vi , the
left hand side of (7) becomes

i

2

(
cotαi,i1

(
v′
i1

− v′
i

) + cotβi,i2

(
v′
i2

− v′
i

)

+
∑

j :vj /∈boundary

(cotαi,j + cotβi,j )
(
v′
j − v′

i

))

= − i

2

∑

�ijk

(
cotαi,j

(
v′
i − v′

j

) + cotβk,j

(
v′
i − v′

k

))
(8)

where vi1 and vi2 are the next and previous (initial) boundary
points.

As for the right hand side, it becomes

c′
i,i1

− m′
i,i1

+ m′
i,i2

− d ′
i,i2

+
∑(

c′
i,j − d ′

i,j

)

= m′
i,i2

− m′
i,i1

= 1

2

(
v′
i2

− v′
i1

) = 1

2

∑

�ijk

(
v′
k − v′

j

)
. (9)

Multiplying (8) and (9) by 2i, we obtain (6). �

Given this proposition, it appears that the boundary con-
ditions introduced by the Intrinsic parameterization method
are no so natural as they can seem at first sight. Moreover
our definition of conformity allowing arbitrary dual points
can be of interest, when some angles of the triangles are ob-
tuse. Then the circumcenters are not necessarily inside the
triangle and the cotan conformal coordinates methods can
fail.

4 Minimization Algorithms

4.1 Energy Minimization

Many parameterizations methods, including [4, 5, 8, 11],
consist in solving sparse linear systems. As the system of

(2) is also sparse, we could think of using similar techniques.
But the boundary condition, i.e. remaining on a circle, is not
linear and even not quadratic. That is why we implement a
non-linear minimization technique.

We denote by ρi,j the ρ coefficient of the face contain-
ing the diagonal [vi, vj ]. Then we introduce the conformal
energy

H =
∑∣∣(v′

l − v′
j

) − ρi,j

(
v′
k − v′

i

)∣∣2

where the sum is over all the quads (vi, vj , vk, vl) of the
mesh, and the boundary energy

C =
∑(∣∣v′

i

∣∣2 − 1
)2

where the sum is over all the boundary vertices vi except the
two ones whose parameters are fixed. We search the param-
eters v′

i minimizing the total energy

E = αH + βC

for chosen positive real coefficients α and β .
The minimization is performed using the limited-memory

BFGS algorithm. It is a quasi-Newton algorithm optimized
for large Hessians. Moreover it computes an approximation
of the second derivatives of the function from the exact gra-
dient so we only need to compute the first derivative of E.
Note that the derivative of H can be easily determined using
complex numbers. Indeed, if v′

i = xi + yi ,

∂

∂xi

∣∣(v′
l − v′

j

) − ρi,j

(
v′
k − v′

i

)∣∣2

= 2 Re
(
ρ̄
(
v′
l − v′

j − ρ
(
v′
k − v′

i

)))

∂

∂yi

∣∣(v′
l − v′

j

) − ρi,j

(
v′
k − v′

i

)∣∣2

= 2 Im
(
ρ̄
(
v′
l − v′

j − ρ
(
v′
k − v′

i

)))
.

We have to take care of initial conditions to reach the
right minimum. Indeed, there is no uniqueness in the Rie-
mann theorem when the map is not supposed injective. So
the energy E has several (global) minima and with a con-
venient choice of initial conditions we could perfectly reach
a non injective conformal parameterization. Such a parame-
terization is depicted on Fig. 6(b).

In practice it is efficient to start from an initial parameter-
ization whose interior points are in (0,0) and whose bound-
ary points are on the unit circle with the same distances be-
tween them as on the mesh. Then the process unfolds the
interior points, more or less like the relaxation of a network
of spring. To have less distortion it is generally better to
choose the fixed points as far as possible from each other.
An example is given in Fig. 6(a) where the fixed points are
represented by big dots.
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Fig. 6 (a) Example of initial parameterization, boundary points on the
circle, interior points in 0. (b) Example of non injective parameteriza-
tion

4.2 Preservation of Lengths and Areas

Boundary conditions introduced yet are interesting theoreti-
cally due to their connection to the Riemann mapping theo-
rem but not very useful practically since they produce strong
length distortions near the boundary. Moreover, even if con-
formity is the key feature of parameterization, it is not the
only criterion to ensure a good texture mapping. Indeed,
conformal maps can lead to parameterizations which are
very tight in some regions and more sparse in others. If we
map a checkerboard with such a parameterization we obtain
big squares in the first regions and little ones in the others
which is of course unsatisfactory.

To obtain a more natural boundary and reduce metric dis-
tortions we propose to replace the energy term C by other
ones measuring metric distortions. Precisely, we introduce
three new cost functions L′, L and A attached to preserve
respectively lengths of boundary edges, lengths of all edges,
and areas of faces

L′ =
∑

boundary edge
[vi ,vj ]

(∣∣v′
i − v′

j

∣∣2 − ‖vi − vj‖2)2
,

L =
∑

edge [vi ,vj ]

(∣∣v′
i − v′

j

∣∣2 − ‖vi − vj‖2)2
,

A =
∑

face
(vi ,vj ,vk,vl )

((
Im

(
v′
j − v′

i

)(
v′
k − v′

i

)

− ∥∥(vj − vi) ∧ (vk − vi)
∥∥)2 + (

Im
(
v′
k − v′

i

)(
v′
l − v′

i

)

− ∥∥(vk − vi) ∧ (vl − vi)
∥∥)2)

and we propose to minimize the energy

E = αH + βA + γL + δL′

where α, β , γ and δ are nonnegative real numbers to be
chosen.

As any isometric transformation of a given parameteriza-
tion has the same energy we have to fix the image of one

boundary point and the slope of the next boundary edge to
ensure uniqueness of the solution. For numerical reasons the
algorithm described in previous section does not converge
in general towards the right local minimum if we use the
same initial conditions. Instead we propose the following
two steps minimization.

1. minimize H with a fixed boundary
2. use this minimum as initial condition to minimize E.

Step 1 being much faster with respect to step 2, it does
not affect convergence speed to perform two minimizations.
Moreover, at step 1 we can relax the stopping criteria since
we need not to converge the exact minimum. We only want
to unfold a little the parameterization to be closer to the min-
imum and allow step 2 to converge.

Remark 3 Another classical Riemann-Hilbert condition
[13] is to preserve boundary metric. The use of energy
E = H + L′ allows to be close to this condition. It can also
be useful in practice since it is faster to compute L′ than L

or A.

Remark 4 For a given quad (v0, v1, v2, v3) our area energy
preserve independently the areas of two triangles (v0, v1, v2)

and (v0, v2, v3) instead of the area of the whole quad di-
rectly. It avoids the formation of non convex quads when the
area coefficient β is high.

4.3 Stabilizing the Boundary

When using the boundary metric energy L′, for numerical
reason, little artefacts can appear along the boundary. An
example of boundary with two such artefacts is shown on
Fig. 7. This problem can also occur, but less frequently, us-
ing energies L and A with very low coefficient α and β . In
this section we present improvements to get a greater nu-
merical precision for boundary vertices.

The sum of the exterior angles of any polygon is 2π . And
each little artefact of Fig. 7 increase this sum of 2π . So if
we could preserve the boundary angles we would prevent
the formation of these artefacts. Thus we propose to add an
energy term to preserve angles between boundary edges. To
have a differentiable energy, in the same way as conformity,
we introduce complex coefficients measuring both angles
and lengths ratios. More precisely, for each boundary vertex
vi , we denote by p(i) and n(i) the indices of the previous
and next vertex along the boundary and associate to vi the
complex number ρ = reiθ where

r = ‖vn(i) − vi‖
‖vp(i) − vi‖

and the argument θ is the sum of the angles in vi . In case of
Fig. 8,

θ = α1 + α2 + α3.
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Fig. 7 Little artefacts on the
boundary using the boundary
metric energy L′. (a) Whole
boundary. (b) Zoom in on
critical regions

Fig. 8 An example of definition of ρ = reiθ for the boundary vertex

vi , ρ = reiθ with r = ‖vn(i)−vi‖
‖vp(i)−vi‖ and θ = α1 + α2 + α3

Then we introduce the cost function B

B =
∑∣

∣z′
n(i) − z′

i − ρi

(
z′
i − z′

p(i)

)∣∣2
.

Remark 5 As the conformal energy H already intends to
preserve boundary angles, energy B is a little redundant. But
it is important numerically: in a way we strengthen the con-
formal energy for boundary vertices to force the boundary
to remain valid all along the process.

Remark 6 The definition of ρ described in this section can
also be used to compute parameterizations of a triangular
meshes without constructing a quadrangular ones. Indeed
we can define for each triangle (v0, v1, v2) the coefficient ρ

as v2−v0
v1−v0

, to preserve the angle and the length ratio between
the edges [v0, v1] and [v0, v2] and thus the shape of the tri-
angle. All the previously detailed methods can be adapted
to this definition. It has the advantage of being simpler and
needing less computation time. However the definition de-
pends on the choice of v0, and the results of Sect. 3 are no
longer valid.

5 Numerical Results

5.1 Unconstrained Parameterization of Mesh

In this section parameterizations of triangular meshes are
computed with different coefficients α, β , etc, to study the
influences of the different energies. We also give compar-
isons with ABF method.

Remind that the energies do not share the same dimen-
sion: H has the dimension of an area, L and L′ of a length
to the power 4 and A of an area to the power 2. We first nor-
malize them in order to have coefficients more independent
of the mesh. We denote by a, l and l′ respectively the mean
of the faces areas, the edges lengths and the boundary edges
lengths. And we divide H and B by a, A by a2, L by l4 and
L′ by l′4.

Texture mappings are shown on Fig. 9 and statistical fea-
tures displayed in Table 1. The line “angles” give the mean
angular error (not the value of H ). To measure area dis-

tortions, we compute for each face the ratio
√

min(
ap

am
, am

ap
)

where am is the area of the face and ap the area of the cor-
responding face in the parameterization. It should be close
to 1. The line “areas” give the mean of these ratios. The line
“lengths” give the mean ratio of edges lengths in the same
way.

We observe in practice that the use of an average of H

and L′ allows to compute conformal parameterizations with
a natural boundary but a little more stretch than ABF. Using
energy E = αH + βA with a small area coefficient β also
leads to conformal parameterization and reduce the stretch.
In particular, the choice α = 100 and β = 1 gives for most
meshes results very similar to ABF. An advantage of the
method, is that we can also relax the conformal equation
and use a high area coefficient to better preserve areas. En-
ergy E = H + 10A seems to be a good choice to obtain a
visually authalic texture mapping. As for energy L, it is less
useful since it tends to produce folds when we increase its
coefficient.

Our method also proves to be very efficient with unnatu-
ral boundaries as shown on Figs. 10 and 9.

Remark 7 We did not show the texture mapping of ABF
since it was almost the same as with E = 100H + A.

5.2 Digital Surfaces

We also show parameterizations of digitals surfaces. Normal
vectors are computed using the convolution method of [6].
We observe that remarks of previous section concerning the
choice of energies and coefficients apply to the digital case
too. Two examples are displayed on Fig. 11.
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Fig. 9 Examples of texture
mappings with different cost
functions. (a) E = H + L′,
conformal and isometric along
the boundary.
(b) E = 100H + A, conformal,
more area preserving, similar to
ABF. (c) E = H + 10A,
quasi-conformal, area
preserving

It is interesting to compare our digital method with non
voxels ones such as ABF. On the one hand we obtain bet-
ter texture mappings. Indeed, as shown on Fig. 12, due to
the use of smoother normals, the checkerboard squares are
smoother than those of ABF. On the other hand, when on
look at a (plane) conformal parameterization we often have
an impression of relief. It is also the case with our digital
parameterization since we clearly distinguish little cubes. It
is much less clear with the ABF parameterization.

5.3 Constrained Texture Mapping

Another important application of parameterization tech-
niques is texture mapping of a 2D image on a 3D model. The
main features of the image and the model must fit. Therefore
positions of the corresponding points of the parameteriza-
tion must be fixed. Our method can be adapted to that case.

In fact it only reduces the number of variables of the func-
tion to minimize: we consider the points that are not fixed.

In the example of Fig. 13 we map an image of a face on
a mask of Nefertiti. We select manually 13 corresponding
points. They are displayed with thin points on the figure. On
Fig. 14(a), we map the image on the mesh to see that the 13
points are mapped to the right position. On Fig. 14(b) we
display the map of a checkerboard with the same parameter-
ization, it shows that the parameterization is still conformal.

6 Conclusion

We have described a new method of conformal parameter-
ization that can be applied to different meshes, including
quadrangular meshes and digital surfaces. An important fea-
ture of our approach is the use of a recent definition of dis-
crete conformity that permits to have discrete theorems close



J Math Imaging Vis (2013) 46:1–11 9

Table 1 Quantitative comparison of parameterizations

cow (2,000 faces) E = H + L′ + B E = 100H + A E = H + 10A ABF

time (sec) 1.32 0.94 0.87

angles (rad) 0.06 0.06 0.25 0.05

areas 0.48 0.62 0.85 0.63

lengths 0.41 0.56 0.81 0.58

pig (6,000 faces) E = H + L′ + B E = 100H + A E = H + 10A ABF

time (sec) 8 11 15

angles (rad) 0.07 0.06 0.87 0.05

areas 0.58 0.71 0.20 0.68

lengths 0.51 0.66 0.79 0.62

face (30,000 faces) E = H + L′ + B E = 100H + A E = H + 10A ABF

time (sec) 50 33 36

angles (rad) 0.01 0.01 0.07 0.01

areas 0.93 0.93 0.98 0.93

lengths 0.93 0.94 0.98 0.93

Fig. 10 Examples of
parameterization of meshes with
unnatural boundaries.
(a) Texture mapping.
(b) Boundary of the
parameterization
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Fig. 11 Examples of texture
mapping on digital surfaces.
(a) Cat quasi-conformal
parameterization with
E = H + 10A. (b) Half-head
conformal parameterization
with E = 100H + A

Fig. 12 Comparison of digital
and ABF methods. Zoom in on
the parameterization of the cat
(Fig. 11(a)). (a) Digital method.
(b) ABF method

Fig. 13 Corresponding 13 points in the image and the mesh

to the continuous ones. Moreover, it is very flexible since
the use of different cost functions allows to preserve more
or less shapes, the metric, the boundary or positions. Many
experimental results are shown to illustrate the different pos-
sibilities.

Acknowledgements This work was partially supported by the ANR
project KIDICO (ANR-2010-BLAN-0205-02).

Fig. 14 Textured 3D model with (a) an image face and (b) a checker-
board. Same parameterization computed with E = H + 0.01A

References

1. Ahlfors, L.V.: An introduction to the theory of analytic functions
of one complex variable. In: Complex Analysis, 3rd edn. Inter-



J Math Imaging Vis (2013) 46:1–11 11

national Series in Pure and Applied Mathematics, McGraw-Hill,
New York (1978)

2. Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.):
Discrete Differential Geometry. Oberwolfach Seminars, vol. 38.
Birkhäuser, Basel (2008). doi:10.1007/978-3-7643-8621-4, papers
from the seminar held in Oberwolfach, May 30–June 5, 2004.

3. Bobenko, A.I., Mercat, C., Schmies, M.: Conformal structures
and period matrices of polyhedral surfaces. In: Computational Ap-
proach to Riemann Surfaces. Springer, Berlin (2011)

4. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of
surface meshes. In: Computer Graphics Forum, vol. 21, pp. 209–
218 (2002)

5. Floater, M.: Mean value coordinates. Comput. Aided Geom. Des.
20(1), 19–27 (2003)

6. Fourey, S., Malgouyres, R.: Normals estimation for digital sur-
faces based on convolutions. Comput. Graph. 33(1), 2–10 (2009)

7. Gu, X.D., Yau, S.T.: Computational Conformal Geometry. Ad-
vanced Lectures in Mathematics (ALM), vol. 3. International
Press, Somerville (2008), with 1 CD-ROM (Windows, Macintosh
and Linux)

8. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares con-
formal maps for automatic texture atlas generation. ACM Trans.
Graph. 21(3), 362–371 (2002)

9. Mercat, C.: Discrete Riemann surfaces and the Ising model. Com-
mun. Math. Phys. 218(1), 177–216 (2001)

10. Mercat, C.: Discrete complex structure on surfel surfaces. In: Dis-
crete Geometry for Computer Imagery, pp. 153–164. Springer,
Berlin (2008)

11. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and
their conjugates. Exp. Math. 2(1), 15–36 (1993)

12. Sheffer, A., de Sturler, E.: Parameterization of faceted surfaces for
meshing using angle-based flattening. Eng. Comput. 17(3), 326–
337 (2001)

13. Wegert, E.: Nonlinear Riemann-Hilbert problems—history and
perspectives. In: Computational Methods and Function Theory,
Nicosia, 1997. Ser. Approx. Decompos., vol. 11, pp. 583–615.
World Scientific, River Edge (1999)

http://dx.doi.org/10.1007/978-3-7643-8621-4

	Mesh Parameterization with Generalized Discrete Conformal Maps
	Abstract
	Introduction
	Discrete Conformal Parameterizations
	Case of Quadrangular Meshes
	Case of Triangular Meshes
	Case of Digital Surfaces

	Boundary Conditions and Uniqueness
	Solutions of the Conformal System
	A Discrete Version of the Riemann Mapping Theorem
	Generalization of the cotan Conformal Coordinates Methods

	Minimization Algorithms
	Energy Minimization
	Preservation of Lengths and Areas
	Stabilizing the Boundary

	Numerical Results
	Unconstrained Parameterization of Mesh
	Digital Surfaces
	Constrained Texture Mapping

	Conclusion
	Acknowledgements
	References


