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Abstract
We study integrable realizations of conformal twisted boundary conditions for
s�(2) unitary minimal models on a torus. These conformal field theories are
realized as the continuum scaling limit of critical G = A,D,E lattice models
with positive spectral parameteru > 0 and Coxeter numberg. Integrable seams
are constructed by fusing blocks of elementary local face weights. The usual
A-type fusions are labelled by the Kac labels (r, s) and are associated with the
Verlinde fusion algebra. We introduce a new type of fusion in the two braid
limits u → ±i∞ associated with the graph fusion algebra, and labelled by
nodes a, b ∈ G respectively. When combined with automorphisms, they lead
to general integrable seams labelled by x = (r, a, b, κ) ∈ (Ag−2,H,H,Z2)

where H is the graph G for type I theories and its parent for type II theories.
Identifying our construction labels with the conformal labels of Petkova and
Zuber, we find that the integrable seams are in one-to-one correspondence with
the conformal seams. The distinct seams are thus associated with the nodes of
the Ocneanu quantum graph. The quantum symmetries and twisted partition
functions are checked numerically for |G| � 6. We also show, in the case
of D2�, that the non-commutativity of the Ocneanu algebra of seams arises
because the automorphisms do not commute with the fusions.
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1. Introduction

There has been much recent progress [1–8], on understanding integrable boundaries in
statistical mechanics, conformal boundary conditions in rational conformal field theories
and the intimate relations between them on both the cylinder and the torus. Indeed it appears
that, for certain classes of theories, all of the conformal boundary conditions on a cylinder
can be realized as the continuum scaling limit of integrable boundary conditions for the
associated integrable lattice models. For s�(2) minimal theories, a complete classification of
the conformal boundary conditions on a cylinder has been given [1–3]. These are labelled
by nodes (r, a) of a tensor product graph A ⊗ G where the pair of graphs (A,G), with
G of A-D-E type, coincide precisely with the pairs in the A-D-E classification of Cappelli
et al [9]. Moreover, the physical content of the boundary conditions on the cylinder has been
ascertained [4, 10] by studying the related integrable boundary conditions of the associated
A-D-E lattice models [11] for both positive and negative spectral parameters, corresponding
to unitary minimal theories and parafermionic theories respectively. Recently, the lattice
realization of integrable and conformal boundary conditions for N = 1 superconformal
theories, which correspond to the fused A lattice models with positive spectral parameter, has
also been understood [12].

In this paper, we use fusion to complete the task [13] of constructing integrable realizations
of conformal twisted boundary conditions on the torus. Although the methods are very general
we consider s�(2) unitary minimal models for concreteness. The key idea is that fused blocks
of elementary face weights on the lattice play the role of the local operators in the theory. The
integrable and conformal boundary conditions on the cylinder are constructed [4] by acting
with these fused blocks on the simple integrable boundary condition representing the vacuum.
For the usualA-type fusion, associated with the Verlinde fusion algebra, this leads to integrable
seams labelled by the Kac labels (r, s) ∈ (Ag−2, Ag−1). In this paper we introduce a new
type of fusion of G-type related to the graph fusion algebra. Integrable seams of this type are
labelled by (r, a) ∈ (Ag−2,H) where H is the graph G itself for type I theories and its parent
for type II theories. By the generalized Yang–Baxter equations, these fused blocks or seams
can be propagated into the bulk without changing the spectrum of the theory. The seams
so constructed provide integrable and conformal boundary conditions on the torus. Fixed
boundary conditions a ∈ G on the edge of the cylinder are propagated into the bulk by the
action of the seam (1, a) on the distinguished (vacuum) node 1 ∈ G. Lastly, automorphism
seams, which play no role on the cylinder, play a crucial role on the torus by providing the
extra label giving rise to the complement of the left and right chiral subalgebras in the Ocneanu
graph.

In general, for rational conformal field theories on the torus, we expect the two types of
fusions supplemented by the automorphisms to generate all of the integrable and conformal
seams. In this paper we discuss this assertion in the context of the A-D-E unitary minimal
models.

The paper is organized as follows. In section 2 we define the A-D-E series, giving their
graphs (section 2.1), their (proper or improper) graph fusion algebras (section 2.2), their
Ocneanu graphs (section 2.3) and their associated twisted partition functions (sections 2.3 and
2.4). The presentation is self-contained. In section 3 we describe the lattice realization of these
twisted boundary conditions. In particular, we define the A-D-E lattice models (section 3.1),
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Graph G g Exp(G) Type/H Γ

AL • • •∗ �
1 2 3 ··· L L + 1 1, 2, · · · , L I Z2

D�+2 (� even) ��
��

• • •
•

•
∗ �
1 2 3 ··· �

�+1

�+2

2� + 2 1, 3, · · · , 2� + 1, � + 1 I Z2

D�+2 (� odd) ��
��

• • • •
•

1 2 3 ··· �
�+1

�+2∗
� 2� + 2 1, 3, · · · , 2� + 1, � + 1 II/A2�+1 Z2

E6 • • • •
•

∗ �
1 2

3

4 5

6

12 1, 4, 5, 7, 8, 11 I Z2

E7 • • • • •
•

1 2 3

4

5 6

7

∗ � 18 1, 5, 7, 9, 11, 13, 17 II/D10 1

E8 • • • • • •
•

∗ �
1 2 3 4

5

6 7

8

30 1, 7, 11, 13, 17, 19, 23, 39 I 1

Figure 1. A-D-E graphs corresponding to the Dynkin diagrams of the classical A-D-E simply
laced Lie algebras. The nodes associated with the identity vertex and the fundamental vertex are
shown by ∗ and � respectively. Also shown are the Coxeter numbers g, exponents Exp(G), the
type I or II, the parent graphs H �= G and the diagram automorphism group �. The D4 graph is
exceptional having the automorphism group S3.

the fusion projectors (section 3.2), the associated fused faces (section 3.3) and the integrable
seams (sections 3.4–3.6). We construct the transfer matrices in section 4 composed of regular
faces and seams. This is described for the single-row transfer matrix on the torus (section 4.1)
and the double-row transfer matrix on the cylinder (section 4.3). The spectra of the transfer
matrices and finite-size corrections are described in section 5. The free energies are computed
(section 5.2) and the numerical conformal parts are identified with the twisted partition
functions (sections 5.3–5.6).

2. A-D-E fusion graphs and partition functions

A-D-E classifications appear in a variety of contexts, namely graphs, solvable lattice models,
ŝ�(2)k (Wess–Zumino–Witten) models at level k and s�(2) minimal models.

2.1. A-D-E graphs

The basic A-D-E objects are graphs. A simple graph G is given by its vertices (or nodes)
a ∈ G0 and edges (a, b) ∈ G1 ⊂ G0 × G0. We are concerned with unoriented graphs,
(a, b) ∈ G1 ⇒ (b, a) ∈ G1. The A-D-E graphs, which are the Dynkin diagrams of simply
laced Lie algebras, are presented in figure 1. The number g is the Coxeter number of the graph
G and the exponents Exp(G) are a subset (with multiplicities) of the nodes of the AL graph
sharing the same Coxeter number as G.

A graph G is completely encoded by its adjacency matrix which we denote by the same
letter G. It is a symmetric non-negative integer square matrix whose rows and columns are
labelled by the vertices of G, defined by Gab = 1 if a and b are adjacent and Gab = 0
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otherwise. What is so special about the A-D-E graphs is that (along with the tadpole2 series)
they are the only graphs whose spectra lie in the open interval (−2, 2). The Perron–Frobenius
theorem implies that the largest eigenvalue of these adjacency matrices is non-degenerate, real
and positive and its eigenvector can be chosen to have non-negative entries. They are given
explicitly in terms of q-deformed integers Sn = [n]q = qn−q−n

q−q−1 with q = eπ i/g . The largest
eigenvalue is S2 = [2]q and the eigenvectorψ is

ψAL = ([k]q) 1 � k � L

ψD�+2 =
(

[k]q, 1 � k � �,
[�]q
[2]q

,
[�]q
[2]q

)

ψE6 =
(

[1]q, [2]q, [3]q, [2]q, [1]q,
[3]q
[2]q

)

ψE7 =
(

[1]q, [2]q, [3]q, [4]q,
[6]q
[2]q

,
[4]q
[3]q

,
[4]q
[2]q

)

ψE8 =
(

[1]q, [2]q, [3]q, [4]q, [5]q,
[7]q
[2]q

,
[5]q
[3]q

,
[5]q
[2]q

)

.

(2.1)

2.2. Graph fusion algebras

The integer linear span of the nodes of the graph can be given a structure of a commutative
graph fusion algebra. We first specify two vertices, the identity vertex ∗ and the fundamental
vertex �. They are shown in figure 2 and are respectively the vertices labelled 1 and 2 in
the AL,D2�+2, E6 and E8 cases, known as type I theories, the vertices 2� + 1 and 2� − 1 for
the D2�+1 case, and the vertices 1, 2 for the E7 case, known as type II theories. The former
models give rise to proper graph fusion algebras with non-negative integer structure constants
or non-negative integer matrix irreducible representations (nimreps) which are understood as
adjacency matrices. The latter have some negative structure constants and do not form proper
graph fusion algebras.

The algebra is defined by stating that the edges of the graph G encode the action of the
fundamental element �:

a� =
∑

b∼a
b. (2.2)

The identity gives one row of the algebra table, the previous formula gives another,
commutativity and associativity determine the rest. On the D4 example, � = 2 and
associativity gives

(4 − 3)(� �) = (4 � − 3 �)� = 0

= (4 − 3)(1 + 3 + 4) (2.3)

so that 4−3 = 3 3−4 4 and � 3 3 = � shows that

{
3 3 = 4
4 4 = 3

and the expansion of 3 3 3 implies

3 4 = 1.
The structure constants of this algebra are denoted by N̂ ,

ab =
∑

c∈G
N̂ab

cc. (2.4)

2 The tadpole graph TL is obtained from the graph AL by adding a loop at the final vertex; it is not a simple graph.
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N1 =






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




, N2 =






0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0




, N3 =






0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0




, N4 =






0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




.

1 2 3 4
1 1 2 3 4 Z1 = χ1χ

∗
1 +χ2χ

∗
2 +χ3χ

∗
3 +χ4χ

∗
4 ,

2 2 1 + 3 2 + 4 3 Z2 = χ2χ
∗
1 +(χ1 + χ3)χ

∗
2 +(χ2 + χ4)χ

∗
3 +χ3χ

∗
4 ,

3 3 2 + 4 1 + 3 2 Z3 = χ3χ
∗
1 +(χ2 + χ4)χ

∗
2 +(χ1 + χ3)χ

∗
3 +χ2χ

∗
4 ,

4 4 3 2 1 Z4 = χ4χ
∗
1 +χ3χ

∗
2 +χ2χ

∗
3 +χ1χ

∗
4 .

Figure 2. Fusion matrices, graph fusion algebra and twisted partition functions of A4 in terms of
affine s�(2) characters χs .

The definition of the algebra implies that N̂∗ = I and N̂� = G and these matrices themselves
form the regular representation of the algebra with the usual matrix product

N̂aN̂b =
∑

c∈G
N̂ab

cN̂ c. (2.5)

As it is a commutative algebra containing the adjacency matrix, its common set of eigenvectors
is given by an orthogonal basis of eigenvectors of G. They are labelled by Coxeter exponents
(we have only given the Perron–Frobenius eigenvector) and the spectral decomposition of
each matrix onto its eigenvectors gives these integers through a Verlinde-like formula

N̂ab
c =

∑

j∈Exp(G)

ψ
j
a ψ

j

b

(
ψ
j
c

)∗

ψ
j
∗

. (2.6)

Some algebra tables are given in figures 2–6. In the case of the graph AL this reduces
to the usual Verlinde formula, the structure constants are denoted by Nij k and the matrix of
eigenvectors is denoted by S. For an A-D-E graph G with Coxeter number g = L + 1, another
algebra of non-negative integer matrices with the AL structure constants Nij k is given by the
fused adjacency matrices ni defined by the s�(2) recurrence relation

n1 = I n2 = G ni+1 = n2ni − ni−1 for 2 < i < g − 1 (2.7)

which closes with ni = 0 for i > g − 2 and

ng−2 =
{

I for D2�, E7, E8

σ for AL,D2�−1, E6
(2.8)

where σ is the Z2 graph automorphism. Clearly, E7 and E8 do not admit a Z2 automorphism.
So the fusions contain the Z2 graph automorphism in all cases where it exists except for D2�.

The matrices ni also satisfy a Verlinde-like property

nia
b =

∑

j∈Exp(G)

S
j

i

S
j
∗
ψja

(
ψ
j

b

)∗
(2.9)

with the algebra structure

ninj =
∑

k∈AL
Nij

knk niN̂a =
∑

b∈G
nia

bN̂b. (2.10)
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N̂1 =






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




, N̂2 =






0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0




, N̂3 =






0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0




, N̂4 =






0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0




.

1 2 3 4
1 1 2 3 4 Z1 = χ̂1χ̂

∗
1 +χ̂3χ̂

∗
3 +χ̂4χ̂

∗
4 ,

2 2 1+3+4 2 2 Z2⊗1 = χ̂2χ̂
∗
1 +χ̂2χ̂

∗
3 +χ̂2χ̂

∗
4 = Z∗

1⊗2,

3 3 2 4 1 Z3 = χ̂3χ̂
∗
1 +χ̂4χ̂

∗
3 +χ̂1χ̂

∗
4 = Z4,

4 4 2 1 3 Z4 = χ̂4χ̂
∗
1 +χ̂1χ̂

∗
3 +χ̂3χ̂

∗
4

Z1′ = Z3′ = Z4′ = χ̂2χ̂
∗
2

χ̂1 = χ1 + χ5, χ̂2 = χ2 + χ4, χ̂3 = χ̂4 = χ3

1 2 3 4 1′ 2′ 3′ 4′

1 1 2 3 4 1′ 2′ 3′ 4′

2 2 1+3+4 2 2 2′ 1′+3′+4′ 2′ 2′

3 3 2 4 1 3′ 2′ 4′ 1′

4 4 2 1 3 4′ 2′ 1′ 3′

1′ 1′ 2′ 4′ 3′ 1 2 4 3
2′ 2′ 1′+3′+4′ 2′ 2′ 2 1+3+4 2 2
3′ 3′ 2′ 1′ 4′ 3 2 1 4
4′ 4′ 2′ 3′ 1′ 4 2 3 1

1

2 2′
3

4

1′

3′

4′

D̃4

Figure 3. Fusion matrices, graph fusion algebra, twisted partition functions, Ocneanu algebra and
Ocneanu graph of D4. The extended chiral and ambichiral subalgebras are bold.

The matrices ni are in fact linear combinations of the graph algebra matrices N̂a ,

ni =
∑

a∈G
ni1

aN̂a. (2.11)

For b ∈ G, the rectangular matrix V b = (nia
b)i∈Ag−1,a∈G is called an intertwiner because it

intertwines the fused adjacency matrices:

NiV
b = V bni for all i ∈ AL. (2.12)

One view of these graph algebras is that nodes label bimodules and edges are
homomorphisms between these bimodules. In the case of the graph G, the edges describe
the homomorphisms arising from tensoring with the fundamental bimodule, the result is
isomorphic to the direct sum of the bimodules that are adjacent to it on the graph. For type I
models, one can associate a graph Ga with each vertex in the same manner, by placing N̂ab

c

edges between the vertex b and the vertex c. For type II models, this construction fails.
The graph fusion algebra of a solvable A-D-E lattice model built on the graph G is not

the graph fusion algebra itself. Rather, this latter graph encodes the fusion algebra of a
Wess–Zumino–Witten ŝ�(2)g−2 (WZW) theory. The solvable A-D-E lattice model is actually
associated with a minimal model whose fusion algebra is given by the tensor product graph
Ag−2 ×G where g is the Coxeter number of G. A vertex of this tensor product graph is of the
form (r, a) ∈ Ag−2 ×G and is adjacent to the vertex (r ′, b) whenever r and r ′ are neighbours
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N̂1 =







0 −1 0 1 1
−1 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0






, N̂2 =







−1 0 1 0 0
0 0 0 1 1
1 0 1 0 0
0 1 0 0 0
0 1 0 0 0






, N̂3 =







0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 1
0 0 1 1 0






,

N̂4 =







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0






, N̂5 =







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1






.

Figure 4. The D5 graph fusion algebra is not a proper graph algebra.

in Ag−2 and a and b are neighbours in G. When G = Ag−1, it is customary to denote such a
vertex with the Kac labels (r, s). Moreover, this tensor product graph is quotiented by the Kac
table symmetry

(r, s) ∼ (g − 1 − r, g − s) if G = Ag−1 (2.13)

(r, a) ∼ (g − 1 − r, a) otherwise. (2.14)

The graph fusion algebra for this quotient is Ag−2 ⊗G/∼ and hence it is generated by the two
ŝ�(2) WZW subalgebras 1 ⊗G and Ag−2 ⊗ 1.

For example, the three-state Potts model is the minimal model associated with the graph
D4. Its fusion algebra is the graph algebra (A4,D4)/∼ = (T2,D4) shown in figure 7. It has
eight vertices and two types of edges, corresponding to the action of the generators ε, η, of
each subalgebra, T2 = {I, ε} and D4 = {I, η,ψ,ψ†} where we use the labelling of figure 7.
You read off that ξη = ε + σ + σ † and ξε = ξ + η. Assuming associativity, you can then infer
for example that ξξ = I + ε +ψ +ψ† +σ +σ † and work out the rest of the algebra table, which
is also given by the tensor product of the N̂ matrices for D4 (shown as a list in figure 3) with
the fusion matrices of T2, namely

N1 =
(

1 0
0 1

)

N2 =
(

0 1
1 1

)

. (2.15)

2.3. Ocneanu graph algebras and twisted partition functions

In this section, we review the properties of Ocneanu (quantum double) graphs and their fusion
algebras [7, 8, 14–16]. The related double triangle algebra (DTA) governs many aspects of
both the statistical mechanics models and their associated conformal field theories. It is called
the algebra of quantum symmetries of the problem. We are interested here in the algebra
of twisted boundary conditions on the torus, called the twisted fusion algebra [7, 8]. We
discuss the twisted boundary conditions and associated twisted partition functions briefly
summarizing the work of Petkova and Zuber [7, 8]. We then present an alternative approach
using tensor products [14–16].
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N̂1 =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









, N̂2 =









0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0









, N̂3 =









0 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 1
0 1 0 2 0 0
0 0 1 0 0 1
0 0 1 0 1 0









,

N̂4 =









0 0 0 1 0 0
0 0 1 0 1 1
0 1 0 2 0 0
1 0 2 0 1 1
0 1 0 1 0 0
0 1 0 1 0 0









, N̂5 =









0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 1 0 0
1 0 0 0 1 0
0 0 1 0 0 0









, N̂6 =









0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 1









,

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1+3 2+4 3+5+6 4 4
3 3 2+4 1+ 3+5+6 2+4+4 3+6 3+5
4 4 3+5+6 1+3+3+5+6 2+4 2+4
5 5 4 3+6 2+4 1+5 3
6 6 4 3+5 2+4 3 1+6

Z1 = χ̂1χ̂
∗
1 + χ̂3χ̂

∗
3 + χ̂5χ̂

∗
5 + χ̂6χ̂

∗
6 ,

Z2⊗1 = χ̂2χ̂
∗
1 +

(
χ̂2 + χ̂4

)
χ̂∗

3 + χ̂4

(
χ̂∗

5 + χ̂6
)∗ = Z∗

1⊗2,

Z3 = χ̂3χ̂
∗
1 +

(
χ̂1 + χ̂3 + χ̂5 + χ̂6

)
χ̂∗

3 +
(
χ̂3 + χ̂6

)
χ̂∗

5 +
(
χ̂3 + χ̂5

)
χ̂∗

6 ,

Z4⊗1 = χ̂4χ̂
∗
1 +

(
χ̂2 + 2χ̂4

)
χ̂∗

3 +
(
χ̂2 + χ̂4

) (
χ̂∗

5 + χ̂6
)∗ = Z∗

1⊗4,

Z5 = χ̂5χ̂
∗
1 +

(
χ̂3 + χ̂6

)
χ̂∗

3 +
(
χ̂1 + χ̂5

)
χ̂∗

5 + χ̂3χ̂
∗
6 ,

Z6 = χ̂6χ̂
∗
1 +

(
χ̂3 + χ̂5

)
χ̂∗

3 + χ̂3

(
χ̂1 + χ̂6

)
χ̂∗

5 +
(
χ̂1 + χ̂6

)
χ̂∗

6 ,

Z1′ = χ̂2χ̂
∗
2 + χ̂4χ̂

∗
4 ,

Z3′ = |χ̂2 + χ̂4|2 + |χ̂4|2,
Z5′ = Z6′ = χ̂2χ̂

∗
4 + χ̂4χ̂

∗
2 + |χ̂4|2.

χ̂1 = χ1 + χ9, χ̂2 = χ2 + χ8, χ̂3 = χ3 + χ7,

χ̂4 = χ4 + χ6, χ̂5 = χ̂6 = χ5.

Figure 5. The graph fusion algebra of D6 and its twisted partition functions in terms of extended
characters. The extended chiral subalgebra T is shown bold (see figure 9) and the extended
characters are given in terms of the A9 characters.

The twisted boundary conditions are encoded by the Ocneanu [14] graph fusion algebra
G̃whose structure constants are denoted by Ñxy

z for x, y, z ∈ G̃. The matrices Ñy = {
Ñxy

z
}

satisfy

ÑxÑy =
∑

z∈G̃
Ñxy

zÑz. (2.16)
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N̂1 =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









, N̂2 =









0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0









, N̂3 =









0 0 1 0 0 0
0 1 0 1 0 1
1 0 2 0 1 0
0 1 0 1 0 1
0 0 1 0 0 0
0 1 0 1 0 0









,

N̂4 =









0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0









, N̂5 =









0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1









, N̂6 =









0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 1 0









.

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1+3 2+4+6 3+5 4 3
3 3 2+4+6 1+3+3+5 2+4+6 3 2+4
4 4 3+5 2+4+6 1+3 2 3
5 5 4 3 2 1 6
6 6 3 2+4 3 6 1+5

Z1 = χ̂1χ̂
∗
1 +χ̂5χ̂

∗
5 +χ̂6χ̂

∗
6 ,

Z2⊗1 = χ̂2χ̂
∗
1 +χ̂4χ̂

∗
5 +χ̂3χ̂

∗
6 = Z∗

1⊗2,

Z3⊗1 = χ̂3χ̂
∗
1 +χ̂3χ̂

∗
5 +(χ̂2 + χ̂4)χ̂

∗
6 = Z∗

1⊗3,

Z4⊗1 = χ̂4χ̂
∗
1 +χ̂2χ̂

∗
5 +χ̂3χ̂

∗
6 = Z∗

1⊗4,

Z5 = χ̂5χ̂
∗
1 +χ̂1χ̂

∗
5 +χ̂6χ̂

∗
6 ,

Z6 = χ̂6χ̂
∗
1 +χ̂6χ̂

∗
5 +(χ̂1 + χ̂5)χ̂

∗
6 .

χ̂1 = χ1 + χ7, χ̂2 = χ2 + χ6 + χ8, χ̂3 = χ3 + χ5 + χ7 + χ9,

χ̂4 = χ4 + χ6 + χ10, χ̂5 = χ5 + χ11, χ̂6 = χ4 + χ8.

Figure 6. The graph fusion algebra of E6 and its twisted partition functions in terms of extended
characters. The ambichiral subalgebra is shown bold and the extended characters are given in
terms of the A11 characters.

Petkova and Zuber give explicit expressions for these structure constants for the A-D-E graphs.
The seam index

x =
{
(a, b, κ) ∈ (H,H,Z2) WZW
(r, a, b, κ) ∈ (Ag−2,H,H,Z2) minimal

(2.17)

labels conformal twisted boundary conditions or seams. The index κ = 1, 2 labels the
automorphisms η = σκ−1 = I, σ . The seams x are not all distinct due to quantum symmetry

x = (r, a, b, κ) ≡ x ′ = (r ′, a′, b′, κ ′) ⇔ Z(r,a,b,κ) = Z(r ′,a′,b′,κ ′) (2.18)

that is, seams giving rise to the same twisted partition functions are considered equivalent. In
some cases, such as D4, it is necessary to use unspecialized characters to see the full quantum



2632 C H O Chui et al

Figure 7. The graph (T2,D4) coding the fusion algebra of the three-state Potts model. The solid
lines encode the adjacencies of the nodes on the tensor product graph. The nodes (r, a) = {(1, 1),
(1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)} in (T2,D4) are labelled by the associated fields
{1, η, ψ, ψ†, ε, ξ, σ, σ †} respectively.

symmetry. For the WZW models, it suffices to take x of the form

x =






s ∈ Ag−1 G = Ag−1

(a, κ) ∈ (D2�,Z2) G = D2�

s ∈ A4�−1 G = D2�+1

(a, b) ∈ (G,G) G = E6,8

(a, b) ∈ (D10,D10) G = E7

(2.19)

and similarly for the minimal models with r ∈ Ag−2 added.
The modular invariant torus partition functions of the A-D-E minimal models are

Z(q) =
∑

(r,s),(r ′,s ′)

Z(r,s),(r ′,s ′)χr,s(q)χr ′,s ′(q̄) Z(r,s),(r ′,s ′) = δr,r ′
∑

a∈T
ns1

ans ′1
ζ(a) (2.20)

where ns = ns(H) are the fusion matrices of the type I parent H of G,

T = T1 =






{1, 2, . . . , L} G = AL

{1, 3, 5, . . . , 2�− 1, 2�} G = D2�

{1, 2, 3, . . . , 4�− 1} G = D2�+1

{1, 5, 6} G = E6

{1, 3, 5, 7, 9, 10} G = E7

{1, 7} G = E8

(2.21)

and the involutive twist ζ is the identity for type I theories but for type II theories has the
action

ζ =
{
s 
→ 4�− s s = 2, 4, . . . , 2�− 2 G = D2�+1

{1, 3, 5, 7, 9, 10} 
→ {1, 9, 5, 7, 3, 10} G = E7.
(2.22)

The twisted partition functions are given by the toric matrices P (κ)ab ,

Z(r,a,b,κ)(q) =
∑

(r ′,s ′),(r ′′,s ′′)

N
(Ag−2)r

′′

rr ′
[
P
(κ)
ab

]

s ′s ′′χr ′,s ′(q)χr ′′,s ′′(q̄)

(2.23)[
P
(κ)
ab

]

s ′s ′′ =
∑

c∈Tκ
ns ′a

cns ′′b
ζ(c)

where

T2 =
{{2, 4, . . . , 2�− 2} G = D2�

T1 otherwise
(2.24)

except for the special seams denoted by x = (r,X) of E7 [8], which are given by Z(r,X)(q) =
Z(r,6,2,1)(q)− Z(r,4,2,1)(q).
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1

2 2′
3

4

1′

3′

4′

Figure 8. The Ocneanu graph D̃4. The nodes can be labelled by x = (a, b) or (a, κ). We have set
a = a ⊗ 1, 2′ = 1 ⊗ 2 with 2 ⊗ 2 decomposed into 1′, 3′, 4′. The nodes {1, 2, 3, 4, 1′, 2′, 3′, 4′}
are alternatively labelled by (a, κ) = {(1, 1), (2, 1), (3, 1), (4, 1), (1, 2), (2, 2), (3, 2), (4, 2)}
respectively.

The Ocneanu graph fusion algebra is a double graph algebra combining left and right
copies of the graph fusion algebra H connected through a left–right symmetric subalgebra
called the ambichiral subalgebra. For graphs G of type I, H is G itself. For graphs G of type II,
it involves the parent graph algebra H and a twist ζ . Although the graph algebras of type II
theories are not proper graph algebras, the parent graph H is always of type I. The Ocneanu
graph has two types of edges (plain and dashed), corresponding to the action of the left and
right copies of the generator of H.

An alternative construction of the Ocneanu graph fusion algebra, which emphasizes the
chiral and ambichiral structure, can be given [14–16] in terms of tensor products over the
subalgebra T. We start with an example and considerG = D4. The nodes T = {1, 3, 4} form
a Z3 subalgebra of the graph fusion algebra G corresponding to the extended chiral algebra.
This gives rise to the ambichiral subalgebra of G̃. One can then construct the tensor product
algebra over T

D4 ⊗Z3 D4. (2.25)

The tensor product ⊗T over T means that a ⊗ tb ≡ at ⊗ b for all a, b ∈ G and t ∈ T . In
D4 for example 2 ⊗ 3 = 2 3 ⊗ 1 = 2 ⊗ 1. So this algebra has six distinct elements, 1 ⊗ 1,
1 ⊗ 2 = 3 ⊗ 2 = 4 ⊗ 2, 1 ⊗ 3 = 3 ⊗ 1, 1 ⊗ 4 = 4 ⊗ 1, 2 ⊗ 1 = 2 ⊗ 3 = 2 ⊗ 4 and 2 ⊗ 2. It
clearly has two generators, a left and a right, �L = 2 ⊗ 1 and �R = 1 ⊗ 2. They generate the
left respectively right chiral subalgebras. One would like to encode this algebra in a graph as
done previously but there is an obstruction that

(2 ⊗ 2)(1 ⊗ 2) = 2 ⊗ (1 + 3 + 4) = 2 ⊗ 1 + 2 ⊗ 1 + 2 ⊗ 1 (2.26)

so while there is only one edge from 2 ⊗ 1 to 2 ⊗ 2 = (2 ⊗ 1)(1 ⊗ 2), there would be three in
the opposite direction. This problem is solved by splitting the node 2 ⊗ 2 into three different
nodes, 1′, 3′, 4′, using a non-central extension of the algebra by an algebra of 2 × 2-matrices
[16]. The detail of this extension is not needed to compute twisted partition functions but
we note that it leads to non-commutativity. One then obtains the graph D̃4 presented in
figure 8.
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3

2 ⊗ 1

5

1

1 ⊗ 2
1′

3′

6

6′

5′

4 ⊗ 1 1 ⊗ 4

Figure 9. The Ocneanu graph D̃2� for � = 3.

The same procedure works for G = H = D2� (see figure 9). It has a J�+1 subalgebra
generated by the odd vertices (the forked extremities are both taken as odd) over which the
tensor square is taken and extended by an algebra of 2 × 2-matrices. The result is encoded
in a graph D̃2�, depicted in figure 9, where the ambichiral 1, 3, . . . , 2�− 3, 2�− 1, 2� nodes
are duplicated by 1′, 3′, . . . , (2�− 3)′, (2�− 1)′, (2�)′, and where the even vertices have a left
and a right counterpart 2 ⊗ 1, 4 ⊗ 1, . . . , 2(� − 1) ⊗ 1 and 1 ⊗ 2, 1 ⊗ 4, . . . , 1 ⊗ 2(� − 1).
The algebra structure can be worked out beginning with 1′, which satisfies

1′(1 ⊗ 2) = 2 ⊗ 1

1′(2 ⊗ 1) = 1 ⊗ 2
(2.27)

while 2 ⊗ 2 = 1′ + 3′.
The type I exceptional cases E6 and E8 are simpler as there is no need to extend the

algebra. The subalgebras in these cases are generated by T = {1, 5, 6} and {1, 7} respectively.
The AL case is even simpler as we tensorize over the full graph algebra, yielding the same
algebra back again AL ⊗AL AL � AL so all the elements are ambichiral.

For the type II models,G = D2�+1, E7, the Ocneanu graph algebra is defined through the
square tensor of the parent theoryH = A4�−1,D10 twisted by the involution ζ . ForG = D2�+1,
the twisted fusion algebra is defined byA4�−1 ⊗ζ A4�−1 where a⊗b = aζ(b)⊗1 = 1⊗ζ(a)b.
It is the graph algebra of the Ocneanu graph D̃2�+1 defined by 4�− 1 vertices forming two
A4�−1 graphs with plain and dashed edges, sharing the same numbering for the odd vertices
(forming Exp(D2�+1)) but where the even ones are flipped, as shown in figure 10. ForG = E7,
the parent theory is H = D10 and the automorphism is given by interchanging the nodes 3
and 9, so that the twist fusion algebra isD10 ⊗T ,ζ D10 where T is theD10 ambichiral subalgebra
(which is the set of all odd vertices D10, counting forked vertices as both odd). The left (right)
chiral subalgebra is generated by the left (right) generator and the ambichiral subalgebra. They
are both isomorphic to the primitive graph algebra H and, as in the type I case, the ambichiral
subalgebra is their intersection.

To summarize, the vertices of the Ocneanu graphs are given by distinct pairs (a, b) ∈ H
(H is the graph G or its parent graph), coding a left and a right element, or equivalently for the
D2� models, a pair (a, κ) with κ ∈ {1, 2}. The twist fusion algebras just described are for the
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2
4�− 2

...

...

2� + 1

4�− 1

4�− 3

. . . . . .

3

1

4

Figure 10. The Ocneanu graph D̃2�+1.

ŝ�(2)g−2 WZW theories. The Ocneanu graph fusion algebras associated with A-D-E minimal
models are more involved. These are given by two copies of the graph algebra (Ag−2,H)/∼
whose vertices are pairs (r, a) with r ∈ Ah−2 and a ∈ H , subject to the Kac table symmetry
(r, s) ∼ (g − 1 − r, g − s) if H = Ag−1 and (r, a) ∼ (g − 1 − r, a) otherwise. The vertices
are, in general, labelled by x = (r, a, b, κ) ∈ (Ag−2,H,H,Z2). In the (A4,D4) case for
example, the Ocneanu graph is simply the tensor product of D̃4, the Ocneanu graph of D4,
with the tadpole T2. It has three types of edges, associated with the action of the left, the right
and the tadpole generators.

2.4. Twisted partition functions and extended characters

Given an A-D-E graph G, we associate to each node a ∈ G, an extended character χ̂a(q)
which is a generating function in the modular parameter q. The ordinary characters χi(q) are
the A-type characters. The extended characters are

χ̂a(q) =
∑

i∈Ag−1

ni1
aχi(q) (2.28)

Explicitly, in the D4 case,

χ̂1 = χ1 + χ5 χ̂2 = χ2 + χ4 χ̂3 = χ̂4 = χ3. (2.29)

We use the extended characters mostly for type I graphs, that is, either G itself or its parent H
if G is of type II.

The twisted partition functions, which form sesquilinear combination of characters, can
now be written in terms of extended characters in the following way [6–8, 16]. First, the
modular invariant partition function corresponding to the unit vertex of the Ocneanu graph is
associated with a sum over the subalgebra T

Z(q) :=
∑

a∈T
χ̂a(q)(χ̂ζ(a)(q))

∗ (2.30)

where the automorphism ζ is the identity for the type I models. For type II theories, the sum
over T is a sum over (a subset of) the parent graph. In theD2�+1 case for example, we sum over
A4�−1 (they are all ambichiral). Moreover, the vertex a, associated with χ̂a(q), is paired by
the twist ζ with χ̂ζ(a)(q)∗. It is also a sesquilinear form in terms of ordinary characters and its
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diagonal part gives the exponents Exp(G) of figure 2. This partition function has the property
of modular invariance in the modular parameter q = e2π iτ , that is to say, Z(1 + τ ) = Z(τ)

and Z(−1/τ) = Z(τ). The other twisted partition functions are not modular invariant.
The twisted partition functions of other elements a ⊗T b of the Ocneanu graph, with or

without an automorphism seam η = σκ−1, are obtained by the action of this element on the
terms of Z(q)

Z
(κ)

a⊗T b
(q) :=

∑

c∈Tκ
χ̂ac(q)(χ̂ζ(c)b(q))

∗ =
∑

c∈Tκ ,d,e∈H
N̂ac

dN̂bζ(c)
eχ̂d (q)(χ̂e(q))

∗ (2.31)

where ac and cb denote the product in the graph fusion algebra, that is to say, it is a linear
combination of elements of the algebra and the characters are extended by linearity in their
indices. The graph H = G for type I theories but is the parent graph for type II theories.
Petkova and Zuber [8] indicated that the twisted partition functions could be written in terms
of the extended characters but did not write down an explicit formula. Note that this implies
that the N̂ structure constants involved in the calculation are all positive integers since no
use is made of the graph fusion algebra for type II models, only for the parent model which
is always of type I. For example, the action of the left generator changes the left term in
χ̂a(q)(χ̂ζ(a)(q))

∗ to a sum over the neighbours of a in H,

Z�L
(q) = Z2⊗1(q) =

∑

a∈T
χ̂2a(q)(χ̂ζ(a)(q))

∗ =
∑

a∈T ,b∼H a
χ̂b(q)(χ̂ζ(a)(q))

∗.

Note that Za⊗T b = (
Zb⊗T a

)∗
and, in particular for the type I theories, the ambichiral twisted

partition functions are real. A complete list of these twisted partition functions in terms of
ordinary characters is given in [8, 16]. For the casesD6 andE6 we give a list of these in terms
of extended characters as shown in figures 5 and 6.

The twisted partition functions just described are for the ŝ�(2)g−2, or WZW models. The
twisted partition functions for the minimal models (2.23) involve pairs (r, a) ∈ Ag−2 ×H/ ∼
of indices in place of single indices a ∈ H . Here, g is the Coxeter number of H and ∼
is the Kac table symmetry. The ambichiral subalgebra is the product of the two ambichiral
subalgebras for each graph. In the case (A4,D4)/∼ = (T2,D4), for example, the modular
invariant partition function is

Z1 =
∑

x∈T
χ̂xχ̂

∗
x =

∑

r∈{1,3},a∈{1,3,4}⊂D4

χ̂2
r,a = χ̂2

1,1 + χ̂2
3,1 + χ̂2

1,3 + χ̂2
3,3 + χ̂2

1,4 + χ̂2
3,4 (2.32)

where we have kept the labels 1 = 4 and 2 = 3 for r ∈ T2 = A4/Z2. The other 15 twisted
partition functions are obtained by action of the twisted fusion algebra. For example,

Z(1,2)⊗1 = χ̂1,2(χ̂1,1 + χ̂1,3 + χ̂1,4)
∗ + χ̂3,2(χ̂3,1 + χ̂3,3 + χ̂3,4)

∗ (2.33)

Z(3,1)⊗1 = χ̂3,1χ̂
∗
1,1 + (χ̂1,1 + χ̂3,1)χ̂

∗
3,1 + χ̂3,3χ̂

∗
1,3 + (χ̂1,3 + χ̂3,3)χ̂

∗
3,3

+ χ̂3,4χ̂
∗
1,4 + (χ̂1,4 + χ̂3,4)χ̂

∗
3,4 (2.34)

and so on as shown in figure 11.
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Z1 = χ̂1,1χ̂
∗
1,1 + χ̂3,1χ̂

∗
3,1 + χ̂1,3χ̂

∗
1,3 + χ̂3,3χ̂

∗
3,3 + χ̂1,4χ̂

∗
1,4 + χ̂3,4χ̂

∗
3,4

Zη⊗1 = χ̂1,2(χ̂1,1 + χ̂1,3 + χ̂1,4)
∗ + χ̂3,2(χ̂3,1 + χ̂3,3 + χ̂3,4)

∗ = Z∗
1⊗η

Zψ = χ̂1,3χ̂
∗
1,1 + χ̂3,3χ̂

∗
3,1 + χ̂1,4χ̂

∗
1,3 + χ̂3,4χ̂

∗
3,3 + χ̂1,1χ̂

∗
1,4 + χ̂3,1χ̂

∗
3,4 = Zψ†

Zε = χ̂3,1χ̂
∗
1,1 + (χ̂1,1 + χ̂3,1)χ̂

∗
3,1 + χ̂3,3χ̂

∗
1,3 + (χ̂3,3 + χ̂1,3)χ̂

∗
3,3+

χ̂3,4χ̂
∗
1,4 + (χ̂3,4 + χ̂1,4)χ̂

∗
3,4

Zξ⊗1 = χ̂3,2(χ̂1,1 + χ̂1,3 + χ̂1,4)
∗ + (χ̂1,2 + χ̂3,2)(χ̂3,1 + χ̂3,3 + χ̂3,4)

∗ = Z∗
1⊗ξ

Zσ = χ̂1,3χ̂
∗
1,1 + χ̂3,3χ̂

∗
3,1 + χ̂1,4χ̂

∗
1,3 + χ̂3,4χ̂

∗
3,3 + χ̂1,1χ̂

∗
1,4 + χ̂3,1χ̂

∗
3,4

= Zσ †

Z1′ = |χ̂1,2|2 + |χ̂3,2|2 = Zψ ′ = Zψ†′

Zε′ = χ̂1,2χ̂
∗
3,2 + χ̂3,2χ̂

∗
1,2 + |χ̂3,2|2 = Zσ ′ = Zσ †′

χ̂r,1 :=χr,1 + χr,5, χ̂r,2 :=χr,2 + χr,4, χ̂r,3 = χ̂r,4 :=χr,3.
Figure 11. The (A4,D4) twisted partition functions of the 3-state Potts model. The extended
characters are given in terms of the Virasoro minimal characters χr,s .

3. Lattice realization of twisted boundary conditions

3.1. A-D-E lattice models

A solvable [17] A-D-E lattice model [11, 18] is associated with a graph G, of A,D or E type.
We place spins on the sites of the square lattice, where the spin states are taken to be the
nodes of the graph G and neighbouring sites on the lattice must be neighbouring nodes on
the graph. The probability distribution of spins is defined by the critical (unfused) Boltzmann
weight of each face (or plaquette) of spins, depending on a spectral parameter u. For four
spins a, b, c, d ∈ G such that (a, b), (b, c), (c, d), (d, a) are pairs of neighbours in G, the
Boltzmann weight is

W 11

(
d c

u
a b

)

= u
↘

a b

cd

= s(λ− u)δac + s(u)

√

ψaψc

ψbψd
δbd (3.1)

and zero otherwise. Here, g is the Coxeter number of G, λ = π
g
, s(u) = sin(u)

sin(λ) and ψa is
the entry, associated with the node a, of the Perron–Frobenius eigenvector of the adjacency
matrix G.

These Boltzmann weights can be represented [4] by a local face operatorXj(u),

Xj(u) = ��

����

��u
→

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

j−1 j j+1

= s(λ − u)I + s(u)ej (3.2)

in the Temperley–Lieb algebra T (N, λ),
e2
j = s(2λ)ej
ej ekej = ej |j − k| = 1
ejek = ekej |j − k| > 1

(3.3)

where ej = Xj(λ) is a Temperley–Lieb generator and j is an integer labelling the N positions
along a row of the lattice.
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3.2. Fusion projectors

Each of the A-D-E models gives rise to a hierarchy of fused models whose Boltzmann weights
we describe now. They are associated with blocks of faces where the internal spins are summed
over in a particular way.

We first define recursively the fusion operators P rj , for r = 1, 2, . . . , g as follows

P 1
j = P 2

j = I
(3.4)

P rj = 1

Sr−1
P r−1
j+1 Xj(−(r − 2)λ)P r−1

j+1 r � 3

where Sk = s(kλ) and j is appropriately restricted [4]. Thus, P rj can be expressed as a
function of ej , ej+1, . . . , ej+(r−3). In particular,

P 3
j = 1

S2

��

����

��−λ
→

= I − 1

S2

��

����

��+λ
→

. (3.5)

We shall represent the fusion operators diagrammatically as

P rj = ��

����

��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

j−1 j j+r−3 j+r−2

. (3.6)

It is easy to show that this operator is in fact a projector. Moreover,

P r
′
j ′ P

r
j = P rj P

r ′
j ′ = P rj for 0 � j ′ − j � r − r ′

�
��
�

�
��
�

�
��
�

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

= �
��
�

..

..

..

..

..

..

.

..

..

..

..

..

..

.

. (3.7)

In particular, the local face operator ��

����

��+λ
→

= S2ej is a projector orthogonal to all the P rj ′ for

0 � j − j ′ � r − 3. This fact is a defining property of the orthogonal projector P rj ,

ImP rj =
j+r−3⋂

k=j
Ker ek. (3.8)

Clearly, we can decompose the projector P rj onto the space of paths with given end points:
P r(a, b) is the fusion projector acting on paths from a to b in r − 1 steps. Its rank is given by
the fused adjacency matrix entries

Rank(P r (a, b)) = nra
b. (3.9)

The +1 eigenvectors of P r(a, b) are thus indexed by an integer γ = 1, 2, . . . , nrab

referred to as the bond variable. We denote these eigenvectors by U r
γ (a, b) and call them

fusion vectors or essential paths. Explicitly, in the representation (3.1) of the Temperley–Lieb
algebra T (r − 2, λ), these generators act on the paths from a to b in r − 1 steps as

ek(a0, a1, . . . , ak−1, ak, ak+1, . . . , ar−2, b)

= δak−1,ak+1

∑

c∼ak−1

ψ
1/2
ak ψ

1/2
c

ψ
1/2
ak−1ψ

1/2
ak+1

(a0, a1, . . . , ak−1, c, ak+1, . . . , ar−2, b). (3.10)
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In the D and E cases, multiplicities occur and there is some freedom in the choice of fusion
vectors corresponding to a unitary change of basis. In the AL case, however, there is a unique
fusion path. As an example, there are two paths on AL, running from node 2 to itself in two
steps, namely (2, 1, 2) and (2, 3, 2). As they both backtrack, the fusion vector U 3

1(2, 2) is
unique, proportional to their difference ψ1/2

3 (2, 1, 2)− ψ
1/2
1 (2, 3, 2) and the fused adjacency

matrix entry is n32
2 = 1. In the D4 case, there is the path (2, 4, 2) also, so that there are

two linearly independent fusion vectors, the previous one and (2, 3, 2) − (2, 4, 2) or any
similar linear combination (note that ψ3 = ψ4). The fused adjacency matrix has a 2 as the
corresponding entry n32

2 = 2. The general form of the unique AL fusion vector at fusion
level s � L between the vertex 2 and the vertex s − 1 is given by the following formula of
cancelling alternating backtracking paths, generalizing the one just described for s = 3,

U s
1(2, s − 1) =

(

ψ
−1/2
1 ψ

−1/2
2 (2, 1, 2, 3, . . . , s − 1)− ψ

−1/2
2 ψ

−1/2
3 (2, 3, 2, 3, . . . , s − 1)

+ψ−1/2
3 ψ

−1/2
4 (2, 3, 4, 3, . . . , s − 1) + · · ·

+ (−1)sψ−1/2
s−1 ψ

−1/2
s (2, . . . , s − 1, s, s − 1)

)

(3.11)

and similarly forD� with fusion level s < �− 1. But at fusion level s = �− 1, the fork gives
rise to a two-dimensional space of fusion vectors. One choice of orthonormal basis is given
(with ν the appropriate normalization constant) by

U �−1
1 (2, �− 2) = 1

ν

(

ψ
−1/2
1 ψ

−1/2
2 (2, 1, 2, 3, . . . , �− 2)

−ψ−1/2
2 ψ

−1/2
3 (2, 3, 2, 3, . . . , �− 2) + ψ−1/2

3 ψ
−1/2
4 (2, 3, 4, 3, . . . , �− 2)

+ · · · +
1

2
(−1)�−1ψ

−1/2
�−2 ψ

−1/2
�−1 (2, . . . , �− 2, �− 1, �− 2)

+
1

2
(−1)�−1ψ

−1/2
�−2 ψ

−1/2
s (2, . . . , �− 2, �, �− 2)

)

(3.12)

U �−1
2 (2, �− 2) = 1√

2
((2, . . . , �− 2, �− 1, �− 2)− (2, . . . , �− 2, �, �− 2)).

3.3. Fused face operators

The fusion projectors allow us to define the (p, q)-fused face operators consisting of q rows
of p local face operators with relative shifts in the spectral parameter by ±λ from one face to
the next,

X
pq

j (u) = �
�

�
��
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�
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��
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�
Xpq(u)
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.
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j−1 j+q−1

j+p−1
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= �
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�
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�
�
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��
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�
��
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�
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�
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�u

���
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�
�
P
q+1
j ��

P
p+1
j+q �

�

. (3.13)
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The position of the projectors and spectral parameters can be altered by pushing-through

X
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j (u) = �
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j �
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P
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. (3.14)

These properties imply several others, namely the transposition symmetry

X
pq

j (u)
T = X

qp

j (u + (q − p)λ) (3.15)

the generalized Yang–Baxter equation (GYBE)
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(3.16)

the inversion relation

X
pq

j (u)X
qp

j (−u) = �
�

��

�
�

��

�
�

�
�

Xpq(u)

↓
�

�
��

�
�

��

�
�

�
�

Xqp(−u)
↓

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . = s
p q

1 (u)s
p q

1 (−u) P q+1
j P

p+1
j+q (3.17)

where sp qi (u) = ∏p−1
j=0

∏q−1
k=0 s(u + (i − j + k)λ) (we will also use the notation spi for q = 1)

and the Abelian property

X
pq

j (u + (p − 1)λ)Xqpj (v + (q − 1)λ) = X
pq

j (v + (p − 1)λ)Xqpj (u + (q − 1)λ).

The braid limits of the fused face operators are

X
pq

j (iε∞) := lim
u→iε∞

exp
(−iε (g+1)pq

2 λ
)

s
1 q
0 (u)s

p−1 q
−1 (u)

X
pq

j (u) ε = ±1. (3.18)

It follows that

X
pq

j (+i∞) = X
pq

j (−i∞)∗ (3.19)

and the inversion relation becomes

X
pq

j (iε∞)X
pq

j (iε∞)† = P
q+1
j P

p+1
j+q (3.20)

so that these operators are unitary.
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The fused face operators, contracted against the fusion vectors, yield the (p, q)-fused
Boltzmann weights that depend not only on the spins at the four corners but also on the bond
variables on the edges,

Wpq




d γ c
δ β u
a α b



 = u
↘pq

a α
b

β

cγd

δ = 1

s
p q−1
0 (u)

Xpq(u)

↘
a

U
p−1
α (a,b)

b

U
q−1
β (c,b)

†

cU
p−1
γ (d,c)

†
d

U q−1
δ (d,a)

(3.21)

where the function s
pq−1
0 (u) eliminates some scalar factors common to all the spin

configurations that appear in the process of fusion. In the AL case the bond variables are
redundant. The fused Boltzmann weights satisfy the reflection symmetry

Wpq




d γ c
δ β u
a α b



 = s
q p−1
q−p (u)

s
p q−1
0 (u)

Wqp




d δ a
γ α u + (q − p)λ
c β b



 (3.22)

and the crossing symmetry

Wpq





d γ c

δ β

a α b

∣
∣
∣
∣
∣
∣

u



 =
√

ψaψc

ψbψd

s
q p−1
0 (λ− u)

s
p q−1
0 (u)

Wqp





a δ d

α γ

b β c

∣
∣
∣
∣
∣
∣

λ− u



 . (3.23)

We use these fused Boltzmann weights to construct commuting transfer matrices with seams.

3.4. Integrable seams on the torus

Simple integrable seams are modified faces. Surprisingly, they produce some new twisted
boundary conditions even for the Ising model [19, 20]. They are of in four different types,
r, s, a and η where r ∈ Ag−2, s ∈ Ag−1, a ∈ H and η ∈ �. Here H = G for type I theories
and is the parent for type II theories. A composite integrable seam x consists of several
simple seams glued together with four spins c, d, e, f at the corners. The integrable seams
x = (r, a, b, σ κ−1) give rise to the conformal seams (r, a, b, κ) in the continuum scaling limit.
First, let us consider the case r = 1 equivilent to the WZW factor in the minimal coset. The
adjacency matrix of an integrable seam x = (a, b, σ κ−1) is given by

ñx =






N̂aN̂bσ
k−1 G of type I

n(GH)
a n

(GH)
b σ k−1 G of type II and x �= X

n
(GH)
2

(
n
(GH)
6 − n

(GH)
4

)
G = E7 and x = X

(3.24)

where n(GH)
a with a ∈ H are the intertwiners [3] of G relative to H

n
(GH)
ab

c =
∑

m∈Exp(G)

ψ(H)a
m

ψ
(H)
1

m
ψ
(G)
b

mψ(G)c
m∗ (3.25)

and X is the special node [8] of theE7 Ocneanu graph. The matrices (ñx)cd and (ñx)f e encode
the allowed adjacency between spins c, d at the bottom and f, e at the top of a composite seam.
Although our interpretation of these matrices is different, these matrices coincide exactly with
the ñx matrices of Petkova and Zuber. Our definition, however, is intrinsic to the seam and
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we do not need to invoke boundary conditions on the cylinder. The matrices ñx form a
(non-faithful) representation of the Ocneanu graph fusion algebra

ñx ñy =
∑

z

Ñxy
zñz (3.26)

where the explicit expressions for Ñ are given in [8].
For the unitary minimal models (Ag−2,G), the Ocneanu graphs are the quotient of the

tensor product graph, Ag−2 ⊗ G̃/ ∼, where ∼ is given by the Kac table symmetry (2.13),
(2.14). There are (g − 2)|G̃|/2 distinct nodes on this Ocneanu graph and the corresponding
graph structure constants Ñ (ρ,y) = {

Ñ (ρ′,y′)ρ,y
(ρ′′,y′′)} are given by

Ñ(ρ′,y′)(ρ,y)
(ρ′′,y′′) = Q(ρ,y)

(r,x)Q(ρ′,y′)
(r ′,x′)Q(ρ′,y′)

(r ′′,x′′)N
(Ag−2)r

′′

rr ′ (Ñx)x′ x
′′

(3.27)

where (ρ, y) = (ρ, a, b, κ),

Q(ρ,y)
(r,x) = δρ,rδy,x + δρ,g−1−r δy,η(x) (3.28)

where the indices (ρ, y) range over
{

1 � ρ � g−2
2 1 � y � |G̃| g even

1 � ρ � g − 2 1 � y � g−1
2 G = Ag−1 g odd

(3.29)

and the matrices Q act on each index of the tensor product N
(Ag−2)
r ⊗ Ñx to quotient out the

Kac table symmetry. The matrices

ñ(ρ,y) = Q(ρ,y)
(r,x)N

(Ag−2)
r ⊗ Ñx (3.30)

now form a (non-faithful) representation of the Ocneanu graph fusion algebra for minimal
models.

We consider composite seams of type x = (r, s, η) and first define Wq

(r,1,1), the r-type
seam for the (p, q)-fused model. It is a usual (r − 1, q)-fused face (it does not depend on the
horizontal fusion level p) with an extra parameter ξ acting as a shift in the spectral parameter,
and another choice for the removal of common scalar factors,

W
q

(r,1,1)




d γ c
δ β u, ξ
a α b



 =
↘q

a
α

b

β

cγd

δ
r(u,ξ) = s

r−1 q−1
0 (u + ξ)

s
r−2 q
−1 (u + ξ)

W(r−1)q




d γ c
δ β u + ξ
a α b



 .

(3.31)

An s-type seam with s ∈ Ag−1 is the normalized braid limit of an r-type seam, it does not
depend on the spectral parameter,

W
q

(1,s,1)




d γ c
δ β
a α b



 =
↘q

a α
b

β

cγd

δ (1,s) = lim
ξ→i∞

exp
(

−i (g+1)(s−1)q
2 λ

)

s
1 q
0 (u + ξ)

W
q

(s,1)




d γ c
δ β u, ξ
a α b



.

(3.32)

In general the s-type weights are complex. The complex conjugate gives the weights in the
other braid limit ξ → −i∞. By the reflection and crossing symmetries (3.22) and (3.23)

W
q

(1,s,1)





d γ c

δ β

a α b



 =
√

ψaψc

ψbψd
W
q

(1,s,1)





a α b

δ β

d γ c





∗

. (3.33)
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These braid-limit face weights provide us with a representation of the braid group.
It is known [21, 22] that discrete symmetries play an important role in twisted boundary

conditions. In fact, there is an integrable seam corresponding to each discrete symmetry.
Specifically, the graph automorphisms η ∈ �, satisfying Ga,b = Gη(a),η(b), leave the face
weights invariant,

Wpq




d γ c
δ β u
a α b



 =
↘pq

a α
b

β

cγd

δ u =
↘pq

η(a)
α

η(b)

β

η(c)
γ

η(d)

δ u = Wpq




η(d) γ η(c)
δ β u
η(a) α η(b)



 (3.34)

and act through the special seam [23]

W
q

(1,1,η)





d c

α β

a b



 = δbη(a)δcη(d)
↘q

a η(a)

η(d)d

βα η

=
{

1 nq+1a
d �= 0 α = β b = η(a) c = η(d)

0 otherwise. (3.35)

Note that the (r, s, η) = (1, 1, 1) seam, where η = 1 denotes the identity automorphism, is
the empty seam

W
q

(1,1,1)





d c

α β

a b



 = δabδcdδαβnq+1b
c. (3.36)

The push-through property is also satisfied for an η-type seam.

3.5. Construction of a-type seams for type I theories

In this section, we construct a new type of fusion for type I models labelled by the nodes
a ∈ G. The fused Boltzmann weights giving the (1, a)-seams are obtained in the braid limits
u → iε∞ with ε = ±1 and are independent of the spectral parameter u. This new type
of fusion is associated with the N̂a graph fusion matrices in exactly the same way as the
usual fusions are associated with the fused adjacency matrices ns . For type II models, the
construction is applied to the parent type I graphs in the next section. Previously, all known
fusions were labelled by Young tableaux. In our case, r and s label s�(2) tableaux with r or s
boxes in a single row. The construction of fusions labelled by nodes of graphs is an important
step in understanding the graph fusion algebras associated with integrable and conformal
seams.

In constructing the a-type seams in this section we focus on vertically unfused face weights
that q = 1. Recall that the s-type seams are the braid limit of the (s − 1) fused Boltzmann
weights that are obtained by acting with the fusion projector P sj on the face operators Xj(u).
From (3.9) we see that the admissible spins at the corners of the (s − 1) fused face weights
and the number of horizontal bond variables are given by the non-zero entries in the fused
adjacency matrices ns with s ∈ Ag−1. From section 2.2, these fused adjacency matrices are
linear combinations of the graph fusion matrices

ns =
∑

a∈G
ns1

aN̂a. (3.37)
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This motivates us to define a new type of fusion projector P̂ (s)aj (b, c) associated with N̂a and
acting on paths between b and c by orthonormally decomposing the s-type projector P sj (b, c),

P sj (b, c) =
∑

a∈G
ns1

aP̂
(s)a

j (b, c) (3.38)

where each of the N̂a fusion projectors P̂ (s)aj (b, c) separately satisfies the push-through
property (3.14) in the braid limit. The projectors P̂ (s)a(b, c) which may have complex entries
are required to satisfy

(1) Decomposition: P s(b, c) =
∑

a∈G
ns1

aP̂ (s)a(b, c) (3.39)

(2) Orthogonality: P̂ (s)a(b, c)P̂ (s)f (b, c) = 0 a �= f, (3.40)

(3) Projection: P̂
(s)a
(b, c)2 = P̂

(s)a
(b, c) P̂

(s)a
(b, c)† = P̂

(s)a
(b, c) (3.41)

(4) Adjacency: Rank(P̂ (s)a(b, c)) = N̂ab
c ns1

a �= 0. (3.42)

By the above conditions (3.39)–(3.42), P s(b, c) and {P̂ (s)a(b, c)}a∈G are simultaneously
diagonalizable with a common set of eigenvectors. It follows that P (s)a(b, c) can be
decomposed as

P̂ (s)a(b, c) =
N̂ab

c

∑

µ=1

Û (s)a
µ (b, c)Û (s)a

µ (b, c)† (3.43)

where Û (s)a
µ (b, c) are the simultaneous eigenvectors ofP s(b, c) and {P̂ (s)a(b, c)}a∈G satisfying

P s(b, c)Û (s)a
µ (b, c) = P̂ (s)a(b, c)Û (s)a

µ (b, c) = Û (s)a
µ (b, c)

(3.44)
P̂ (s)f (b, c)Û (s)a

µ (b, c) = 0 a �= f.

Thus, the construction of the new type of fusion at u → iε∞, with ε = ±1, is equivalent
to finding the appropriate orthonormal basis for the fusion vectors

{
Û (s)a
εµ (b, c)

}
of P s(b, c)

satisfying the conditions

X(s−1)1(iε∞)
↘

b Û (s)a
εµ (b,c)

c

d
Û
(s)f
εν (e,d)

†
e

= 0 for all µ, ν, a �= f N̂ab
c, N̂f e

d �= 0 (3.45)

which follows from the push-through property and the orthogonality of P̂ (s)aj (3.40). Note
that the N̂a fusion vectors at u → iε∞ are different for ε = +1 and ε = −1. By (3.19),
Û (s)a
εµ (b, c)

∗ is the N̂a fusion vector at u → −iε∞. Hence, the N̂a fusion projectors at
u → ±i∞ are complex conjugates

P̂
(s)a
u→−i∞(b, c) = P̂ (s)au→+i∞(b, c)

∗. (3.46)

From now on, unless otherwise stated, the terms N̂a fusion projector and N̂a fusion vector
refer to the braid limit u → +i∞. We emphasize that P̂ (s)aj does not satisfy the push-through
property if the face operatorX(s−1)1(u) depends on u, that is, if we move away from the braid
limit.
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The N̂a fusion vectors can be obtained by solving (3.45). However, there is a more
convenient approach taking advantage of the unitarity of the face operators in the braid limit
(3.20). This provides a unitary transformation between essential paths, so that the unknown
N̂a fusion vectors can be obtained from known ones by a unitary transformation.

The fusion vectors U s(e, d) with N̂ae
d = 1 are automatically the same as the N̂a fusion

vectors due to the adjacency condition (3.42)

U s(e, d) ≡ Û (s)a(e, d), N̂ae
d = 1 (3.47)

So suppose that Û (s)a
µ (e, d) is known for some given s, d, e. Then for any b, c ∈ G with

N̂ab
c �= 0 satisfying

n2d
c �= 0 and n2e

b′
nsb′ c = nsb

cδb′,b (3.48)

the N̂a fusion vector Û (s)a
µ (b, c) is given by the unitary transformation

Û (s)a
µ (e, d) 
→ Û (s)a

µ (b, c) : Û (s)a
µ (b, c) =

Û (s)a
µ (e,d)

�
�

�
�

�

�
�

�
�

�

��

��

X1(s−1)

(−i∞)

→.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

e

b

d

c
(3.49)

Clearly, it is a fusion vector of P s(b, c) by the push-through property of the ordinary projector.
It is also an N̂a fusion vector because

�
�

��

�
�

��

��

��

−i∞
→

�
�

��

�
�

��

��

��

+i∞
→

..

..

..

..

..

..

..

..

..

..

..

e

b

d

c

e

d ′

c

Û (s)a
µ (e,d)

Û
(s)f
ν (e,d ′)†

X(s−1)1(i∞)
↘

b Û (s)a
µ (b,c) c

d ′Û
(s)f
ν (e,d ′)

†
e

= = Û
(s)f
ν (e, d)† · Û (s)a

µ (e, d)δd ′,d = δa,f δµ,νδd ′,d

(3.50)

by the inversion relation (3.20), which is guaranteed to be valid by (3.48) since, for any b′

adjacent to e, we have Rank(P (s)a(b′, c)) = nsb
cδb′,b. Thus, the N̂a fusion vectors Û (s)a

µ (b, c)

are determined uniquely up to a phase factor and unitary gauge transformations within blocks
given by N̂ab

c > 1. To be consistent, one should check that (3.49) satisfies (3.45) for all the
other admissible spins. By the crossing symmetry (3.23) and (3.19), (3.49) can be expressed
as the linear combination of ordinary fusion vectors

Û (s)a
µ (b, c) =

∑

γ

√

ψdψb

ψeψc
W(1,s,1)

(
b γ c

e µ d

)

U s
γ (b, c). (3.51)

We now illustrate the calculations of N̂a fusion vectors for the case G = E6. In
E6, ns = N̂ s for 1 � s � 3, so it remains to find the N̂a fusion vectors for N̂4, N̂5 and N̂6.
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First, n4 can be decomposed into N̂4 and N̂6,

n4 =









0 0 0 1 0 1
0 0 2 0 1 0
0 2 0 2 0 1
1 0 2 0 0 0
0 1 0 0 0 1
1 0 1 0 1 0









=









0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0









+









0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 1 0









= N̂4 + N̂6 (3.52)

and only the N̂a fusion vectors for (b, c) = (2, 3), (3, 2), (3, 4), (4, 3) need to be determined.
Consider (b, c) = (2, 3). By (3.48), Û (4)4(1, 4) 
→ Û (4)4(2, 3) so it follows from (3.51)

that

Û (4)4(2, 3) =
∑

γ

√

ψ4ψ2

ψ1ψ3
W(1,4,1)

(
2 γ 3
1 1 4

)

U 4
γ (2, 3) (3.53)

and similarly Û (4)6(1, 6) 
→ Û (4)6(2, 3). For (b, c) = (3, 2), {Û (4)4(2, 3), Û (4)6(2, 3)} 
→
{Û (4)4(3, 2), Û (4)6(3, 2)}, so Û (4)4(3, 2) is obtained by applying (3.49) to (3.53),

Û (4)4(3, 2) =
∑

γ

ψ3

ψ2
W(1,4,1)

(
3 γ 2
2 4̂ 3

)

U 4
γ (3, 2) (3.54)

where

W(1,4,1)

(
3 γ 2
2 4̂ 3

)

=
∑

α

U 4
α(2, 3)† · Û (4)4(2, 3)W(1,4,1)

(
3 γ 2
2 α 3

)

(3.55)

=
∑

α

√

ψ4ψ2

ψ1ψ3
W(1,4,1)

(
2 α 3
1 1 4

)

W(1,4,1)

(
3 γ 2
2 α 3

)

(3.56)

is the s-type seam with the bond variable 4̂ specifically chosen so that the corresponding fusion
vector between (2, 3) is N̂4. Similarly we obtain Û (4)6(3, 2). For the other cases, we apply
the same procedure

{Û (4)4(6, 3), Û (4)6(6, 5)} 
→ {Û (4)4(3, 4), Û (4)6(3, 4)}
(3.57)

{Û (4)4(5, 2), Û (4)6(5, 6)} 
→ {Û (4)4(4, 3), Û (4)6(4, 3)}
Finally, we repeat the whole process for n5 = N̂3 + N̂5 to obtain the N̂5 fusion vectors.

In summary, the N̂a fusion vectors forE6 derived from n4 and n5 are listed below in terms
of the given path basis with λ = π/12.

For n4 = N̂4 + N̂6:

(2, 3) basis: {(2, 1, 2, 3), (2, 3, 2, 3), (2, 3, 4, 3), (2, 3, 6, 3)}

Û (4)4(2, 3) =
√

3 − 1

2

(
(
√

3 + 1)1/2 e− 7λ
2 i,−e− 7λ

2 i, e
5λ
2 i,−(

√
3 + 1)1/2 e

11λ
2 i
)

(3.58)

Û (4)6(2, 3) =
√

3 − 1

2

(√
2 e− 7λ

2 i,−(
√

3 − 1)1/2 e− 7λ
2 i,−(

√
3 + 1)1/2 e

11λ
2 i,

√
2 e

7λ
2 i)

(3, 2) basis: {(3, 2, 1, 2), (3, 2, 3, 2), (3, 4, 3, 2), (3, 6, 3, 2)}

Û (4)4(3, 2) =
√

3 − 1

2
(−(

√
3 + 1)1/2 e5λi, e5λi,−e−λi, (

√
3 + 1)1/2 e−4λi) (3.59)

Û (4)6(3, 2) =
√

3 − 1

2
(−

√
2 e5λi, (

√
3 − 1)1/2 e5λi, (

√
3 + 1)1/2 e−4λi,−

√
2 e−2λi)
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(3, 4) basis: {(3, 2, 3, 4), (3, 4, 3, 4), (3, 6, 3, 4), (3, 4, 5, 4)}

Û (4)4(3, 4) =
√

3 − 1

2

(
e− λ

2 i,−e
11λ

2 i,−(
√

3 + 1)1/2 e− 7λ
2 i, (

√
3 + 1)1/2 e

11λ
2 i
)

(3.60)

Û (4)6(3, 4) =
√

3 − 1

2

(−(
√

3 + 1)1/2 e− 11λ
2 i,−(

√
3 − 1)1/2 e

7λ
2 i,

√
2 e− 7λ

2 i,
√

2 e
7λ
2 i)

(4, 3) basis: {(4, 3, 2, 3), (4, 3, 4, 3), (4, 5, 4, 3), (4, 3, 6, 3)}

Û (4)4(4, 3) =
√

3 − 1

2

(
e

5λ
2 i,−e− 7λ

2 i, (
√

3 + 1)1/2 e− 7λ
2 i,−(

√
3 + 1)1/2 e

11λ
2 i
)

(3.61)

Û (4)6(4, 3) =
√

3 − 1

2

(−(
√

3 + 1)1/2 e
11λ

2 i,−(
√

3 − 1)1/2 e− 7λ
2 i,

√
2 e− 7λ

2 i,
√

2 e
7λ
2 i).

For n5 = N̂3 + N̂5:

(2, 4) basis: {(2, 1, 2, 3, 4), (2, 3, 2, 3, 4), (2, 3, 4, 3, 4), (2, 3, 4, 5, 4), (2, 3, 6, 3, 4)}

Û (5)5(2, 4) =
√

3 − 1

2
(−

√
2 e3λi, (

√
3 − 1)1/2 e3λi, (

√
3 − 1)1/2 e−3λi,−

√
2 e−3λi,−

√
2)

Û (5)3(2, 4) =
(

2√
3

− 1

)1/2

(−
√

2 e3λi, (
√

3 − 1)1/2 e3λi,−(
√

3 − 1)1/2 e−λi,
√

2 e−λi, e−5λi)

(3.62)

(3, 3) basis: {(3, 2, 1, 2, 3), (3, 2, 3, 2, 3), (3, 2, 3, 4, 3), (3, 2, 3, 6, 3),

(3, 4, 3, 2, 3), (3, 4, 3, 4, 3), (3, 4, 3, 6, 3), (3, 6, 3, 2, 3), (3, 6, 3, 4, 3),

(3, 6, 3, 6, 3), (3, 4, 5, 4, 3)}

Û (5)5(3, 3)=
(√

3 − 1

2

)3/2

((
√

3 + 1)1/2,−1, i, (
√

3 + 1)1/2 e−3λi,−i, 1,−(
√

3 + 1)1/2 e−3λi,

(
√

3 + 1)1/2 e3λi,−(
√

3 + 1)1/2 e3λi, 0,−(
√

3 + 1)1/2)

Û
(5)3
1 (3, 3) = 1

2

(

1 − 1√
3

)1/2

((
√

3 + 1)1/2 e−2λi,−e−2λi, e−2λi, 0, e−2λi,−e−2λi, 0, 0, 0,

0, (
√

3 + 1)1/2 e−2λi)

Û
(5)3
2 (3, 3) = 3− 1

4

(√
3 − 1

2

)3/2

((
√

3 + 1)1/2 e−5λi,−e−5λi,−
√

3 eλi, (2(
√

3 + 1))1/2 e−λi,

√
3 eλi, e−5λi,−(2(

√
3 + 1))1/2 e−λi,−(2(

√
3 + 1))1/2 e3λi,

(2(
√

3 + 1))1/2 e3λi, 0,−(
√

3 + 1)1/2 e−5λi) (3.63)

or any other orthonormal basis spanned by Û (5)3
1 (3, 3) and Û (5)3

2 (3, 3);

(4, 2) basis: {(4, 3, 2, 1, 2), (4, 3, 2, 3, 2), (4, 3, 4, 3, 2), (4, 5, 4, 3, 2), (4, 3, 6, 3, 2)}

Û (5)5(4, 2) =
√

3 − 1

2
(−

√
2 e−3λi, (

√
3 − 1)1/2 e−3λi, (

√
3 − 1)1/2 e3λi,−

√
2 e3λi,−

√
2)

Û (5)3(4, 2) =
(

2√
3

− 1

)1/2

(
√

2 e−λi,−(
√

3 − 1)1/2 e−λi, (
√

3 − 1)1/2 e3λi,−
√

2 e3λi, e−5λi).

(3.64)
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The a-type seam weights, associated with the N̂a fusion projectors, are given by

W(1,a,1)

(
e ν d

b µ c

)

=
↘
b µ c

dνe

(1,a) = lim
u→i∞

exp
(−i (g+1)(s−1)

2 λ
)

s(u + ξ)ss−2
−1 (u + ξ) X(s−1)1(u + ξ)

↘
b Û (s)a

µ (b,c)
c

dÛ (s)a
ν (e,d)

†
e

(3.65)

where s is chosen so that the corresponding fused adjacency matrix contains N̂a (2.11). Note
that the choice of s to obtain a particular a-type seam is not unique. In the E6 case, for
example, we can obtain the N̂4 seam from n4 = N̂4 + N̂6 or from n6 = N̂2 + N̂4. Remarkably,
the weights for such cases agree up to a unitary similarity transformation and give the same
spectra for the transfer matrices.

As an example we give the a-type seam weights explicitly for E6:

N̂4 :
2 3

41 =
3 2

32 =
3 4

36 =
4 3

25 = 1 (3.66)

2 5

43 =
3 6

32 = e−2iλ

2 5

41 =
4 1

25 = e− 9
2 iλ (3.67)

3 2

36 = e−i λ2

3 4

34 = −ei λ2

3 6

36 = −e− 9
2 iλ

4 1

23 = −e− 3
2 iλ (3.68)

4 3

23 = −1 +
√

3

2
e3iλ

2 3

43 = 1 − √
3

2
e

5
2 iλ (3.69)

N̂6 :
1 6

32 =
3 2

32 =
3 4

56 =
4 3

65 = 1 (3.70)

3 4

32 = −e
9
2 iλ

3 4

34 = −e− 3
2 iλ

3 2

16 = −e
3
2 iλ

3 2

34 = i (3.71)

N̂5 :
1 5

42 =
5 1

24 =
3 3

66 = 1
3 3

42 =
4 2

33 = −i. (3.72)

Note that we can make the weights of the N̂5 and N̂6 seams real by changing the phase of the
fusion vectors. Consequently, the corresponding partition functions are ambichiral since the
transfer matrices contain only real entries and thus their eigenvalues must occur in complex
conjugate pairs. Note also that the weights of the N̂5 seam can be transformed to be either
1 or 0. Thus the N̂5 seam is seen to be identical to the automorphism seam (3.35) which
implements the Z2 involution on the E6 graph.

For D2� cases, the ordinary fusion projectors are decomposed according to

ns = N̂ s 1 � s � 2�− 2 and n2�−1 = N̂2�−1 + N̂2� (3.73)

and the a-type seams for N̂2�−1 and N̂2� can be obtained by the same process applied to E6.
In the D4 case, the N̂3 and N̂4 a-type seams,

N̂3:
2 2

31 = 1
2 2

14 =
3 4

22 = e2π i/3 (3.74)

N̂4:
2 2

41 = 1
2 2

13 =
4 3

22 = e2π i/3 (3.75)

are identical, up to the phase of the fusion vectors, to the Z3 automorphism seams and yield
ambichiral partition functions.
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3.6. Construction of a-type seams for type II theories

So far we have discussed only the a-type seam of type I graphs. On a type II graph G, the
seam cannot be associated with N̂a since these graph fusion matrices contain negative integers
which fail to give a meaningful description in terms of lattice paths. Instead, for a type II
graph, an a-type seam must be associated with a node a ∈ H in the parent type I graph rather
than with a node a ∈ G. For the A-D-E graphs, only D2�+1 and E7 are of type II. For D2�+1

we do not need a-type seams only the r- and s-type seams. So here we consider only the case
ofG = E7 with parent graphH = D10.

The s-type seams of E7 constructed via (3.32) are labelled by s ∈ A17. We decompose
these according to (3.73)

ns = n(E7D10)
s 1 � s � 8 and n9 = n

(E7D10)

9 + n(E7D10)

10 (3.76)

where the intertwiners
{
n(E7D10)
a

}

a∈D10
ofE7 relative toD10 (3.25) form a representation of the

D10 graph fusion algebra. Explicitly, we have

n9 =











1 0 1 0 0 0 1
0 2 0 2 0 0 0
1 0 3 0 2 0 1
0 2 0 4 0 2 0
0 0 2 0 2 0 2
0 0 0 2 0 0 0
1 0 1 0 2 0 1











=











0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 1 0 1 0 1
0 1 0 2 0 1 0
0 0 1 0 1 0 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0











+











1 0 0 0 0 0 1
0 1 0 1 0 0 0
0 0 2 0 1 0 0
0 1 0 2 0 1 0
0 0 1 0 1 0 1
0 0 0 1 0 0 0
1 0 0 0 1 0 1











= n
(E7D10)

9 + n(E7D10)

10 . (3.77)

The n(E7D10)
a fusion vectors for E7 can be obtained by unitary transformation. However,

as n9 is complicated, we need to introduce another unitary transformation formula before we
proceed. Since (3.45) is unitary, its inverse is also unitary. By the same argument, suppose that
Û (s)a
µ (e, d) is known for some given s, d, e. Then for any b, c ∈ G with N̂ab

c �= 0 satisfying

n2e
b �= 0 and nsb

c′n2c′
d = nsb

cδc′,c (3.78)

the N̂a fusion vector Û (s)a
µ (b, c) is given by the unitary transformation

Û (s)a
µ (e, d) 
→ Û (s)a

µ (b, c) : Û (s)a
µ (b, c) =

Û (s)a
µ (e,d)

�
�

�
��

�
�

�
��

��

��

X(s−1)1

(+i∞)

→.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

e

b

c

d

(3.79)

and can be expressed as

Û (s)a
µ (b, c) =

∑

γ

W(1,s,1)

(
b γ c

e µ d

)

U s
γ (b, c). (3.80)

Comparing (3.80) with (3.51) we note that it does not contain the crossing factor. Depending
on condition (3.48) or (3.78), the unknown N̂a fusion vectors can be obtained from known
ones by either (3.51) or (3.80).

Note, however, that for (b, c) = (3, 3) in n9, there does not exist (e, d) which satisfies
either (3.48) or (3.78). Thus, we need to extend the range of the transformation in order to
make it unitary

{Û (9)10(2, 2), Û (9)10(2, 4)} (3.47)
→ {
Û (9)10

1 (3, 3), Û (9)10
2 (3, 3)

}

(3.81)
{Û (9)9(2, 2), Û (9)9(2, 4)} (3.47)
→ {Û (9)9(3, 3),U(1, 3)}
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and the transformations to Û (9)a
µ (3, 3) for both a = 9, 10 must be in the nullspace ofU (1, 3).

Thus

Û (9)9(3, 3) =
√

ψ1ψ4

ψ3(ψ2+ψ4)

( )

Û (9)9(2,2)

√
ψ2ψ3

ψ2ψ1

�
�

�
��

�
�

�
��

��

��

X18

(−i∞)

→.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

2

3

2

3
−

Û (9)9(2,4)

√
ψ2ψ3

ψ4ψ1

�
�

�
��

�
�

�
��

��

��

X18

(−i∞)

→.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

2

3

4

3

(3.82)

where the scalar factors in (3.82) cancel the crossing factors in (3.51) when we take the inverse
ofU (1, 3) 
→ Û (9)9(2, 2) andU (1, 3) 
→ Û (9)9(2, 4) respectively.

There are 58 possible spin configurations for non-zero s-type seam weights W 1
(1,9,1). We

constructed all the a-type seams for n(E7D10)
9 and n(E7D10)

10 symbolically and confirmed that
(3.45) is satisfied for all possible spin configurations at the four corners of the seam weight
and for all possible bond variables. Note that, by the quantum symmetry, the partition functions
of x = (a, b) = (9, 1) and (3, 1) are complex conjugates. Thus, the spectra of the transfer
matrices of the respectiven(E7D10)

9 and n3 seams must be complex conjugates and this is verified
numerically.

4. Transfer matrices

Given the fusion hierarchy, we build commuting transfer matrices for different fusion levels
and boundary conditions: on the torus and on the cylinder, with or without seams.

4.1. Torus transfer matrices

The transfer matrix for the (p, q)-fused A-D-E lattice model with an (r, s, η)-seam, on a
toroidal square lattice is given, in the basis of the cyclic paths in N steps plus the seam,
with bond variables between adjacent spins, by the product of the corresponding Boltzmann
weights. The entries of the transfer matrix with an (r, s, η)-seam are given by

〈a,α|T pq(r,s,η)(u, ξ)|b,β〉 =
↘pq ↘ ↘ ↘ ↘

···
pq q q q

a1
α1

a2 aN
αN

aN+1
αN+1

aN+2
αN+2

aN+3 a1

b1
β1

b2 bN
βN

bN+1
βN+1

bN+2
βN+2

bN+3 b1

u u r(u,ξ) (1,s) η

=
∑

γ

N∏

i=1

Wpq




bi βi bi+1
γi γi+1 u
ai αi ai+1



W
q

(r,1)




bN βN bN+1
γN γN+1 u, ξ
aN αN aN+1





×Wq

(1,s)





bN+1 βN+1 bN+2

γN+1 γN+2

aN+1 αN+1 aN+2



W
q

(1,1,η)





bN+2 b1

γN+2 γ1

aN+2 a1



 (4.1)

where the sum is over all allowed vertical bond variables. The usual periodic boundary
condition is obtained for (r, s, η) = (1, 1, 1). The s-type seam can be replaced with a single
a-type seam or a pair of a and b seams. Recall that the a- and b-type seams are derived from
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the two braid limits u → ±i∞ respectively of the s-type seams and are related by complex
conjugation. Indeed the definition can be generalized to accommodate an arbitrary number
of seams. Because the seam faces, other than the automorphism seams, are modified bulk
faces they automatically satisfy the GYBE. They can therefore be moved around freely with
respect to each other and the bulk faces without affecting the spectrum of the transfer matrices.
However, in the D2� cases when there are several seams, their order in general cannot be
interchanged because the automorphism seams do not commute with the a-type seams.

4.2. Non-commutativity of seams

To understand the origin of non-commutativity of seams let us begin by consideringD4. The
graph D4 exhibits an S3 symmetry on the external nodes T = {1, 3, 4}. This permutation
group contains non-commuting two- and three-cycles,

S3 = {(); (1 3), (1 4), (3 4); (1 3 4), (1 4 3)} (4.2)

In the lattice model seams, these symmetries are realized by the Z2 and Z3 automorphism
seams (3.35) with η ∈ S3. Note however that the graph fusion matrix N̂3 implements the
permutation (1 3 4) and N̂4 implements the permutation (1 4 3). Accordingly, on the lattice
these automorphisms are implemented by the a-type seams with a = 3, 4. This means that
the fused seams need only be supplemented by the Z2 transposition σ = (3 4) to generate all
of S3. Moreover,D4 is the only graph with an automorphism group other than Z2, so we can
always restrict to automorphisms η = σκ−1 ∈ Z2, κ = 1, 2.

The fused seams, together with the bulk face weights, satisfy the generalized Yang–
Baxter equation and thus they commute with each other and can propagate through the bulk
face weights along the row [4]. Two transfer matrices differing by a propagation of fused
seams differ only by a similarity transformation. Thus the spectrum of the torus transfer
matrices with a given set of regular fused seams neither depends on the order of these seams
nor on their positions. On the other hand, the automorphism seams commute with the bulk
face weights and the r- and s-type fused seams but not, in general, with the a-type seams
related to N̂ fusions. This is manifest in the D4 case since the transposition (3 4) does not
commute with the three-cycles (1 3 4) and (1 4 3) implemented by N̂3 and N̂4.

Consider several such seams on the lattice. The non-commutativity of seams shows up
by the fact that we get different resultant seams when placing given seams in different order.
For instance, if σ = (3 4)

(1 4 3)(3 4)(1 3 4)(3 4)= (1 3 4) (1 4 3)(1 3 4)(3 4)(3 4)= () (4.3)

and accordingly the product of four (r, a, η) seams

W(1,4,1)W(1,1,σ )W(1,3,1)W(1,1,σ ) ∼ W(1,3,1) (4.4)

gives the same spectrum as the single seam W(1,3,1) whereas the combination of seams

W(1,4,1)W(1,3,1)W(1,1,σ )W(1,1,σ ) ∼ W(1,1,1) (4.5)

yields the modular invariant partition function. Note that W(1,3,1)W(1,1,σ ) ∼ W(1,1,σ )W(1,3,1)

gives the same spectra even though (1 3 4)(3 4) �= (3 4)(1 3 4) since the positions of the two
seams can be interchanged by propagating one of them full cycle around the periodic row.
Consequently, four or more seams are required to see the effects of non-commutativity in the
spectra.
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The same phenomenon is exhibited for the whole family D2� of type I models. The
a-type seams (1, 2� − 1, 1), (1, 2�, 1) related to N̂2�−1 and N̂2� do not commute with the
automorphism seam (1, 1, σ ) where σ = (2�−1, 2�) is the Z2 transposition, although their
sum does commute as indicated by the relation N̂2�−1σ = σN̂2�.

4.3. Integrable seams on the cylinder

Although twisted partition functions occur on the torus, it is striking to see that the Ocneanu
algebra still plays a role on the cylinder. Indeed, Petkova and Zuber [25] give the minimal
conformal partition functions on the cylinder with a seam (r, x) = (r, a, b, k) and boundary
conditions (r ′, a) and (r ′′, b) as

Z(r ′,a)|(r,x)|(r ′′,b)(q) =
∑

(r ′′′,s)

(

N
Ag−2

r ′′′ N
Ag−2
r

)

r ′
r ′′
(ns ñx)a

bχr ′′′,s(q). (4.6)

Another remarkable observation [7] is that the twisted partition functions on the torus can be
written as a bilinear combination of cylinder partition functions, summed over some boundary
conditions.

In fact, the Ocneanu graph labelling the seams gives a complete set of boundary conditions,
not only on the torus but also on the cylinder for the continuous conformal field theory as
well as for the integrable statistical mechanics model. In the latter context, a full set of
integrable boundary weights of type (r, a) for type I theories can be obtained by propagating
a seam of type (r, a) to the boundary and combining it with the simplest boundary condition
(r, a) = (1, 1) called the vacuum. Similarly, for type II theories, the seams (r, c) with c in
the parent graph H can be propagated to the boundary to produce an integrable boundary
condition by combining it with the vacuum. However, in this case, only |G| of the |H | values
for c produce linearly independent boundary conditions. This is in accord with the fact that
only |G| of the |H | intertwiners n(GH)

c of G relative to H are linearly independent

n(GH)
c =

∑

a∈G
ñca

1N̂ (G)
a . (4.7)

In other words, although G-type boundary conditions are applied on the edge of the cylinder,
only H-type seams propagate into the bulk. With this caveat, the algebra of defect lines (or
seams) can be applied on the cylinder also.

The vacuum boundary condition corresponds to (r, a) = (1, 1). The (1, a) boundary
weights, for two q-adjacent nodes of G, c and a (i.e. nq+1,a

c �= 0) are given by

B
q

(1,a)







a
γ

c
α
a







=
�

��

�
��
(1,a)

a

γ

c

α

a

= ψ
1/2
c

ψ
1/2
a

U q+1
γ (c, a)†U q+1

α (c, a) = ψ
1/2
c

ψ
1/2
a

δγα. (4.8)

In the type I case, it is obtained by the action of an a-seam on the vacuum boundary condition.
The full (r, a) boundary weights are then given by the action of an r-type seam on the (1, a)-
boundary weight. The double row seams are given by two regular r-seams sharing the same
extra spectral parameter ξ , placed one on top of the other, with the same spectral parameters
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as the bulk faces appearing in the double row transfer matrix (see (4.11),

B
q

(r,a)





d δ
γ

c u, ξ
α
b β



 =
�

��

�
��
(r,a)

(u,ξ)

aδ
d

γ

c

α

b
β a

=
↘q

↘q

�
��

�
��

. . . .

. . . .

r(µ−u−(q−1)λ,ξ)

r(u,ξ)

(1,a)

aδ
d

γ

c

α

b
β a

(4.9)

and the left boundary weights are simply equal to the right boundary weights after applying
crossing symmetry.

These boundary weights satisfy boundary analogues of the bulk local relations. The
generalized boundary Yang–Baxter equation or reflection equation is

�
��

�
�

�
�

u−v+
(q−p)λ↑qp �

�

�
�
(r,a)
(u,ξ)

�
��

�
�

µ−u−v
−(p−1)λ↑qp

�
��

�
��
(r,a)
(v,ξ)

. . . . . . . . . a

a

a

α
bb

β

c
γ

d

δ

e

ε

f
φ

= s
q p

1+q−p(u−v)sq p1−(p−1)(µ−u−v)
s
p q

1 (u−v)sp q1−(q−1)(µ−u−v)
�

��

�
��
(r,a)
(v,ξ)

�
�

�
��

µ−(q−1)λ−u−v
↑pq

�
�

�
�
(r,a)
(u,ξ)

�
�

�
��

�
�

u−v↑pq

. . . . . . . . .

a

a

a

α
b

β

c

γ
d

δ
e

ε

f f
φ

(4.10)

which is proved using the GYBE (3.16) and the Abelian property (3.3). We refer to [4, 24]
for the boundary crossing equation.

The double row transfer matrix is given by two rows similar to that appearing in the torus
transfer matrix, with spectral parameters u for the bottom one andµ−u− (q−1)λ for the top
one, where µ is a fixed parameter and q is the vertical fusion level. The boundary condition
is not cyclic but given by the boundary weights (4.9):

〈a,α|T pq(rL,aL)|(r,s,η)|(rR,aR)(u, ξL, ξ, ξR)|b,β〉

=

↘pq ↘ ↘ ↘ ↘pq q q q

···

↘pq ↘ ↘ ↘ ↘pq q q q

···

aL
αL

a1
α1

a2 aN
αN

aN+1
αN+1

aN+2
αN+2

aN+3 aN+4
αR
aR

aL
βL

b1
β1

b2 bN
βN

bN+1
βN+1

bN+2
βN+2

bN+3 bN+4
βR

aR

u u

(
µ−u
−(q−1)λ

)

(
µ−u
−(q−1)λ

)

r(u, ξ)

(r
µ−u

−(q−1)λ,ξ

)

(1, s) η

(1, s) η
�

�
��

�
�

��

(rL,aL)

(µ−u,ξL)

......... .........

......... .........

�
�

��

�
�

��

(rR,aR)

(u,ξR)

.

(4.11)

The GYBE (3.16) and other local relations imply that double row transfer matrices with the
same boundary conditions and boundary fields commute,

T
pq

(rL,aL)|(r,s,η)|(rR,aR)(u, ξL, ξ, ξR)T
pq ′
(rL,aL)|(r,s,η)|(rR,aR)(v, ξL, ξ, ξR)

= T
pq ′
(rL,aL)|(r,s,η)|(rR,aR)(v, ξL, ξ, ξR)T

pq

(rL,aL)|(r,s,η)|(rR,aR)(u, ξL, ξ, ξR). (4.12)
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5. Finite-size corrections and numerical spectra

5.1. Finite-size corrections and conformal spectra

A critical A-D-E lattice model with a spectral parameter in the range 0 < u < λ gives rise
to a conformal field theory in the continuum scaling limit, namely, an ŝ�(2) unitary minimal
model. The properties of the A-D-E lattice model connect to the data of this conformal field
theory through the finite-size corrections to the eigenvalues of the transfer matrices.

Consider a periodic row transfer matrix T (u, ξ) with a seam x of type (r, s, η) or (r, a, η)
and N faces excluding the seams. If we write the eigenvalues of this transfer matrix as

Tn(u) = e−En(u) n = 0, 1, 2, . . . (5.1)

then the finite-size corrections to the energies En take the form

En(u) = Nf (u) + fr(u, ξ) +
2π

N

((

− c

12
+�n + �̄n + kn + k̄n

)

sinϑ

+ i(�n − �̄n + kn − k̄n) cosϑ

)

+ o

(
1

N

)

(5.2)

where f (u) is the bulk free energy, fr(u, ξ) is the boundary free energy (independent of
s, a and η), c is the central charge, �n and �̄n are the conformal weights, kn, k̄n ∈ N label
descendent levels and the anisotropy angle ϑ is given by

ϑ = gu (5.3)

where g is the Coxeter number.
On a finite M × N periodic lattice, the partition function can be written as

ZM,Nx = exp(−MNf (u)−Mfr(u, ξ))Zx(q)

= Tr T (u, ξ)M =
∑

n

Tn(u)
M =

∑

n�0

exp(−MEn(u)) (5.4)

where Zx(q) is the conformal partition function and q = e2π iτ is the modular parameter with
τ = M

N
ei(π−ϑ). Removing the bulk and boundary contributions to the partition function on a

torus leads to the twisted partition functions Zx(q) [7] described in sections 2.3 and 2.4.

5.2. Bulk and seam free energies

In [26], we showed that the row transfer matrix with an (r, s, η)-seam satisfies the inversion
identity hierarchy

T 1
0T

1
1 = sr−1

−1 s
r−1
1 f 1

−1f
1

1 I + sr−1
0 f 1

0 T
2
0 (5.5)

where T q

k = T
q
r,s (u + kλ) are vertically q-fused transfer matrices,

f pq = [
spq (u)

]N
spq =

{
1 r = 1,

s
p
q (u + ξ) r � 2.

(5.6)

In the thermodynamic limit, the second term in (5.5) vanishes and the resulting formula is
called an inversion relation. This equation can be solved, using the structure of zeros and
poles, first at order N and then at order 1 to find the bulk and seam free energies as we explain
in this section.
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We calculate the bulk and seam free energies, f (u) and fr(u, ξ), or equivalently the
partition function per face κ(u) = e−f (u) and partition function per length κr(u, ξ) = e−fr (u,ξ),
respectively. Two A-D-E models sharing the same Coxeter number are related by intertwiners
so their bulk and seam free energies are the same. Thus we only need to find the free energies
for the AL or ABF models [17].

The bulk free energy f (u) = −log κ(u) for the ABF models was computed by Baxter,

κ(u) = exp
∫ +∞

−∞

cosh(π − 2λ)t sinh ut sinh(λ− u)t

t sinhπt coshλt
dt . (5.7)

This integral has a closed form when L is even,

κ(u) = sin(u + λ)

sinλ

L−2
2∏

k=1

sin(u + (2k + 1)λ)

sin(u + 2kλ)
. (5.8)

The partition function per face of the AL model satisfies the crossing symmetry

κ(u) = κ(λ− u) (5.9)

and the inversion relation

κ(u)κ(u + λ) = sin(u + λ) sin(u− λ)

sin2 λ
. (5.10)

This solution is the unique solution of the inversion relation, crossing symmetry and height
reversal symmetry which is analytic and non-zero in the analyticity strip Re u ∈ (0, λ).

Likewise, the seam inversion relation for the order 1 term gives

κr(u) κr(u + λ) = sin(u + ξ + λ) sin(u + ξ − (r − 1)λ)

sin2 λ
. (5.11)

The range of validity for the parameter ξ is

−λ− π

2
< Re (u + ξ) < −λ

2
. (5.12)

Let q be the RHS of (5.11). It is Analytic and Non-Zero in the strip Re u ∈ (0, λ);
furthermore the derivative q ′ approaches a Constant when Im u → ±∞ (ANZC). Hence we
can introduce the Fourier transforms of the logarithmic derivatives,

F(k) := 1

2π i

∫

0<Re u<λ
f

′
r (u) e−ku du (5.13)

d

du
fr(u) =

∫ +∞

−∞
F(k) eku dk (5.14)

so that (5.11) becomes

F(k)(1 + ekλ) = 1

2iπ

∫

0<Re (u)<λ

q
′
(u)

q(u)
e−ku du. (5.15)

The solution by inverse Fourier transforms gives

d

du
fr(u) = 1

2iλ

∫

0<Rew<λ
dw

(
d

du
log q(u− w)

)
1

sin (L + 1)w
. (5.16)

Integrating with respect to u and taking thew integration along the vertical line Rew = ε > 0
we obtain in the limit ε → 0

fr(u) = log q(u)

2
+

1

λ

∫ ∞

−∞

log q(u− iw)

sinh (L + 1)w
dw. (5.17)
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This integral formula admits a closed form under certain conditions,

κr(u) =






(u + ξ)

tan L+1
2 (u + ξ)

r−1
2∏

k=1

(u + ξ − 2kλ)

(u + ξ − (2k − 1)λ)
r odd

(u + ξ + λ)

tan L+1
2 (u + ξ + λ)

L−r
2∏

k=1

(u + ξ + (2k + 1)λ)

(u + ξ + 2kλ)
L + r even.

(5.18)

The tangent parts are solutions of the homogeneous functional equation and fix up the zeros
and poles of the sine parts which are solutions of the functional equation (5.11) but have an
unwanted zero in the analyticity strip.

The seam free energies for s-type seams are given by the braid limit of the r-type seams
and are constants. The seam free energies of the a-type seams are the same as the s-type seam
from which they originate. We remove these seam free energies by the normalization of the
transfer matrices. Lastly, the seam free energy of an η-seam is zero.

5.3. Numerical determination of conformal spectra

The twisted conformal partition functions are obtained numerically from finite-size spectra.
Since integrable lattice realizations of the s�(2)A-D-E Wess–Zumino–Witten conformal field
theories are not known, we can only obtain numerically the twisted partition functions of the
unitary minimal A-D-E models labelled by a pair of graphs (A,G). We use Mathematica
[27] to construct and diagonalize numerically the finite-size transfer matrices T (u, ξ) with
specified seams for different numbers of faces N. For simplicity, we restrict ourselves to the
isotropic conformal point given by u = λ

2 and ξ = −3λ/2. For the first ten or so eigenvalues,
we extrapolate the conformal corrections to N = ∞ using a combination of polynomial fits
in the inverse number of faces and van den Broeck–Schwartz [28] sequence extrapolation.
The resulting sequences give approximations to the rational exponents that appear in the
q-expansion of the twisted partition functions in increasing powers of the modular parameter q.

In subsequent subsections, we analyse the numerical data for theD4,D5,D6 cases of the
A-D-E lattice models. The AL cases for L = 3, 4, 5, 6, 7, 9 were reported in [13]. All the
numerical results confirm the quantum symmetries and twisted partition functions stated in
sections 2.3 and 2.4. Given the coincidence of the construction labels of our integrable seams
and the conformal labels of Petkova and Zuber, we expect that our list of integrable seams
will also exhaust the twisted conformal boundary conditions for the exceptional E6, E7 and
E8 cases. These cases, however, are too large to convincingly confirm numerically.

Consideration of a seam of type (r, a) gives access only to a chiral half of the Ocneanu
graph. In general, to obtain the complete Ocneanu graph,one needs to consider the composition
of two seams (r, a, η) and (r ′, b, η′). Since the A-D-E models are labelled by pairs (A,G),
with the first member always for type-A, it is sufficient to take r ′ = r . Also, as we have seen,
we can restrict the automorphisms to a Z2 subgroup of the full automorphism group given by
η = σκ−1. Indeed, the only graph G with an automorphism group larger than Z2 isD4 and, in
this case, the three-cycles of S3 are reproduced within the N̂ graph fusions. We conclude that
it suffices to consider integrable seams of the form x = (r, a, b, σ κ−1).
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For simplicity, we take the absolute values of the eigenvalues which is equivalent to taking
the modular parameter q real,

∣
∣T (N)n

∣
∣ = exp

(

−Nf − fr +
2π

N

c

12

)

exp

(

−2π

N
xn + o

(
1

N

))

. (5.19)

We thus numerically estimate the conformal dimensions or exponents

xn = � + �̄ + kn + k̄n (5.20)

and ignore the spins sn = �− �̄ + kn − k̄n. Since we are at the isotropic point the geometric
factor sinϑ = 1. To obtain the bulk free energy, we extrapolate the sequence − 1

N
log

∣
∣T (N)n

∣
∣.

The seam free energy is obtained, in a similar way, after removing the bulk contribution in
(5.19). An s- or a-type seam contributes a constant to the seam free energy which is removed
by our choice of normalization. The extrapolated numerical values for the bulk and seam free
energies agree with the analytic results (5.7) and (5.17) within an accuracy of ±0.3%.

To estimate the exponents xn, we extrapolate the sequences

x(N)n = − N

2π

(

log
∣
∣T (N)n

∣
∣ +Nf + fr − 2π

N

c

12

)

(5.21)

and compare values and degeneracies with q-series of the twisted partition functions
Zx(q) [7].

The accuracy of our numerical results is restricted by the data for different system sizes
N which, in turn, are limited by available computer memory. A typical maximum size matrix
that we can construct and diagonalize is around 4500 × 4500. The dimension of a transfer
matrix with N faces and an (r, a) seam is Tr

(
nN2 nrN̂a

)
. This grows rapidly as the number

of nodes in G increases and grows exponentially with N. In practice, this means that we
are typically restricted to |G| � 6 and to system sizes N � 12. Furthermore, because of
parity constraints, we are restricted to either odd or even system sizes N so we are typically
extrapolating sequences of length six. Nevertheless, because of the quantized values of the
conformal weights, the integer spacing of conformal towers and recognizable degeneracies of
the characters, we are able to identify the various twisted partition functions with considerable
confidence.

5.4. Numerical spectra of (A4,D4)

The (A4,D4) lattice model corresponds to the critical 3-state Potts model and is special in that
the D4 graph admits an S3 automorphism group. However, we only need seams of the form
(r, a, κ) ≡ (r, a, σ κ−1) with κ = 1, 2 and σ = (3 4) the Z2 transposition represented by

σ =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







(5.22)

To illustrate our numerical procedure consider the twisted partition function Z(1,2,1)(q)
with seam (r, a, κ) = (1, 2, 1). The q-series at the isotropic conformal point with real q is

Z(1,2,1)(q) = χ̂1,2(χ̂1,1 + 2χ̂1,3) + χ̂3,2(χ̂3,1 + 2χ̂3,3)

= (χ1,2 + χ1,4)(χ1,1 + χ1,5 + 2χ1,3) + (χ3,2 + χ3,4)(χ3,1 + χ3,5 + 2χ3,3)

= q−1/15(2q11/120 + q1/8 + q17/40 + 2q71/120 + 2q19/24

+ q37/40 + 4q131/120 + o(q131/120)) (5.23)
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Figure 12. Energy levels of the minimal (A4,D4) model with (1, 2, 1) seam. The numerical
values of x(N)n are plotted against 1/N . The polynomial fits intersect the y-axis at the extrapolated
values xn. Note that eigenvalues can cross for small values of N.

so that the exponents, counting degeneracies, are given by the sequence

{xn} =
{

11
120 ,

11
120 ,

1
8 ,

17
40 ,

71
120 ,

71
120 ,

19
24 ,

19
24 ,

37
40 ,

131
120 ,

131
120 , . . .

}

. (5.24)

A plot of our numerical data is shown in figure 12. Note that some eigenvalues cross so that it
is not possible to simply order the eigenvalues according to their magnitudes at a given value
of N and this complicates the extrapolation procedure. Although we have not systematically
done so, it is possible to remove this ambiguity in the identification of each eigenvalue at
a given N by examining the patterns of the zeros of the eigenvalue T (N)n (u) in the complex
u-plane as explained in [29]. The theoretical data (5.24) are to be compared with our numerical
values of {xn} for the (1, 2, 1) seam shown in table 1. The agreement over the first ten levels
is certainly good enough to unequivocally identify the (1, 2, 1) integrable seam as giving rise
to the (1, 2, 1) twisted partition function.

Typical numerical data for other two seams are also shown in table 1. In this way, we
can identify all of the integrable seams with the corresponding twisted boundary conditions in
figure 11 given by Petkova and Zuber [7]. In particular, we confirm that our integrable seams
give a realization of the complete set of conformal twisted boundary conditions for the 3-state
Potts model.

5.5. Numerical spectra of (A6,D5)

The numerical spectra of the minimal (A6,D5) model can be obtained similarly as of the
(A4,D4) model. The graph D5, however, is a type II graph with parent graph A7. The
integrable seams are thus labelled by (r, s) ∈ (A6, A7) where the s-type fusion seams are
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Table 1. .Numerical exponents xn for the (A4,D4)minimal model with seams of type (r, a, κ) =
(1, 2, 1), (1, 3, 1) and (3, 1, 2).

(1, 2, 1)
n 0 1 2 3 4 5 6 7 8 9
Exact 11

120
11

120
1
8

17
40

71
120

71
120

19
24

19
24

37
40

131
120

Num. 0.0915 0.0915 0.1250 0.4258 0.5934 0.5934 0.7969 0.7969 0.9215 1.0421
|diff.| 10−4 10−4 3 × 10−5 8 × 10−4 0.0018 0.0018 0.0053 0.0053 0.0035 0.0496

(1, 3, 1)
Exact 2

15
7

15
7

15
2
3

2
3

17
15

17
15

4
3

22
15

22
15

Num. 0.1335 0.4658 0.4658 0.6681 0.6681 1.1640 1.1640 1.3364 1.4445 1.4445
|diff.| 10−4 8 × 10−4 8 × 10−4 0.0014 0.0014 0.0306 0.0306 0.0030 0.0222 0.0222

(3, 1, 2)

Exact 1
20

3
20

3
20

11
20

11
20

13
20

13
20

21
20

21
20

21
20

Num. 0.0492 0.1501 0.1501 0.5479 0.5479 0.6503 0.6503 1.0577 1.0577 1.0629
|diff.| 8 × 10−4 10−4 10−4 0.0021 0.0021 3 × 10−4 3 × 10−4 0.0077 0.0077 0.0129

Table 2. Numerical exponents xn of the (A6,D5) minimal model with seams of type (r, a, κ) =
(1, 2, 1), (3, 3, 1) and (1, 1, 2).

(1, 2, 1)
n 0 1 2 3 4 5 6 7 8 9

Exact 23
224

23
224

27
224

5
32

83
224

107
224

135
224

135
224

167
224

167
224

Num. 0.102 0.102 0.1201 0.1562 0.3728 0.481 0.6074 0.6074 0.7527 0.7527
|diff.| 7 × 10−4 7 × 10−4 5 × 10−4 5 × 10−5 0.0023 0.0033 0.0047 0.0047 0.0071 0.00714

(3, 3, 1)

Exact 1
28

1
28

1
14

9
112

9
112

15
112

1
7

1
7

3
14

25
112

Num. 0.036 0.036 0.0722 0.0813 0.0813 0.1354 0.1459 0.1459 0.215 0.2275
|diff.| 2 × 10−4 2 × 10−4 7 × 10−4 9 × 10−4 9 × 10−4 0.0015 0.0031 0.0031 0.0007 0.0043

(1, 1, 2)

Exact 3
112

15
112

5
16

4
7

4
7

99
112

115
112

115
112

127
112

127
112

Num. 0.027 0.1347 0.3126 0.569 0.569 0.8785 1.0310 1.0310 1.1673 1.1673
|diff.| 2 × 10−4 8 × 10−4 1 × 10−4 0.0026 0.0026 0.0054 0.0042 0.0042 0.033 0.033

subject to the fused adjacency matrices ns of D5. Note that, although n2 = n6, the eigenvalue
spectra associated with these seams off the isotropic point are complex conjugates of each
other in agreement with the quantum symmetry of the Oceneau graph. Also, note that n7 and
the corresponding seam (1, 7, 1) = (1, 1, 2) implement the Z2 involution. Thus, the labels
(r, s) suffice to label all the distinct nodes on the Oceneau graph for D5. In fact, this is a
general feature for D2�+1 for which the Z2 involution is implemented by n4�−1. Our data for
seams of type (r, a, κ) = (1, 2, 1), (3, 3, 1) and (1, 1, 2) are shown in table 2.

5.6. Numerical spectra of (A8,D6)

For D6 we have fewer data points than for D4 so the precision of the extrapolated values of
the exponents is not as good. Nevertheless, the characteristic degeneracies of the exponents
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Table 3. Numerical exponents xn of the (A8,D6) minimal model with seams of type (r, a, κ) =
(1, 5, 1), (8, 2, 1) and (3, 5, 2).

(1, 5, 1)
n 0 1 2 3 4 5 6 7 8 9
Exact 2

45
2

15
4
15

8
15

8
15

29
45

29
45

14
15

47
45

47
45

Num. 0.0447 0.1345 0.2688 0.5267 0.5267 0.6438 0.6438 0.9625 1.0256 1.0256
|diff.| 2 × 10−4 0.0011 0.0021 0.0066 0.0066 7 × 10−4 7 × 10−4 0.0292 0.0188 0.0188

(8, 2, 1)

Exact 13
120

13
120

43
360

17
120

7
40

41
120

151
360

61
120

73
120

73
120

Num. 0.1081 0.1081 0.1193 0.1408 0.1749 0.3461 0.4214 0.5061 0.6252 0.6252
|diff.| 2 × 10−4 2 × 10−4 1 × 10−4 8 × 10−4 8 × 10−4 0.0044 0.0019 0.0022 0.0169 0.0169

(3, 5, 2)

Exact 1
20

1
20

1
12

5
36

5
36

7
36

49
180

49
180

79
180

79
180

Num. 0.0503 0.0503 0.0854 0.1433 0.1433 0.1941 0.2741 0.2741 0.4276 0.4276
|diff.| 3 × 10−4 3 × 10−4 0.0020 0.0044 0.0044 0.0004 0.0018 0.0018 -0.0112 0.0112

in the twisted partition functions are faithfully reproduced. Our data for seams of type
(r, a, κ) = (1, 5, 1), (8, 2, 1) and (3, 5, 2) are shown in table 3.

As dictated by symmetry we observe generally, for (A4�−4,D2�), that the a-type seams
(1, 2�− 1, 1) and (1, 2�, 1) give the same spectra for the transfer matrices. This is in accord
with the symmetry of the graph fusion matrices. Indeed, if σ implements the Z2 transposition
for (A4�−4,D2�) then

σN̂2�−1 = N̂2�σ (5.26)

so that N̂2�−1 is similar to N̂2� under interchange of the nodes 2�− 1 and 2�.

6. Discussion

In this paper, we have constructed integrable seams for each twisted conformal boundary
condition x = (r, a, b, κ) of the A-D-E s�(2) minimal models. Our construction labels are
identical to the conformal labels of Petkova and Zuber. For E7, we have not succeeded in
constructing single integrable seams for the special seams denoted by (r,X), even though we
have constructed integrable seams of type (r, 6, 2, 1) and (r, 4, 2, 1) which suffice to give the
partition functions, so these seams remain somewhat mysterious.

The construction of our integrable seams involves a new type of fusion, related to the graph
fusion matrices N̂a and labelled by the nodes a of the graph G, rather than the usual Young
tableaux. We find that the left- and right-chiral halves of the Ocneanu fusion algebra are related
to the braid limits u → ±i∞ of the seam weights. The quantum symmetries and twisted
conformal partition functions have been verified numerically for theAL,L = 3, 4, 5, 6, 7, 8, 9
andDL,L = 4, 5, 6 cases. In general, the numerics reproduce the first ten exponents to about
a 1 or 2% accuracy. Together with the agreement of the exact degeneracies, the numerics give
strong evidence of the identification of our seams with the corresponding twisted conformal
boundary conditions. The origin of non-commutativity in the Ocneanu graph fusion algebra
is traced to the existence of graph automorphisms that do not commute with the fusions.
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Lastly, we point out that the parameter ξ appearing in the integrable seams is an arbitrary
complex parameter. We have fixed its value to ensure conformal boundary conditions in the
continuum scaling limit. By choosing it to have an imaginary part that scales appropriately
with N (the number of columns in the transfer matrix), it is possible [30] to perturb the
boundary away from the conformal fixed point. This will induce renormalization group flows
between the fixed points representing the various twisted conformal boundary conditions.
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