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Integrable Boundaries and Universal
TBA Functional Equations

C. H. Otto Chui, Christian Mercat and Paul A. Pearce

ABSTRACT We derive the fusion hierarchy of functional equations for critical A-D-E
lattice models related to the s�(2) unitary minimal models, the parafermionic models and
the supersymmetric models of conformal field theory and deduce the relatedTBA functional
equations. The derivation uses fusion projectors and applies in the presence of all known
integrable boundary conditions on the torus and cylinder. The resulting TBA functional
equations are universal in the sense that they depend only on the Coxeter number of the
A-D-E graph and are independent of the particular integrable boundary conditions. We
conjecture generally that TBA functional equations are universal for all integrable lattice
models associated with rational CFTs and their integrable perturbations.

1 Introduction

Like all good scientists, Barry McCoy has long since appreciated the power and the
beauty of universality in physics and its implications in mathematics. This is evident
starting with his work on the Ising model [1] and continues through to his introduction
of Universal Chiral Partition Functions [2, 3]. In this article we follow McCoy’s lead
and study the universality of TBA functional equations.

Ever since Baxter solved [4] the eight-vertex model, commuting transfer matrix func-
tional equations [6–11] have been at the heart of the exact solution of two-dimensional
lattice models on a periodic lattice by Yang–Baxter methods [5]. For theories such as
the A-D-E models considered here, these equations provide the key to obtaining free
energies, correlation lengths and finite-size corrections. At criticality, the finite-size
corrections are related to the central charges and scaling dimensions of the associated
conformal field theory (CFT). Off-criticality, these corrections yield the scaling energies
of the associated (perturbed) integrable quantum field theory (QFT). The fundamental
form of the functional equations involves fusion of the Boltzmann weights on the lattice
and reflect the fusion rules of the associated CFT. However, in order to solve for finite-
size corrections these functional equations need to be recast in the form of a Y -system
or TBA functional equations [11–13]. Miraculously, it is then possible to solve [11] for
the central charges and scaling dimensions using some special tricks and dilogarithm
identities [14].



392 C.H.O. Chui, C. Mercat and P.A. Pearce

More recently, it has been realized [15, 16] that the Yang–Baxter methods and func-
tional equations can be extended to systems in the presence of integrable boundaries
on the cylinder by working with double row transfer matrices. It is then possible to
calculate surface free energies and interfacial tensions [17] as well as finite-size correc-
tions and conformal partition functions [18]. The critical A-D-E models correspond,
for different choices of regimes and/or fusion level, to unitary minimal models [19],
parafermion theories [20] and superconformal theories [21]. These theories include the
critical Ising, tricritical Ising and critical 3-state Potts models. For these theories, an
integrable boundary condition on the cylinder can be constructed for each allowed con-
formal boundary condition [22]. It is also possible to construct [23] integrable seams for
each conformal twisted boundary condition [24] on the torus. In all such cases it should
be possible to obtain the universal conformal properties in the continuum scaling limit
by solving suitable functional equations.

In this paper we derive general fusion and TBA functional equations for the critical
A-D-E lattice models. Although the fusion hierarchy of functional equations is not
universal, we show in this paper that the Y -system or TBA functional equations for the
A-D-E models are universal in the sense that they depend on the A-D-E graph only
through its Coxeter number, and more importantly, they are independent of the choice
of integrable boundary conditions.

The universality of the TBA equations has important consequences. It asserts that
the functional equations are the same for all twisted boundaries on the torus and open
boundaries on the cylinder. Therefore the same functional equations must be solved in
all cases! So no new miracles, beyond the periodic case, are required to solve these
equations in the presence of conformal boundaries. Instead, the different solutions re-
quired among the infinite number of possible solutions to the TBA functional equations
are selected by appropriate analyticity requirements. These analyticity properties allow
for the derivation of nonlinear integral equations (NLIE) that can be solved for the com-
plete spectra of the transfer matrices and the universal conformal data encoded in the
finite-size corrections. Of course the analyticity properties are not universal. However,
one strength of the lattice approach is that the analyticity determined by the structure
of zeros and poles of the eigenvalues of the transfer matrices can be probed directly by
numerical calculations on finite-size lattices. In this way it is possible to build up case
by case a complete picture of the required analyticity properties.

The layout of the paper is as follows. We first recall some results about fused A-
D-E models in Sections 1.1–1.3. In Section 2, we define the transfer matrix for the
different boundary conditions, on the torus and on the cylinder, with and without seams.
In Section 3, we state the main result of the paper, that is the TBA equation, the boundary
specific functional equations and their universal form. In Section 4, we derive the TBA
and related functional equations. We first study the general idea which is based on local
properties in 4.1 and we then apply it to the torus in 4.2 and the cylinder in 4.3. We
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conclude with a discussion in Section 5.
The methods developed in this paper should extend to the general s�(2) coset mod-

els. However, we focus our attention on the unitary minimal, superconformal and
parafermionic series, corresponding to fusion levels p = 1, 2 and negative regime re-
spectively, because only in these cases is our knowledge of the integrable and conformal
boundary conditions complete.

Our results can also be extended, using the methods of [16], to the A and D lattice
models off-criticality yielding precisely the same TBA functional equations. In these
cases the lattice models admit elliptic solutions to the Yang–Baxter equation where the
elliptic nome plays the role of the deviation from critical temperature.Although the TBA
functional equations are traditionally associated with the thermodynamics of quantum
spin chains at finite temperature T , they are derived here from a two-dimensional lattice
approach. It is of course well known that the relevant quantum spin chains can be
obtained as a logarithmic derivative of the transfer matrices with respect to the spectral
parameter. In fact, the two approaches based on spin chains and two-dimensional lattice
models are entirely equivalent [8, 25]. Most importantly, the TBA equations originally
conjectured by Zamolodchikov [12] can be derived [13] within the lattice approach
yielding the precise relation between the temperature T and the elliptic nome of the
lattice model. The critical case that we focus on here just corresponds to T = 0 and
vanishing elliptic nome.

It is worthwhile to mention possible applications of the TBA functional equations.
Given prescribed conformal boundary conditions, the TBA functional equations can
of course be used to derive nonlinear integral equations (NLIE) which in principle
can be solved for the known conformal partition functions. Of more interest, however,
is to include in the NLIE the effect of a boundary field ξ to perturb away from the
conformal boundary. This induces an integrable boundary flow and allows for the study
of integrable boundary flows between distinct conformal boundary conditions [26]. In
the off-critical case for the A and D models, a similar analysis [27] allows for the
study in the presence of boundaries of thermal renormalization group flows connecting
different coset models.

1.1 Face weights

A lattice model in the A-D-E series is associated with a graph G, of A, D or E type.
The spins are nodes of the graph G and neighbouring sites on the lattice must be
neighbouring nodes of the graph. The probability distribution of spins is defined by the
critical (unfused) Boltzmann weight of each face (or plaquette) of spins, depending on
a spectral parameter u:

W 11
(
d c

a b

∣∣∣∣ u) = u
↘

a b

cd

= s(λ− u)δac + s(u)

√
ψaψc

ψbψd
δbd (1.1)
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where g is the Coxeter number ofG, λ = π
g

, s(u) = sin(u)
sin(λ) andψa is the entry, associated

with the node a, of the Perron–Frobenius eigenvector of the adjacency matrix G.
These Boltzmann weights are represented by a local face operator Xj(u) in the

Temperley–Lieb algebra T (N, λ) [19]:

Xj(u) = ��

����

��u
→
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j−1 j j+1

= s(λ− u)I + s(u)ej (1.2)

where ej = Xj(λ) is a Temperley–Lieb generator and j = 1, . . . , N labels the position
in the lattice.

1.2 Fusion projector

In turn, this model gives rise to a hierarchy of fused models whose Boltzmann weights
we are going to describe.

We first define recursively the fusion operators P rj , for r ∈ 〈1, g〉 as follows:

P 1
j = P 2

j = I,

P rj = 1
Sr−1

P r−1
j+1 Xj(−(r−2)λ) P r−1

j+1 , r ≥ 3 ,
(1.3)

where Sk = s(kλ) and j is suitably restricted [19]. Thus, P rj can be expressed as a
function of ej , ej+1, . . . , ej+(r−3). In particular,

P 3
j = 1

S2
��

����

��−λ
→

= I − 1

S2
��

����

��+λ
→

. (1.4)

We shall represent the fusion operators diagrammatically as

P rj = ��
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. (1.5)

It is easy to show that this operator is in fact a projector. Moreover,

P r
′
j ′ P rj = P rj P

r ′
j ′ = P rj for 0 ≤ j ′ − j ≤ r − r ′. (1.6)
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This implies that any operator expressible as a product of local face operators and falling
within the boundaries of a projector, acts as a scalar on it:

Xj ′(u)P rj = P rj Xj ′(u) = s(λ− u)P rj for 0 ≤ j ′ − j ≤ r − 2. (1.7)
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A particularly important case is for u = +λ: its local face operator is a projector
orthogonal to all the P rj .

As P rj is clearly translationally covariant (in its domain of definition) we can decom-
pose it onto the spaces of paths with given end points: P r(a, b) is the fusion projector
acting on paths from a to b in r−1 steps. Its rank is given by the fused adjacency matrix
entries:

Rank
(
P r(a, b)

) = F ra b (1.8)

also called basic intertwiners and recursively defined by the ŝ�2 fusion rules:

F 1 = I, F 2 = G, F r = F r−1F 2 − F r−2, for r = 3, . . . , g. (1.9)

This equation can be recast as

(F̃ r )2 = (I + F̃ r−1)(I + F̃ r+1) (1.10)

where
F̃ r = F r−1 F r+1 . (1.11)

The +1 eigenvectors ofP r(a, b) are thus indexed by an integer γ ∈ 〈1, F ra b〉 referred
to as the bond variable. We denote them by U r

γ (a, b) and call them fusion vectors.

1.3 Fused face operators

These projectors allow us to define the (p, q)-fused face operator defined as the product
of q rows of p local face operators with a shift of the spectral parameter by ±λ from
one face to the next:
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The position of the projectors and spectral parameters can be altered by pushing-through:

X
pq
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(1.13)
These properties imply several others, namely the Transposition Symmetry,

X
pq
j (u)

T = X
qp
j (u+ (q−p)λ), (1.14)

the Generalized Yang–Baxter Equation (GYBE),
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the Inversion Relation,

X
pq
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

= s
p q
1 (u) s

p q
1 (−u) P q+1

j P
p+1
j+q , (1.16)

where sp qi (u) = ∏p−1
j=0

∏q−1
k=0 s(u+ (i−j+k)λ), and the Abelian Property,

X
pq
j (u+ (p−1)λ)Xqpj (v + (q−1)λ) = X

pq
j (v + (p−1)λ)Xqpj (u+ (q−1)λ) .

(1.17)
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These operators, contracted against the fusion vectors, yield the (p, q)-fused Boltz-
mann weights. They depend not only on the spins on the four corners but also on bond
variables on the edges:

Wpq

 d γ c

δ β

a α b

∣∣∣∣∣∣ u
 = u

↘pq
a α

b

β

cγd

δ = 1

s
p q−1
0 (u)

Xpq(u)

↘
a Up−1

α (a,b)
b

U q−1
β (a,b)

†

cUp−1
γ (d,c)

†
d

U q−1
δ (a,b)

(1.18)

where the normalization function sp q−1
0 (u) eliminates some scalar factors common to

all the spin configurations which appear in the process of fusion. In the AL case, the
bond variables are trivial, that is, α, β, γ, δ = 1.

The fused Boltzmann weights satisfy a Diagonal Reflection

Wpq

 d γ c

δ β

a α b

∣∣∣∣∣∣ u
 = s

q p−1
q−p (u)

s
p q−1
0 (u)

Wqp

 d δ a

γ α

c β b

∣∣∣∣∣∣ u+ (q−p)λ
 , (1.19)

and Crossing Symmetry:

Wpq

 d γ c

δ β

a α b

∣∣∣∣∣∣ u
 =

√
ψaψc

ψbψd

s
q p−1
0 (λ−u)
s
p q−1
0 (u)

Wqp

 a δ d

α γ

b β c

∣∣∣∣∣∣ λ−u
 .
(1.20)

2 Transfer Matrix

Given the hierarchy of fused Boltzmann weights, we build transfer matrices for different
fusion levels and boundary conditions: on the torus, and on the cylinder, with or without
seams.

2.1 Seams

Simple seams are modified faces. They come in three different types, r , s and ζ -type.
A label (r, s, ζ ) ∈ Ag−2 ×Ag−1 ×�, where � is the symmetry algebra of the graphG,
encodes a triple seam involving three modified faces. The symmetry ζ is taken as the
identity when omitted.

We first define Wq

(r,1), the r-type seam for the (p, q)-fused model. It is a usual (r −
1, q)-fused face (it does not depend on the horizontal fusion level p) with a boundary
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field ξ acting as a shift in the spectral parameter, and another choice for the removal of
the common scalar factors:

W
q

(r,1)

 d γ c

δ β

a α b

∣∣∣∣∣∣ u, ξ
 =

↘q
a α

b

β

cγd

δ r(u,ξ) = s
r−1 q−1
0 (u+ ξ)

s
r−2 q
−1 (u+ ξ)

W(r−1) q

 d γ c

δ β

a α b

∣∣∣∣∣∣ u+ ξ

.

(2.1)
An s-type seam is the normalized braid limit of an r-type seam, it does not depend

on any spectral parameter:

W
q

(1,s)

 d γ c

δ β

a α b

 =
↘q
a α

b

β

cγd

δ (1,s) = lim
ξ→i∞

e−i
(g+1)(s−1)q

2 λ

s
1q
0 (u+ ξ)

W
q

(s,1)

 d γ c

δ β

a α b

∣∣∣∣∣∣ u, ξ
.

(2.2)
The automorphisms ζ ∈ � of the adjacency matrix, satisfying Ga,b = Gζ(a),ζ(b),

leave the face weights invariant

Wpq

 d γ c

δ β

a α b

∣∣∣∣∣∣ u
 =

↘pq
a α

b

β

cγd

δ u =
↘pq

ζ(a)
α

ζ(b)

β

ζ(c)
γ

ζ(d)

δ u = Wpq

 ζ(d) γ ζ(c)

δ β

ζ(a) α ζ(b)

∣∣∣∣∣∣ u
.

(2.3)
and act through the special seam [28]

W
q

(1,1,ζ )

 d c

α β

a b

 = δb ζ(a)δc ζ(d) ↘q
a ζ(a)

ζ(d)d

βα ζ =
 1, F

q+1
a d �= 0, α = β,

b = ζ(a), c = ζ(d),

0, otherwise.
(2.4)

Notice that the (r, s, ζ ) = (1, 1, 1) seam, where ζ = 1 denotes the identity automor-
phism, is the empty seam

W
q

(1,1,1)

 d c

α β

a b

 = δab δcd δαβ F
q+1
b c . (2.5)

The push-through property is also trivially verified for a ζ -type seam.
The label s appearing in a (1, s)-seam is an integer in Ag−1. In [29], we define a

(1, a)-seam with a ∈ G which reduces to the definition given here for G of A type but
which extends it for the Deven, E6 and E8 graphs.

2.2 Torus transfer matrix

The transfer matrix for the (p, q)-fused model with an (r, s, ζ )-seam, on the N faces
torus on the square lattice is given, in the basis of the cyclic paths in N steps plus the
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seam, with bond variables between adjacent spins, by the product of the corresponding
Boltzmann weights: The entries of the transfer matrix with an (r, s, ζ ) seam are given by

〈a,α| T
pq

(r,s,ζ )(u, ξ) |b,β〉
↘pq ↘ ↘ ↘ ↘

···
pq q q q

a1
α1

a2 aN
αN

aN+1
αN+1

aN+2
αN+2

aN+3 a1

b1
β1

b2 bN
βN

bN+1
βN+1

bN+2
βN+2

bN+3 b1

u u r(u,ξ) (1,s) ζ

=
∑
γ

N∏
i=1

Wpq

 bi βi bi+1
γi γi+1
ai αi ai+1

∣∣∣∣∣∣ u
Wq

(r,1)

 bN βN bN+1
γN γN+1
aN αN aN+1

∣∣∣∣∣∣ u, ξ


W
q

(1,s)

 bN+1 βN+1 bN+2
γN+1 γN+2
aN+1 αN+1 aN+2

Wq

(1,1,ζ )

 bN+2 b1
γN+2 γ1
aN+2 a1

 (2.6)

where the sum is over all possible vertical bond variables. The usual periodic boundary
condition is obtained for (r, s, ζ ) = (1, 1, 1). The definition can be generalised to
accommodate an arbitrary number of seams. Because the seam faces are modified bulk
faces, they satisfy the GYBE, so they can be moved around freely with respect to the bulk
faces, the spectrum of the corresponding transfer matrices remains unchanged. However,
in theD2k cases, when there are several seams, their order can not be exchanged because
the fusion algebra of defect lines is noncommutative [29, 30].

2.3 Boundary weights

The boundary weights are labelled by (r, a) with r ∈ Ag−2 a fusion level and a ∈ G a
node of the graph.

In the AL case, all (r, s) boundary weights are obtained from the action of an (r, s)-
seam on the vacuum boundary weight [31] and we construct in [29] an (r, a)-seam
with a ∈ G so that it is also the case for the Deven, E6 and E8 graphs. Nevertheless,
in all cases, the (1, a) boundary weights, for two q-adjacent nodes of G, c and a (i.e.,
F
q+1
a c �= 0) are given explicitly by

B
q

(1,a)

( a
γ
c
α
a

)
=

�
��

�
��

(1,a)

a

γ

c

α

a

= ψ
1/2
c

ψ
1/2
a

Uq+1
γ (c, a)†Uq+1

α (c, a) = ψ
1/2
c

ψ
1/2
a

δγα . (2.7)

The vacuum boundary condition usually1 corresponds to (1, a) = (1, 1). The full (r, a)
boundary weights are then given by the action of an r-type seam onto the (1, a)-boundary
weight. The double row seam is given by two regular r-seams sharing the same boundary

1When extra structure is imposed, as in the superconformal case [21], the vacuum of the problem can be
more complicated.
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field ξ , placed on top of one another, with the same spectral parameters as bulk faces
appearing in the double row transfer matrix defined below in (2.11):

B
q

(r,a)

 d δ
γ
c
α
b β

∣∣∣∣∣∣ u, ξ
 =

�
��

�
��
(r,a)

(u,ξ)

aδ
d

γ

c

α

b
β a

=
↘q

↘q
�

��

�
��

. . . .

. . . .

r(µ−u−(q−1)λ, ξ)

r(u,ξ)

(1,a)

aδ
d

γ

c

α

b
β a

(2.8)

and the left boundary weights are simply equal to the right boundary weights.
These boundary weights satisfy boundary versions of the equations the bulk faces

satisfy. The Generalized Boundary Yang–Baxter Equation or reflection equation is

�
��

�
�

�
�

u−v+
(q−p)λ↑qp �

�

�
�
(r,a)
(u,ξ)

�
��

�
�

µ−u−v−(p−1)λ↑qp

�
��

�
��
(r,a)
(v,ξ)

. . . . . . . . . a

a

a

α
bb

β

c
γ

d

δ

e

ε

f φ

= s
q p
1+q−p(u−v) sq p1−(p−1)(µ−u−v)
s
p q
1 (u−v) sp q1−(q−1)(µ−u−v)

�
��

�
��
(r,a)
(v,ξ)

�
�

�
��

µ−(q−1)λ−u−v
↑pq

�
�

�
�
(r,a)
(u,ξ)

�
�

�
��

�
�

u−v↑pq

. . . . . . . . .

a

a

a

α
b

β

c

γ
d

δ
e

ε

f f
φ

(2.9)

which is proved using the GYBE (1.15) and the abelian property (1.17).
We refer to [16, 19] for the boundary crossing equation.
We state here a property that will be of use later on. By equation (1.7), one can fill

up the triangle appearing in the definition (2.7) of the (1, a) boundary weight with any
local face operators: they will only contribute through a scalar factor, hence,

B
q

(1,a)

( a
γ
c
α
a

)
= ψ

1/2
c

ψ
1/2
a

q−1∏
i=1

1

si11−i (−2u) �
�

�
�

��

�
�

�
�

��

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.U q+1
γ (c,a)†

U q+1
α (c,a)

a

c

a

��
�

��
�

��
�

�
�

��

�
�

�
��

�
��

�
��

��

↗

↖
2u+λ

� 2u+(2q−3)λ

�
���

2u+(q−1)λ

. (2.10)

2.4 Double row transfer matrix

The double row transfer matrix is given by two rows similar to the one appearing in the
torus transfer matrix, with spectral parameters u for the bottom one andµ−u−(q−1)λ
for the top one, where µ is a fixed parameter and q is the vertical fusion level. The
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boundary condition is not cyclic but fixed by the boundary weights (2.8).

〈a,α| T
pq

(rL,aL)|(r,s,ζ )|(rR,aR)(u, ξL, ξ, ξR) |b,β〉

=

↘pq ↘ ↘ ↘ ↘pq q q q

···

↘pq ↘ ↘ ↘ ↘pq q q q

···

aL
αL

a1
α1

a2 aN
αN

aN+1
αN+1

aN+2
αN+2

aN+3 aN+4
αR
aR

aL
βL

b1
β1

b2 bN
βN

bN+1
βN+1

bN+2
βN+2

bN+3 bN+4
βR

aR

u u

(
µ−u
−(q−1)λ

) (
µ−u
−(q−1)λ

)
r(u, ξ)

(r
µ−u

−(q−1)λ, ξ
)

(1, s) ζ

(1, s) ζ

�
�

�
�

�
�

�
�

(rL,aL)

(µ−u,ξL)

......... .........

......... .........

�
�

�
�

�
�

�
�

(rR,aR)

(u,ξR)
.

(2.11)

The GYBE (1.15) implies that double row transfer matrices with the same boundary
conditions and boundary fields commute:

T
pq

(rL,aL)|(r,s,ζ )|(rR,aR)(u, ξL, ξ, ξR) T
pq ′
(rL,aL)|(r,s,ζ )|(rR,aR)(v, ξL, ξ, ξR)

= T
pq ′
(rL,aL)|(r,s,ζ )|(rR,aR)(v, ξL, ξ, ξR) T

pq

(rL,aL)|(r,s,ζ )|(rR,aR)(u, ξL, ξ, ξR). (2.12)

3 Fusion Hierachies

These transfer matrices fulfill a fusion hierarchy of functional equations. The details
of these equations do depend on the type of matrices but their structure is the same. It
stems from local properties that they all satisfy. Let us choose a horizontal fusion level
p, and a fixed boundary condition among those available, namely toroidal, cylindrical,
with or without seams. Call T

q
k (u) the corresponding (p, q)-fused transfer matrix at

spectral parameter u+ kλ, for −1 ≤ q ≤ g − 2, with T −1
0 and T 0

0 defined as

T −1
0 = 0 , T 0

0 = f
p
−1I ; (3.1)

where spq (u) = s
p 1
q (u) and f pq is the usual order-N bulk term

f
p
q (u) =

{ [spq (u)]N , for the torus
(−1)pN [spq (u)spq+p(u− µ)]N , for the cylinder.

(3.2)

Then the matrices (T q)−1≤q≤g−3 fulfill a hierarchy of functional equations

T
q
0 T 1

q = Vq�qf
p
q T

q−1
0 + Ṽqf

p
q−1 T

q+1
0 (3.3)

where f pq , �q , Vq and Ṽq , are (scalar) functions, which we are going to describe, that
account for the contributions of the bulk faces, the seams and the cylindrical (1, a)-
boundary conditions respectively.
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The functions Vq and Ṽq are trivial in the torus case, Vq = Ṽq = 1, and on the
cylinder, they are given by

Vq = sq−2(2u− µ)s2q+1(2u− µ)

sq−1(2u− µ)s2q(2u− µ)
, (3.4)

and

Ṽq = sq(2u− µ)s2q−1(2u− µ)

sq−1(2u− µ)s2q(2u− µ)
. (3.5)

The function �q is the product of order-1 terms coming from the seams. As we saw
in Section 2.3, an (r, a)-boundary condition is constructed from the action of an r-seam
on a (1, a)-boundary condition, and we count separately the type r seams coming from
the left and right boundaries. If there areK seams, the function�q is given by a product
of K similar terms:

�q =
K∏
k=1

φq(rk, ξk, u) . (3.6)

The contribution of an (r, s, ζ )-seam only depends on r and φq(1, ξ, u) = 1. For
2 ≤ r ≤ g − 2,

φq(r, ξ, u) =
{
φt
q(r, ξ, u) = sq−r (u+ ξ)sq(u+ ξ) , for the torus
φt
q(r, ξ, u) φ

t
q+r−1(r,−µ− ξ, u) , for the cylinder.

(3.7)

More generally, we have the following hierarchy of inversion identities which can be
proved by induction as in [11]:

Aq T
q
0 T

q
1 = Bq f

p
−1f

p
q

q∏
k=1

�k I + Cq T
q+1
0 T

q−1
1 (3.8)

where, in the torus case the functions Aq = Bq = Cq = 1 are trivial, and

Aq(u) = sq−1(2u− µ)sq+1(2u− µ) , (3.9)

Bq(u) = s−1(2u− µ)s2q+1(2u− µ) , (3.10)

Cq(u) = [sq(2u− µ)]2 , (3.11)

result from the left and right vacuum boundaries in the cylinder case.
If we further define the normalized transfer matrices

t
q
0 = Cq T

q−1
1 T

q+1
0

Bqf
p
−1f

p
q

∏q
k=1�k

, (3.12)

then the inversion identity hierarchy can be recast in the form of the following universal
thermodynamic Bethe ansatz (TBA) functional equation

t
q
0 t

q
1 =

(
I + t

q−1
1

) (
I + t

q+1
0

)
. (3.13)
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In deriving the TBA equation we have used the simple properties

Bq(u)Bq(u+ λ) = Bq−1(u+ λ)Bq+1(u) , (3.14)

and
Cq(u)Cq(u+ λ)

Aq−1(u+ λ)Aq+1(u)
= 1 . (3.15)

Equations (3.3), (3.8) and (3.13) give a matrix realization of the fusion rules (1.9)
and (1.10).

4 Derivation

Before we proceed to the detailed derivations of (3.3) for the individual torus and
cylinder cases, let us study the local properties which are common to both cases.

4.1 Local properties

Firstly, we look at how the product T
q
0 T 1

q is decomposed into a sum of two terms T
q−1
0

and T
q+1
0 up to scalar factors.

Because of the vertical push-through property, we can disregard the horizontal fusion
projectors and apply them later on as a wrapping of the equation.

The product T
q
0 T 1

q is realized as two transfer matrices stacked upon each other, the
top one being at vertical fusion level 1 and the bottom one at fusion level q. Consider
an arbitrary column of the torus transfer matrix (ζ -type seams excluded). In fact, after
a simple manipulation (4.13), the product of transfer matrices in the cylinder case will
be built up of similar columns. There is a projector Pq+1 attached to its bottom part,
realizing the vertical fusion. The Boltzmann weights of this column can be written in
terms of Temperley–Lieb operators,

Xj+q−1(v) . . . Xj+1 (v + (q − 2)λ)Xj (v + (q − 1)λ) P q+1
j+1 Xj−1(v + qλ) (4.1)

with j an arbitrary label and v the spectral parameter involved in that particular column,
for example v = u− kλ for a typical bulk face and v = u+ ξ − kλ for a face in an r-
seam. Because an s-type seam is the braid limit of an r-type seam, we lose no generality
in considering only r-type seams. It is easy to see that the following arguments can be
applied also to ζ -type seams and that their contribution is trivial.

We duplicate the projector and insert between its two copies the identity

1

Sq+1

(
SqXj (λ)+Xj(−qλ)

) = I , (4.2)
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(4.1) =

↘

↘

↘

v

v+qλ

v+
(q−1)λ

•

•

•





�

��

�
��






.....

.....

P
q+1
j+1

..

....

....
j+q−1

..
..
..
..
..

....
j+q−2

....
j

....
j−1

=

↘

↘

↘

v

v+qλ

v+
(q−1)λ

•

•

•





�

��

�
��






.....

.....

P
q+1
j+1





�

��

�
��






..................................................

.....

P
q+1
j+1

•

•
1

Sq+1
×

.......................................................

........................................

........................................

•

... ... ... ... ...

(
Sq �

��













�
��• •

λ↓ + �
��













�
��•

−qλ↓
)

(4.3)

=

↘

↘

↘

v

v+qλ

v+
(q−1)λ

•

•

•

•





�

��

�
��






..........

P
q+1
j+1





�

��

�
��






.....

.....

P
q+1
j+1

Sq

Sq+1
×

..........

�
��













�
��

λ↓

+

↘

↘

↘

v

v+qλ

v+
(q−1)λ

•

•

•

•





�

��

�
��






.....

.....

P
q+2
j

(4.4)

The projector Pq+2
j in the second term of (4.4) is obtained by the definition (1.4).

Thus, this term gives us the column which appears in T
q+1
0 in the functional equation

(3.3). By pushing the projector through horizontally in the product of transfer matrices,
we can make it appear in between all columns, and because of the cyclic boundary
condition (and a similar argument in the cylinder case), we finally obtain a term which
is proportional to T

q+1
0 .

We are now going to prove that the first term of (4.4) yields a term proportional to
T
q−1
0 .
The product T

q
0 T 1

q involves a whole row of columns such as the LHS of (4.3), hence
the columns of Boltzmann weights occur with a fusion projector Pq+1 between each
of them. We can use the push-through property (1.13) to remove all but one of these
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projectors one by one:

↘

↘

↘

v+qλ

v+
(q−1)λ

↑

v

•

•

•

•





�

��

�
��






.....

.....

P q+1





�

��

�
��






.....

.....

P q+1 =

↘

↘

↘

v+qλ

v

↓

v+
(q−1)λ

•

•





�

��

�
��






...............

...............

P q+1





�

��

�
��






Pq+1 =

↘

↘

↘

v+qλ

v+
(q−1)λ

↑

v

•

•





�

��

�
��






.....

.....

P q+1 (4.5)

So for cyclic boundary conditions, the projector on the left of the +λ face in the first
term of (4.4) can be discarded and the one on its left will be the only remaining projector
in the row. We will see that the same argument is also valid for cylindrical boundary
conditions.

We now make use of the contracting property of the local face projector Xj(λ):

����
����

����
��

��
��
��λ

u+λ
u

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

. ..
..
..
..
..
..
..
..
..
..
..
.......

..

→

→
→

j−1 j

= s1(u)s1(−u) ��
����

��

��
��
��λ

λ

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.......

..

→
→

j−1 j

(4.6)

so that the two faces in the top rows of the first term of (4.4) collapse into a scalar under
the propagation of the contractor:
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•
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↘

v

λ
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•
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.....

.....

P
q+1
j+1

(4.7)

and the newly appeared contractor further collapses the top two faces of the next column
on the left. Reapplying the procedure to the rest of the columns on the left and using
the cyclic boundary conditions, we finally collapse all of the top two rows. What is left
is a scalar contribution −sq(u)sq−2(u) for each column at spectral parameter u, a row
of faces with spectral parameter λ and the local face operator Xj(λ) at the right of the
projector Pq+1. But the Boltzmann weight of a face at spectral parameter λ is simply

W

(
d c

a b

∣∣∣∣ λ) = ψ
1/2
a ψ

1/2
c

ψ
1/2
b ψ

1/2
d

δbd, (4.8)

hence the top row disappears, leaving
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↑
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= ψdi
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↘
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j+1

•
bi−1

di

bi bi bi+1

ai−1 ai

..............
ai ai+1

(4.9)

We decompose further the projector Pq+1
j+1 and sum over di to get the shorter fusion

projector Pq :
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1

Sq

∑
di∼bi

ψdi

ψbi ��

����

��P
q
j+2

��

����

��P
q
j+2

��

��
−(q−1)λ

→

bi

di

bi
ai

ai

= Sq+1

Sq
��

����

��P
q
j+2bi ai (4.10)

so that (4.7) reduces to the product of the scalar contribution for each column times the
matrix valued function T

q−1
0 .

We now give the details of the contribution of each column for each boundary con-
dition.

4.2 Functional equation on the torus

Each horizontally p-fused bulk column in T
q
0 T 1

q brings a scalar factor of spq (u) when

collapsed by the contractor. Hence the N bulk faces contribute to the T
q−1
0 term as

f
p
q (u) = [spq (u)]N . (4.11)

The contribution of this same column to the T
q+1
0 term comes from the removal of the

common scalar factors which appear in the process of vertical fusion of the top (p, 1)-
fused face with the larger (p, q)-fused face, yielding a (p, q+ 1)-fused face. The result
is f pq−1(u).

Likewise, an r-type seam contributes in the same proportion but with a shift in the
spectral parameter and an adjustment in the common scalar factors, yielding (3.7). It is
easily checked that the braid limit of such a factor simply vanishes, hence the s-type
seams don’t contribute to the TBA equation and the same holds for ζ -type seams.

4.3 Functional equations on the cylinder

As we discussed in Section 2.3, an (r, a) boundary is the combination of an r-seam and
a (1, a) boundary so we restrict ourselves to (1, a)-boundary conditions.

In the cylinder case, the product T
q
0 T 1

q of double row transfer matrices is realized
as four layers of rows and a typical column is the stack of two (1, 1)-faces on top of
two (1, q)-faces, respectively at spectral parameters µ − u + ξ − qλ, u + ξ + qλ,
µ − u + ξ − (q − 1)λ and u + ξ where ξ = −kλ for a usual bulk term involved in a
horizontally fused face. Consider the following inversion relation (1.16)

X
1q
j (2u− µ+ (2q − 1)λ)Xq1

j (−2u+ µ− (2q − 1)λ) (4.12)

= s
1 q
2q (2u− µ) s

1 q
2−2q(−2u+ µ) P

q+1
j .
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It follows from the GYBE (1.15) that

s
1 q
2q (2u−µ)×
s
1 q
2−2q (−2u+µ)
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. . . .

• •

(4.13)
As the rows on the right are of the same structure, the face Xq1(−2u+µ− (2q − 1)λ)
can push through rightward all the way to the right boundary. Similarly, its counterpart
X1q(2u−µ+ (2q − 1)λ) can push through leftwards all the way to the left boundary.
Because of equation (2.10), these rectangular weights, after a crossing symmetry (1.20),
simply agglomerate into a larger boundary (minus the larger projector). For a (1, aR)-
boundary condition on the right hand side, it reads:

• •
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c
ψ

1/2
c

ψ
1/2
aR

q−1∏
i=1

1

si1−i (µ− 2u)
(4.14)

In the bulk, we are now in a similar configuration as in the torus case, simply the
columns are doubled. Hence the same technique applies provided the push through of
the contractorX(λ) and the longer projector Pq+2 behave as expected on the boundary.
This is what we discuss next.

It is clear from (4.14) that the push-through property of projectors is still satisfied
on the boundary, the projector Pq+1 coming from the bottom q rows of the product
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can go up through the right boundary and get back to the q intermediate rows, lower
part of the top half. Similarly, coming from the right of these rows, it can go down the
left boundary to the lower q rows. Therefore, the term proportional T

q+1
0 proceeds in

exactly the same way as in the case of the torus.
Consider now the term T

q−1
0 . We need to understand the action of Xj(λ) on the

(1, aR) right boundary.
Similarly to (4.6), we have

�
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�
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�
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�
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•di
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�
�..........

ai ai+1 ai+1

di bi

bi+1

di+1↙ ↓
λ

λ

. (4.15)

So that when the contractor acts on the (1, aR) right boundary, we get
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(4.16)

where we have used the crossing symmetry and then the abelian property (1.17) to
interchange the parameters λ and 2u + 2qλ − µ between two face weights. Then, we
apply (4.6) to collapse the face weights inside the (1, aR) boundary
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= (−1)q−1s2q+1(2u− µ)×
s
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2q−3(2u− µ)s
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(4.17)

where we use the identity (1.7) to eliminate the face weight with parameter 2u+2qλ−µ.
We can see in (4.17), that the right (1, aR) boundary of T

q
0 T 1

1 is contracted into a

smaller Bq−1
R under the action of the contractor Xj(λ). We then continue to collapse

the face weights in the bottom half of the transfer matrix with the contractor.
For the (1, aL) left boundary, the contractor Xj(λ) acts from the bottom. We rotate

the whole diagram by half a turn and we apply the same technique, and we get the
following scalar factors

(−1)qs2q−3(2u− µ)s
q−1
2q−2(2u− µ)s

q−1
2q−4(2u− µ) . (4.18)

Finally, the contractor can go back to the top row from the left, hence the rest of the
proof proceeds as previously.

Collecting the different contributions for all the columns, which come in pairs, for
the lower and the upper halves of the product T

q
0 T 1

1, with spectral parameters u + ξ

and µ− u− qλ+ ξ respectively, one gets the result listed in Section 3.

5 Discussion

In this paper we have derived the TBA functional equations for critical lattice models
using simple fusion projectors. We point out, however, that the very same functional
equations can be derived off-criticality by using the methods of [16]. This applies, for
example, for the A and D models which admit elliptic solutions to the Yang–Baxter
equations.

We conjecture generally that the form of the TBA functional equations are universal
for all integrable lattice models associated with rational CFTs and their integrable per-
turbations. In particular, we expect the known forms [10] of these equations to apply to
all integrable boundary conditions.
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