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Abstract N

We study integrable and conformal boundary conditions for s€(2) Zj
parafermions on a cylinder. These conformal field theories are realized as the
continuum scaling limit of critical A-D-E lattice models with negative spectral
parameter. The conformal boundary conditions labelled by (a, m) € (G, Zy)
are identified with associated integrable lattice boundary conditions labelled
by (r,a) € (Ag—2, G) where g is the Coxeter number of the A-D-E graph G.
We obtain analytically the boundary free energies, present general expressions
for the parafermion cylinder partition functions and confirm these results by
numerical calculations.

PACS numbers: 0550, 1115H, 1125H

1. Introduction

There has been much recent progress [ 1-7] on understanding integrable boundaries in statistical
mechanics, conformal boundary conditions in rational conformal field theories and the intimate
relations between them. Indeed it appears that, for certain classes of theories, all of the
conformal boundary conditions can be realized as the continuum scaling limit of integrable
boundary conditions for the associated integrable lattice models. For simple rational conformal
field theories, such as s£(2) minimal theories, a complete classification has been given [1-3]
of the conformal boundary conditions. These are labelled by nodes (, a) of a tensor product
graph A ® G where the pair of graphs (A, G), with G of A-D-E type, coincide precisely with
the pairs in the A-D-FE classification of Cappelli ef al [8]. Moreover, for the unitary minimal
models the physical content of the boundary conditions has been ascertained [4] by studying
the related integrable boundary conditions of the associated A-D-E lattice models [9] with
positive spectral parameter # > 0.

It is highly desirable to carry out similar studies on boundary conditions for other classes
of conformal field theories and their associated lattice models such as the superconformal and
higher fusion models, higher rank models and so on. In this paper we study the boundary
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conditions of Z; parafermionic models [10—19]. This class of rational conformal field theories
admits an A-D-E classification [11, 15] similar to the classification of Cappelli, Itzykson and
Zuber and is associated to the same A-D-E lattice models but in the regime with negative
spectral parameter u < 0. The first two members of the A series are the Ising model (A3) and
the hard hexagon model [20] (A4) which has the same central charge as the 3-state Potts model
but admits the Wj algebra as the extended chiral algebra and has 6 rather than 8 conformal
boundary conditions.

The layout of the paper is as follows. In section 2, we review the conformal properties
of Q(Z) Zy parafermions, their central charges, conformal weights, characters, Kac tables
and modular matrices. We also discuss the modular invariant partition functions on the torus
and the cylinder partition functions. In section 3, we present the lattice realizations of these
theories. We define the A-D-E lattice models and their integrable boundary weights, present
their finite size corrections and compute their bulk and boundary free energies. In section 4
we identify, through numerical analysis, the integrable boundary conditions from the lattice
model with the conformal boundary conditions of parafermions. In section 5, we discuss our
numerical techniques and present some typical numerical data on which our results are based.
We conclude in section 6 with a short discussion.

2. Z, parafermions

In this section we review the conformal properties of Q(Z) Zy parafermions. In particular,
we review the A-D-E classifications [11, 15] of torus partition functions and present general
expressions for the cylinder partition functions following the general framework of Behrend
et al [3] on the assumption that the conformal boundary conditions are labelled by nodes of
the tensor product graph

G ® Zog 2.1

where the Coxeter number of G is g = k + 2 and Z,; denotes the oriented cyclic graph with
2k nodes.

2.1. Conformal data

The @(Z)Zk parafermionic conformal field theories are it (1) cosets of the level k, s/Z(2) WZW
models

02
gl 22)
u(l)
with central charges
3k 2(k — 1
c= 2k 2D 2.3)
k+2 k+2
The conformal weights of primary fields ¢, are given by
Ay = LEED o o<iml<t  l—me2Z 2.4)
(tm) = 4k +2) 4 Itx SRUAESS m .

and the associated level k characters

X (@) = 1) ¢ (@) (2.5)
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are given by the string functions [15]

— S+ Ay X
CZ (q) — q * (_l)r+sqs(s+1)/2+r(1‘+1)/2+rs(k+1)
" URC) B
% [qs(lfm)/2+r(£+m)/2 _ qk+17£+s(2k+27£+m)/2+r(2k+2flfm)/2] (26)

where 1n(q) = qﬁ [15Z,(1 — g") is the Dedekind eta function and g = e?™17 is the modular
parameter.
The conformal weights and characters are extended to the grid

0<e<k 0<m<2k—1 L —me2Z 2.7
by identifying the underlying operators
Be.my = Dl —my = Pems2y = Dx—v.k—m) (2.8)

where * denotes conjugation. The conformal weights A,y and characters x. .)(q) are
of course not effected by conjugation. The parafermionic ‘Kac tables’ for the critical Ising
(G = Aj, k = 2), critical 3-state Potts (G = A4, k = 3) and (G = As, k = 4) models are
shown in table 1. Each operator appears twice in these grids. To remove this redundancy we
could fix a fundamental domain to be the left half of the Kac table. But in order to stress the
underlying structure of the fusion algebras we will sometimes make other choices, such as the
even sub-lattice with £ and m even.
Under modular transformations, the level k parafermionic characters transform as
X @) = D7 S ™ a7 2.9)
.m)

where the modular matrix § satisfies

St=s8" St=1 s?=cC (2.10)
and C is the matrix implementing conjugation. If (¢, m) ranges over the full conformal grid
then § = Swzw ® SZM is just the tensor product of the s€(2);, Wess—Zumino—Witten modular
matrix and the Q(Zk)l modular matrix. Restricting to a fundamental domain, the entries of
the k(k+1)/2 x k(k + 1) /2 modular matrix are simply renormalized by a factor of 2 and given
explicitly by

S, () 1 T+ D+ wimm’

my = sin ex .

(&m) JEkKk+2) (k +2) P

@2.11)

2.2. Zy parafermions on a torus

The 52(2) Zy parafermions on a torus have been classified by Gepner and Qiu [11] using
modular invariance. They distinguish principal and non-principal cases and their results are
summarised in tables 2 and 3. Here we will be primarily concerned with the principal cases for
which the identification with lattice models is clear. We conjecture that non-principal models
are associated with fused models [21,22].

2.3. Zy parafermions on a cylinder

In this section we consider the Z; parafermion models on a cylinder. We restrict our attention
to the principal cases (G, Zy;) where G is of A, D or E type. When G is of A type, the theory
is diagonal and the cylinder partition functions are

Z,m)|trmy) (@) = Z Neew rmn @™ xm (@) (2.12)
(&,m)



5754 C Mercat and P A Pearce

Table 1. Conformal grids of conformal weights for critical Ising (A3, Z4), W3 (A4, Z¢) and
critical (As, Zg) models. The conjugation (/, m) — (k —I, k —m) is realized as a central inversion
symmetry through the point shown as x.

A5 (k=2)
{ € A;
2 | 3 0
1 i i
010 3
0 1 2 3 meZy
S>> >—e>
e Ay
3 2 0 2
2 * 1
2 | 2 i %
1 2 *
1 5 5 i
010 2 2

0 1 2 3 4 5 mé€EZg

As (k=4)
(e As
3% 3
4 1 i 0 1
9 1* 1 9+
3 16 16 16 16
1 1 1 L
2 3 X 2 3 12
1 1 9% 9 1x
16 16 16 16
3 *
010 o 1 g

01 2 3 4 5 6 7 mcls

where (£1, m) labels the boundary condition on the left, (£,, m;) labels the boundary condition
on the right and the fusion coefficients are given by the Verlinde formula [23]

*

Semy ™) Stermn ™ Stermpy ™
@ my

(ba,ma) _

Nem) .m) eN. (2.13)

o S0,0)
The parafermionic cylinder partition functions for (A4, Z¢) are shown in table 4. The characters
associated to conjugate primary fields, although equal, have not been used so that this table
encodes the complete fusion algebra with the conjugate operators shown in the first column.
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Table 2. The A-D-E classification of modular invariant partition functions for principal Zy theories.

%—1 k
(Ags1, Zok) 32D xeml?
m=0 (=0
%=1 [ k/2—1
(Dan+2, Zgn) _
k _"+4 ) " Z {xem I+ Xk—tam) Xy} + 2 xks2.m 1
=an m=0 =0
Leven
%=1 k
=3 Z Z | Xe.m) + Xe—.m) |
m=0 =0
feven
%=1 k k
(D2n+1, Zsn—-4) 1 2 —
- 3 X"+ ) Xk—e.m) Xe,m)
feven Lodd
2%—1
(Ee, Zno)
k = 10) 3 {x@.m) + X6 12+ 1XGm) + X@.m 1> + [ X@m) + X0.m 17}
- m=0
2%-1
(E7, Z32)
(k = 16) 3 Uxom + xaem P+ x@m + xazm > + [ X@6m + x(0.m 1>
- m=0
+x@m 1>+ tam + X14m) X 8.m) + XSy X2y + X (14.m))}
2%-1
(Eg, Zs6)
(k = 28) 3 Z {1X0m) + X(10.m) + X(8.m) + X28.m) > + | X6.m) + X(12.m) + X(6.m) + X22.m)*}
- m=0
Table 3. The A-D-E classification of modular invariant partition functions for non-principal Z
theories. Here o # 1 is a divisor of k = @B and a* = ax + By, @™ = ax — By.
k
(Ak+1, Zap) P D xeeXeao

X€Znp,y€log =0
k
Z Xe.ot) + Xk—£.00) K @a—) + X k—t,0-))

X€Zpg,yELyy =0
26 VS0 e

(Dan+2, Zap) 1
(k = 4n) Z

(Dan+1, Zag) 1 ‘ = k 7
_ b Z Xtat) X (ta—) T Z Xk—t.a*) X(t,a™)
(k =4n —2) / — —
X2, yEl2a teven fodd
(E6, Z2p) _ _
. A i Z {(X©.at) + X6.00) KX (0,07) + X (6,07))
(k = 10)
erzﬂ,yeZza
+(XG.at) + X1 A Ba) + X 70-) + Kot + X10.00) K @0y + X (10,0-))}
(E7,Zap) _ _
_ p % Z {(X©0.07) + X16.09) X 0,0-) + X(16,a0-))
(k = 16)
X€Zop,yelow
+(X@.at) + X12,00)) K @,0-) + X (12,0-)) T K 6.0 + X10.05) K (6,0-) T X (10,0-))
+XB.oH X 3a) T X@ah + X140t X 8,0y T XS.0h) K20y + X (14,0-))}
(Eg, Zap) 1 _ _ _
(k = 28) I Z {(X0.ah) + X100 + X(18.0%) + X28.00)) X 0.0y + X(10,0-) + X(18,0-) T X (28,0-))

X€Zop,yELon

+(X6.ah) + X(12.0%) + X(16,0%) + X22.07) K (6,0-) T X(12,0-) T X(16,0-) T X (22,a—))}

If G is of D or E type, the boundary conditions are labelled by (a, m) € (G, Zy) and the
cylinder partition functions are given by [3]:

Ziarmarmy @ =Y Ve @om ™ Xem (@) (2.14)
(£,m)
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Table 4. Cylinder partition functions Z; | for the W3 model (A4, Z¢) ~ (T2, Z3).

Left Right boundary condition
,m 00 20 (02 (2,2) 0.4) 2.4)
0,00 x00 X02 = X0.4 X2,0) X2.2) X2.4)
0.2)  xo04 X00  X02 X2.4) X2.0) X2.2)
04  x02  X04  X0.0 X2.2) XQ2.4) X2.0)

2,00 xeo0 @ Xe2  X24dH  XO0.0) FX20  X02) * X222  X0.4) *t X2
(2,2)  xe4  X@0 X222 X004 T X24  X0.0) FX20  X0.2) tX22)
24 xe2  Xxe4ss. X20  X02) FtX22 X004+t X24 X0 T X2.0

where the sum is restricted to a fundamental domain of the Kac table. The intertwiners are
i , 1 VA
Sem ™" Wiaymp ™) Wiagmy ™
S(O 0)(a’—l.m’)

(az,ma) _

eN (2.15)

Viem) (@imy)

(a’,m")
where the sumis overa’ € Exp(G) the Coxeter exponents of G andm’ € Zy;.. The eigenvectors
of the adjacency matrix of the graph G ® Zy; are given by the tensor product

wimm’

"Il(a,m)(a,’m,) = I/Iaa, exXp (216)
where ¥ is the eigenvector, labelled by a’ € Exp(G), of the adjacency matrix G.

The intertwiner can alternatively be defined as the tensor product of intertwiners for each
graph

G
V(e,m) (al,ml)(az,mz) = V£+l, a]a2 Vm+l, m,mz (217)
where the intertwiners for G and Z = Z,; are defined by a formulas similar to (2.15). The

intertwiner for the graph G satisfies the recurrence relation

A A A (2.18)
where VIG =1 and V; = G, the adjacency matrix of G. The intertwiner for Zy; is simply a
power of the adjacency matrix an = (Zy)™ of the directed graph Zy.

The parafermionic cylinder partition functions for (As, Zg) and (Dy, Zg) are shown in
tables 5 and 6. In the A5 case the characters associated with conjugate fields have been kept
separated in order to encode the complete fusion algebra, but have been identified in the Dy
case to make the Z3 symmetry apparent when these (D4, Zg) partition functions are written in
terms of the fundamental string functions.

In the general D and E cases, these partition functions are best understood in terms of
extended (block) characters [3]. These extended characters X ) are linear forms in the
(AL, Zyy) characters involving the fundamental intertwiner

Ram (@ =D View 0.0 ™ X (@) (2.19)
(€,n)
where the sum is over a fundamental domain. Note that for the (Dg +2» L) models the
conformal dimensions of the two primary fields appearing in the extended characters differ by
integers or half integers
E+2)—(k—O)k—L+2) -4
4(k +2) o2
Note also that the parafermionic symmetries (2.8) imply that these models are in fact Z;
symmetric.

Amy — A—t,m) = (2.20)



Table 5. Cylinder partition functions Z g for (As, Zg). The rows are labelled by the left boundary condition and the columns by the right boundary condition.
The table is in fact symmetric due to conjugation symmetry.

£, m) (0,0) 0,2) 0,4) (0,6) (2,0) 2,2) (1,1) (1,3) (1,5) 1,7)
0,00 x00 X02 X004  X©.6) X2.0) X2.2) Xa.1) X(1,3) X(1.5) Xa.7)
(0,2) X0,6)  X(©0,00 X072 X4 X2,2) X(2,0) X,7) X(1,1) X(1,3) X(1,5)
04  x04 X006 X000  X©.2) X(2.0) X2.2) X(.5) X7 Xa.1) X(1,3)
(0,6) X0,2) X004  X©0,6)  X(0,0) X2,2) X(2,0) X(1,3) X(1,5) X,7) X(1,1)
(2,0) X(2,0) X(2,2) X(2,0) X(2,2) X(0,0) ¥ X(2,0) T X(4,0) X0,2) ¥ X2,2) T X4,2) X1, + X(1,5) X(1,3) + X,7) X, + X(1,5) X(1,3) + X1,7)
2,2) X(2,2) X(2,0) X(2,2) X(2,0) X0,2) + X2,2) T X4,2) X(0,0)  X(2,0) T X(4,0) X(1,3) + X1,7) X(1,1) + X(1,5) X(1,3)  X1,7) X(1,1) + X(1,5)
(1,1) XQ1,7) X1,1) X(1,3) X(1,5) X(1,3) + Xa,7) X1, + X(@1,5) X(0,0) + X(2,0) X0,2) ¥ X(2,2) X0,4) T X(2,0) X0,6) ¥ X(2,2)
(L3)  xas xan  Xa.n o X@13) X0+ X5 X(1,3) + X(1,7) X0.6 FX22 X000t X20  X02 FX22  X0.4) t X2.0
(1,5) X(1,3) X(1,5) X1,7) X(1,1) X(1,3) + Xa,7) X1, X(1,5) X0,4) T X(2,0) X(0,6) ¥ X(2,2) X(0,0) + X(2,0) X0,2)  X2,2)
(L7 xan  Xa3zx o Xas o X Xa.n +xa.s) X3 + X7 X022t X22 X049+ X20  X0.6tX22  X0.0) tX2.0

IopuI[Ad & uo suorutdjered Y77 10J SUONIPUOD AIepUnoq [BWIOJUOD pue d[qei3ojuy

LSLS
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Table 6. Cylinder partition functions Z; g for (D4, Zg). O stands for the centre point of D4 and
A, B for any two of the three other points. The table is Z3 symmetric.

(a, m) (A,0) (A,2) (8,0) (B,2) (0,1) (0,3)
(A,0)  X@©0,0 *+ X@.0) 2X0.2) X(2.0) X2.2) XA, + X1.3) Xa.ny +xa.3)
(A,2) 2%(0.2) X(0,0) + X(4,0) X2.2) X2,0) Xa,n + X1,3) Xa.ny + Xxa.3)
(B,0) X(2,0) X2.2) X(0,0) + X(4,0) 2X(0.2) X1+ X(1,3) X1+ X(1.,3)
(B,2) X2.2) X(2.0) 2X0.2) X000 + X400 X1+ X(1.3) X1+ X(1.3)
(0, 1) xan+xas xan+txaz xan+xas Xon+xa3d o X00 +2X20  2Xx0.2) *2X@e2
+X4,0)
(0,3) xanp+xa3 Xan+Xa3  Xa.D+Xa3 XD+ X3 2X02 +2X22  X0.0) +2X@2.0)
+X4.0)
Table 7. Conformal grid for the (D4, Zg) model resulting from the folding of the (As, Zg) model.
A, B, C are even, O is odd.
A, (k=4) D, (k=4)
{€ As
401 3 0 3
< D,1
3 9 1* 1 9%
16 16 16 16
B C
9 1 1 1 L 11~ (1 1 11
3 12 3 12 33 12012 33
0ol o 3 1 IV A 0+1 3y8° 0+1
0 1 2 3 4 5 6 7 me€EZg 0 1 2 3 4 m€Zyg

Table 8. Cylinder partition functions (fusion algebra) for (Dy4, Zg) in terms of extended characters.
A is the distinguished node.

X(4.0 = X©o T X0 X2 = Xez t Xu2 Xoy=XxXan+Xas Xez =xantXxes

X(B,0, = X(2.0) X(B2) = X(2.2) X(C.0) = X(2,0) X(C.2) = X(2.2)

(a,;m) (4.0) (A2) (B.0) (B.2) (C.0) (C.2) (0.1 (0.3)

(A,0) X0 X2 X XB2 X X2 X1 X©0.3)

(A,2) X2 Xao) X(B2) X(Bo) X2 X0 X(6.3) X(0.1)

(B.0)  X@coo X Xao) X2 XBo) X(B2) X(6.1) X(0.3)

(B.2) X2 Xeo X2 X4 X2 X(Bo) X(0.3) X©.1)

(C.0) XBo XB2) X0 X2 X400 X(42) X(6,1) X(0,3)

(C.2) xB2 XBo X2 X0 X2 X4 X(6.3) X©O.1)

(0.1, X3 Xoo X3 Xoo X8 Xon X+ XBo +Xeo Xaz +XB2 + Xeo)
(0.3, X1 X3 X001 X063 X001 X035 X2+ XB2+Xen Xao +Xso+ Xeo

The set of boundary conditions (a, m) for D and E theories gives rise to an extended
fusion algebra of conformal fields @4 m), namely the graph fusion algebra

(ﬁ(a,m) X ‘ﬁ(a’.m’) - Z N(a,m) (a’,m’)(a " )Qa(a”,m”) (221)

(a",m")



Integrable and conformal boundary conditions for Z; parafermions on a cylinder 5759

with structure constants given by the Verlinde like formula

N @) = Z Wearm) "™ Wiaymn ™ Wiay my @™
ap,mg ap,myp - 7
(@) Y0«

*

(2.22)

where the sum on (a’, m) € Exp(G) x Zjy; is over the fundamental domain. In terms of the
extended characters, the cylinder partition functions can be written as
Zamiam @ =Y Name @m """ Ram (@). (2.23)
(@’ m")
Table 8 gives the example of the D4 case. In this form the partition functions are no longer
explicitly Zs symmetric. There is a distinguished node which corresponds to the identity
operator of the fusion algebra which for Dy is (A, 0).

3. Lattice realizations of Z; parafermions

3.1. A-D-E lattice models and integrable boundaries

The principal Z; theories are realized as the continuum scaling limit of the critical A-D-E
lattice models [9] with negative spectral parameter. In these models the spin states are taken
to be the nodes of the graph G of A, D or E type. Let g be the Coxeter number of G. Then
the bulk face weights are

W(d cu) ¢ C_sin(k—u)(s L sinu VPP

a b - N b_ sin A “Usind Yy

bd 3.1

a
where u is the spectral parameter, A = m/g is the crossing parameter and the weights are
understood to vanish if the adjacency condition of A, D or E type is not satisfied along
the four edges of the face. The crossing factors ¥, are the entries of the Perron—Frobenius
eigenvector of the adjacency matrix G. If 0 < u < X the continuum scaling limit of these
models describes the s£(2) unitary minimal models. Otherwise, if A — 7/2 < u < 0, the
continuum scaling limit describes the principal Z; parafermions with k = g — 2.

The A-D-E models are also integrable in the presence of a boundary [22]. The integrable
boundary condition at a conformal point is labelled [4] by (r,a) € (A;—», G). A general
expression for the boundary weights of the (r, @) boundary condition [4] in terms of boundary
edge weights is

s
ra ds ,ai
B (Cb,B u,é)=0<ué
b

B
sin(€ — u) sin(€ +u +ri1) ¥/

= N 172 8bd 5,66

sin(2§) v,

F!
> E(b.c)py E™(d. c)sy - (3.2)
y=I
Here & is a free parameter that should be thought of as a boundary field and E"(b, ¢)g,, are
edge weights specified in Behrend and Pearce [4]. The fused adjacency matrices F" at level
r which appear in the summation are simply another notation for the intertwiners F" = V¢

defined previously. These are given recursively in terms of the adjacency matrix G of the
A-D-FE graph by the s£(2) fusion rules

Fl=1 F’=¢G F'=GF ' —F? r=3,...,g. (3.3)

sin(2u)
=
sin(2§)
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The labels «, B, y are bond variables or degeneracieswithg =1,..., F,,,§ =1,..., F,,. At
u = & the boundary weights are independent of £ and decompose simply in terms of boundary
edge weights
Fr+1
ra d 8 . ra ra
B <c b 8 ‘g,s) = X;E (b, ©)py E(d, )5y (3.4)
y=
Itis precisely at u = &, when the triangle boundary weights reduce effectively to edge weights,
that the integrable boundary conditions correspond [4] to conformal boundary conditions.
The A-D-E face weights and boundary weights satisfy the Yang—Baxter and boundary
Yang-Baxter equations. This ensures integrability through commuting double row transfer
matrices. The entries of the N column double-row transfer matrix with boundary conditions
(r1, a) on the left and (r,, a,) on the right are given by

D yasfryar(ths §15E2) (81,60, b B2),(61,d0 s sy 02)

o _do  do s vy dy Ay 5
| A—u A—u '
. : 71,01 \ \4 72,02 : . (3 5)
- |>‘_u’§1 ’LL,§2 | :
| N u N u |
Bi by by by by_1 by by D2

3.2. Finite-size corrections

The properties of the A-D-FE lattice models connect to the data of the associated conformal
field theories through the finite-size corrections to the eigenvalues of the double row transfer
matrices. If we write the eigenvalues of D, 4,,4,(1, &1, &2) as

D, (u) = exp(—E,(u)) n=0,1,2,... (3.6)

then the finite-size corrections to the energies E, take the form

27 sin ¢ c 1
En0) = 2NF (W) + fr o 0) + = (—ﬁ +A, +k,1) +0 (ﬁ) k, € N

(3.7)

where f(u) is the bulk free energy, fi 4,1m.a, () is the boundary free energy, c is the central
charge, A, is a conformal weight and the anisotropy angle is given by

gu O<u<AX (unitary minimal)

O =1 2k+2) . (3-8)
. u A—7m/2<u<0 (Zy, parafermions)

where g = k + 2 is the Coxeter number.

Removing the bulk and boundary contributions to the partition function on a cylinder
leads to the conformal partition function Z;(g) with left and right boundaries j = (ry, a1),
k = (r2, a2). This can be expressed as a linear form in characters

Zju(g) = nif* (@) (3.9)

where i is summed over the primary fields and the integers n; ]‘k € N give the operator content.
For M double rows the modular parameter is

M
q = exp(2mit) T = iﬁ sin (3.10)
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where M /N is the aspect ratio of the cylinder.

For a system to be conformally invariant it is usually demanded that it is both isotropic
and translationally invariant. For the unitary minimal A-D-E models with 0 < u < A the
geometry is that of an isotropic square lattice when u = A/2 and ¢ = /2. In this case the
alternation of rows in the double row transfer matrix also disappears since A — u = u. So the
conformal point occurs for

A—u=u=§& =§&&E=1/2 (unitary minimal models). (3.11)

In contrast, for the Z; parafermionic A-D-E models with A — 7/2 < u < 0, the relevant
geometry is not that of an isotropic square lattice. Instead, for Z; parafermions, the relevant
choice is u = —A with ¥ = 2w /k. Thus for the W3 or hard hexagon model the geometry
is that of the triangular lattice with 9 = 2w /3. In general it follows that A — u = 2A so the
alternation of rows in the double row transfer matrix persists even though the second row is still
the transpose of the first row. Moreover, to ensure that the left and right boundary conditions
are conformal we need to choose &, = 2X and &, = —X so the conformal point is

A—u=%& =2A u==5& =-—Xx (Zy parafermions). (3.12)

Notice that at this conformal point the double row transfer matrix is not left-right symmetric
and the boundary free energies for a given boundary condition (7, a) on the left and right are
different because they have different boundary fields & = 2A and &, = —A.

3.3. Bulk free energies

In this section we obtain the bulk free energies f(u) or equivalently the partition functions per
site k (u) = exp(—f(u)). Two A-D-E models sharing the same Coxeter number are related
by intertwiners so their bulk free energies are the same. Their boundary free energies are also
related. Thus we only need to find the free energies for the A; models.

For general L = k+1, the partition function per site of the A; model satisfies the inversion
relation

. . - L+l
sin(u + A)sin(u — ) sin 5 u

k() k(u+i) = = qp(u 3.13
(1) & ) sin® A sin %(u +A) o) ¢ )

and the crossing symmetry
k() = k(A —u). (3.14)

The inversion relation is established by keeping just the dominant terms in the TBA and
inversion identity hierarchies [22], using height reversal symmetry and equating just the
bulk terms of order 2N. The inversion relation, crossing symmetry and height reversal
symmetry determine a unique solution which is analytic and non-zero in the analyticity strip
Re () € (_’;“, %), which contains the physical strip Re (1) € (=7 + 4, 0) for the regime we
consider. This problem has been solved, in a different context, by Baxter [24]. The solution
for general L can be written as an integral

+oo sinh(;w — A)t sinh(w — 3A +u)t — sinh At sinh(u + A)¢
k(1) = exp

inh ut dr. (3.15
o st tsinh st sinh(mw — 2\)t ( )

The solution can also be written explicitly for L even (k odd) as

L+1

() = sin(u — 22) Lﬁl sin(u + 2k — 1)A)  sin 224 (u + 2kA)

e sin(u+2kA) sin £ (u+ 2k — DAY

3.16
sin A ( )
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3.4. Boundary free energies

In this section we obtain results for the boundary free energies by extending the inversion
relation method [25,26]. The boundary free energy contribution comes in three different parts

fr,slr’,s’ = f() + fr{‘s + frl/e,s“ (317)
The vacuum term f; does not depend on the boundary condition. It is free of zeros and its
logarithm is analytic on the physical analyticity strip. The remaining contributions f,,Ls/ R for
each boundary condition (r, s) are different on the left L and on the right R and exhibit zeros
in the physical analyticity strip. The boundary free energies are obtained by repeating the
analysis of the TBA and inversion identity hierarchies [22] keeping the dominant terms as
in the bulk calculation but this time equating the boundary terms of order 1 in the physical
analyticity strip Re (u) € ( ”“, )
Let g, be the RHS of the bulk inversion relation (3.13). Then the vacuum functional
equation we obtain is, with «o(u) = exp(— fo(v)),

T 4sin* A
ko) ko +2) = gy (1) gy (—— —u) 3.18)

2 sin(A — 2u) sin(A — 2(u + 1))
Hence we find the solution with the required analyticity is expressed in terms of the bulk free
energy as

2 sin’ A

b4
= - = +k) —_— 3.19
Ko(u) = te(u) ( 2 ! Sin(h — 2u) (3.19)
For L even, one has an explicit expression
sin2(u + A)
ko(t) = ———7—
sin(A — 2u)

sin2(u + 2k + 1)A)  sin 22 (u + 2k2)
- sin2(u + 2kX)  sin L+' LA+ 2k — D)
cos ﬂ(u +(2k — 1)
X
s L2 (u + 2k0)

In this case the invers10n relation admits other explicit solutions. Combining the zeros and
poles of the two bulk free energy terms for L = 1 mod 4, we find

sin2(u + (551 = DA) sin 245 (u — A)
sin(Qu — A) sin £ (u + (5 — D)

:I

(3.20)

Ko (u) =
L1 _
5 1—[1 sin2@u + 2k — D) sin £+ 2kn)
aor o Sin2(u+2kA)  sin £ + 2k — 1)A)
cos L—“(u +(2k — Dr)
X .
s £ (u + 2kA)

Inthe remaining case L = 3mod4, the vacuum boundary free energy can only be expressed
in terms of integrals. Let go be the RHS of the functional equation (3.18). It is analytic
and non-zero in the strip Re (1) € (= ”“ %). Furthermore the derivative f; approaches a
Constant when Im (1) — Z£o0 (ANZC) Hence we can introduce the Fourier transforms of
the derivatives

Folk) = .i / Fle ™ du (322)

—7r+A

(3.21)

<Re (u)<——
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d +0o0

o0 = [ R ak (3.23)
du oo

so that (3.18) becomes
1
Fok)(1 + ) = / 900 kg, (3.24)
2im ‘IO(M)
’7” <Re(u)<——

The solution by inverse Fourier transform gives

d 1 d d1 L+1 395
Ef‘)(”)_ﬂ/ w(a ogqo(u—w)>_—. (3.25)

sin(L + Dw
0<Re (w)<min(A,u+%1)
Integrating with respect to u and taking the w integration along the vertical lineRe (w) = € > 0
we obtain in the limit e — 0
folu) = log go(u) N L+1 /Oo Im 'logqo(u —iw) dw. (3.26)
2 T Jo sinh(L + 1)w
The boundary free energy f(s) arises from a boundary condition of type (r, s) with a
boundary field £. It does not depend on s. An integral form analogous to (3.26) can be derived
with go being replaced by the RHS of the boundary inversion relation
sin(u + &) sin(u — &) sin(u +& +r))sin(u — & —ri)
sin® A
sin £ (u — & — (r — DA) sin £ (u+& +4)
X
smL—“(u—S) s1nL—“(u+§+rA)
The solution must be analytic on the analyticity strip with the same zeros as
sin(u + &) sin(u — & —r). (3.28)
For r odd, this inversion relation admits the explicit solution
sin(u +&)sin(u — & —ri)

K(rs) (W) K(rs)( + 1) =

(3.27)

Koy () = sin A

1_[ Sinu + £ +2kA)  sin(u — & — 2k — DA)
_1sin(u+&+ 2k — DA)  sin(u — & — 2kA)

sin EL(u+ £+ 2k —DA)  sin 2w — & — 2kA)
sin £ (u + € +2kA)  sin 2w — & — 2k — D)

with zeros atu = —&, £ +rA, —& —m + A, € — 7w + (r + 1)A. Since these last two zeros are
not desired, the formula is only valid when these points are outside the analyticity strip, i.e.,

(3.29)

—r+A Y
”; <Re(g)<”2 — (3.30)

There is another solution when L + r is even
sin(u +& — A) sin(u — &)

sin” A
sin(w+&+ Q2% —1)+r)A)  sin(u — & +2k})
i sin(u+&+ 2k — L+7r)1) sin(u — & +(2k — 1)1)
sin £ (u + & + 2k — 1+7r)1)
nELw+E+ QK —1)+r)))
sin ﬂ(u —E+Q2k—Dn)
sin £ (u — £ +2(k — DA)

K(r,s) () =

L—r

X

1

(3.31)
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Table 9. The right and left boundary free energies f(ﬁ 5 = Sirs)(u) and f(ﬁ 5 = fo (A —u) of
the As model at the special point u = —A/2 and A — u = 34/2. The boundary free energies are
independent of s.

fo(=x/2) log[}(1 ++/2)]
r=1 r=2 r=3 r=4

fon(=2/2) 0 ylog}  jlog3  jlogj
frsBr/2) 0 jlog2  logi  jlog3

with zeros atu = —§, & +rX, &€+ (r — DA — 7, =& — (r — 2)1 — . Clearly, this formula is
only valid when

-7 + 3\
2

In the A4 and As cases, these formulas allow us to compute the boundary free energies.
The values for As are listed in table 9.

Some symmetries of the parafermion models are reflected in the boundary free energies.
The left/right symmetry is broken in general but the usual height reversal symmetry r, s —
r,L + 1 — s remains. Another symmetry comes from the fact that at a conformal point
the boundary weights factorize into edge weights. The interchange of the two independent
sublattices is then implemented by the Kac table symmetry r, s = L —r, L +1 — 5.

A <Re(®) < 2=t i (3.32)

4. Identifying integrable and conformal boundary conditions

For the unitary minimal A-D-E models with 0 < u < A there is a one-to-one
correspondence [4] between integrable and conformal boundary conditions labelled by (r, a) €
(Ag_2, G) that respect the symmetry of the generalized Kac table. In contrast, for the Z;
parafermionic A-D-E models with A — 7/2 < u < 0, the situation is more subtle and the
conformal labels (a, m) € (G, Zy) do not coincide with the natural labels (r, a) arising from
the construction [4] of integrable boundary conditions at the conformal point. It is therefore
necessary to make an identification of the integrable and conformal boundary conditions from
numerical data.

For the A type Z; models the dominant or vacuum configuration is given by the 2k periodic
sawtooth configuration

a=1{. 1,2 kk+1,k....2,1,.. ). “.1)

It is thus clear that the vacuum (¢, m) = (0, 0) on the left and the right should be identified
with the integrable boundary condition (r, a) = (1, 1) on the left and the right with the number
of faces N = 0 mod 2k and this is confirmed by numerical computation. Next, if we fix the
boundary condition to the vacuum (¢, m) = (0, 0) on the left or right we find from (2.12) that
the cylinder partition function reduces to a single character

Z0,01e.m) (@) = Ze.m))0.0)(q) = Xe.m)(q)- 4.2)

If we fix N mod 2k, this allows us to identify, up to possible ambiguities of conjugation, the
integrable boundary condition (r, s) on the left or right with the conformal labels (¢, m) from
the numerically determined cylinder partition functions. Once these identifications are made
they can be checked for consistency against all the other cylinder partition functions given
in (2.12).
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Proceeding in this way we find the following correspondence for the A; parafermions
with N = 0 mod 2k

s—1, r—1) r + s even
£, m) = 4.3)
k+1—s, k—r) r +s odd.

This is consistent with the Kac table symmetries, (r, s) +— (k+1—r, k+2—s) and (2.8), of both
the minimal models and parafermions. The correspondence for the A3, A4 and As parafermion
models is listed explicitly in table 10. The height reversal symmetry s — k + 2 — s, flips the
tables about their middle rows and corresponds at the level of the conformal algebra to a fusion
with the field ¢ ) which is of order two. The conjugacy (I, m) + (k — [, k —m) can be seen
in these tables as a central symmetry which centre has been indicated for the even sublattice.
The centre of the usual Kac table symmetry of the minimal models has been indicated too.

For a number of faces N # 0 mod 2k, the left/right symmetry of this correspondence is
broken. Keeping the same correspondence between integrable boundary conditions (r, s) and
fields (¢, m) on the left-hand side, the correspondence on the right-hand side for a number
of faces N = 1 mod 2k is simply given by the same table where the columns are shifted
cyclically to the left, the first column becoming the last column after a top/bottom flip as
shown in table 11 and so on for other mod properties. Therefore, for a number of faces N = k
mod 2k, the correspondence table is completely flipped about the middle row and we get the
height reversed correspondence. This result is supported by our numerical computations for
k = 2,3, 4 summarised in section 5.

This correspondence can be carried over to the D and E cases. For N = 0 mod k, the
result is again given by the trivial identification of A with Z; for the even sublattice and its
flip for the odd sublattice. The cylinder partition functions in this case are obtained from the
A cases by intertwiners [4]

Zrarira (@) = Z Vea“Z0%, (). 4.4)

Comparing our numerical results with table 8 allows us to obtain the correspondence given in
table 12 for the (D4, Zg) case with the number of faces N = 0 mod 4:

A4 X D4 — D4 X Zg
(a,r—1) if r+aisodd 4.5)
(rna) . .
(a,4—r) if r+aiseven.

For example, the partition function for the boundary conditions (r, a) = (1, O) on the left
and right is:

5
10|10(‘1) ZVS OOZf]S\l.g(Q)

= 211“1(61) + 221”13(61) + Z]Aflls(q) = x0.0(@) +2x2.0(q) + X@a.0(q). (4.6)
This result agrees with the alternative way of computing this partition function using the
correspondence (4.5) and the extended fusion algebra described in table 8:
Zig10@ = Z(6 31(0.5@)
= X.0)(@) + X3.0)(@) + Xc.0(q)
= X0.0(q@) + X4,0(q) + x2,0(q) + X2,0(q). 4.7)

More generally, the correspondence in the D and E cases relate (2.19) and (4.4) as two
compatible ways of computing partition functions in terms of A partition functions.
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Table 10. The correspondence (r, s) + (£, m) between the construction labels (r, s) € Ax X Ag+1
of the integrable boundary conditions and the parafermionic conformal fields (£, m) € Ag+1 X Zok
and its inverse, for k = 2, 3,4 and N = 0 mod 2k. The inverse is a 1:2 mapping. The conjugation
is realized in the even sub-lattices by a central inversion symmetry through the point indicated by
x, and the minimal model symmetry centre is indicated by e.

Ay (k=2)
s € Ay fe A
3 02|00 2 |63 &3
2 [anewy 1 &3 &3
1 | 00|02 0 | &3 o
1 2 reA, 0 1 2 3meZ,
*——e S>>0
A (k=3
3 /
4 [0 |6n] 00 3 &3 &8 &3
3 @ |wy| e 2 |83 &3 s
9 o] wn]eo 1 el &2 &3
1 00|y | 02 0 | & &y &
1 2 3 0 1 2 3 4 5 m
*—— o o S>>
As (k=4)
s {
5 | o) |02 | @) | 0o 4 | &3 ! o) e
4 [y |en|an|es 3 &3 | o] &8
3 | (20) | (22)4Ex2)| 20) 2 | wd o D o
2 |68 [0 | 6] 0y 1 & el & o
1|00 |@2 |0 ] e st a3 et &
1 9 3 4 r 0 1 2 3 4 5 6 T m
- o e . e e e e e

As in the A case, the table for N = 1 mod 4 is obtained by a shifting procedure on the
table, namely, shift the columns of the table to the left and interchange the B and C entries in
the last column (see table 13).

Using the intertwiner definition (4.4) and the correspondence formula (4.3), one finds that
this result holds for any D% +» and for the exceptional cases E¢, E7 and Ejg:

(a,r—1) if r+aisodd
(a,k—r) if r+aiseven
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Table 11. The correspondence (r,s) +— (£, m) between the construction labels (r, s) of the
integrable boundary conditions on the right and the parafermionic conformal fields (¢, m) for the
A models with L = 3, 4, 5 and number of faces N = 1 mod 2k.

Ay (k=2) Ay (k=3) A5 (k=4)

S S S
3 | (0,0) | (0,0 4 | (3,1) [ (0,0) ] (0,0) 5 [(0.2) | (4,2) | (0,0) | (0,0)
2 [ (LD (LY 3 |y [(22)](22) 4| (3.0) [(L,1) | (3.3) [ (3,3)
1 [02)](02) 2 | (L) [(2,0) | (2,0 3 |22 [(22) | (2,0) [ (2,0)
1 2 T 1 |31 ]02)|(02) 2 [(LD [ (3,1) [ (1,3) | (1,3)
1 2 3 r 1 [(42)](0.2) | (40) | (40)

1 2 3 4

Table 12. The correspondence (r, a) + (a, m) between integrable boundary conditions (r, a) and
conformal fields (a, m) for the (Dy4, Zg) model with the number of faces N = 0 mod 4. Within
these tables @ = B or C. The minimal model Kac table symmetry reduces to the left/right flip in
the A4 x Dy table.

a € D4
B c -
(@0) | (@2) | (a,2) | (a,0) st !
©3|n|01|©03 @93 e
(40) [(A2) | (42) | (4,0) A ) o)
reds 1 2 3 4 0 1 2 3 meZs
o o o S>>0 >0

Table 13. The correspondence (r, a) + (a, m) between integrable boundary conditions (r, a) and
conformal fields (a, m) for the (D4, Zg) model with the number of faces N = 1 mod 4. Note that
B* = C and C* = B.

B C
a€D4 (a72> (a72) (a,O) (a*,O)
0 (0.1)[(0:1)1{0:3) | (0:3)
A (4,2) | (4,2) | (4,0) | (A,0)

1 2 3 4 T€A4

wherea € G,r € Ay and m € Zjy;. This formula also holds for G = A, provided the ranges
of r and s are adjusted to begin at 1 rather than 0. Here the labelling of the nodes of the D and



5768 C Mercat and P A Pearce

exceptional E graphs is as follows:

L]
1 2 L3
2
D yio—a
k*
(5+1)
6 7 8
1 2 4 5 123156 1 2 3 4 6 7
Fe: Erio—e—e—4——o—+ Fgo—eo—o o o o

5. Numerical conformal spectra

In this section we describe our numerical analysis which confirm the results presented in
section 4. As explained in the previous section, the spectra for the D and E models are related
to the spectra of the A models by intertwiners (4.4) so we need only do numerics on the A
parafermion models. The Yang-Baxter equation, boundary Yang—Baxter equation, reflection
symmetry, inversion relation, crossing symmetry, height reversal symmetry and commutation
of double row transfer matrices for various number of faces and all boundary conditions were
checked numerically. The numerics were carried out for finite size row transfer matrices and
extrapolated to large sizes. The spectra were obtained by numerical diagonalization of the row
transfer matrices. For the A, lattice models the maximum number of faces N in a row that we
found manageable due to machine limitations was 22, 18 and 16 respectively for L = 3, 4, 5.

We first studied the boundary conditions which from (4.2) should yield single characters,
such as (r, 1|1, 1) or (1, s|1, 1) with the number of faces N = 0 mod 2k. We computed
numerically the double row transfer matrices for these boundary conditions for increasing N
and numerically diagonalized them to obtain the spectra. Allowing for the contribution of
the bulk and boundary free energies, the central charge and the geometric factor, we fit the
data corresponding to the largest eigenvalues of these transfer matrices, in negative integers
powers of N to extract the conformal weight A. This value was compared with the entries in
the parafermion Kac table to determine (up to conjugacy) the primary field associated with the
given boundary condition.

In the As case the level is k = 4 and machine limitations prevent us from dealing with
more than N = 16 faces. Consequently, this direct method would give us only two numbers,
for N = 8 and 16 faces respectively. However, some symmetries can be used to obtain more
data for extrapolation to large N by merging sequences for related boundary conditions and
other mod properties as we now explain. Firstly, height reversal symmetry allows us to merge
the sequence (r, s|1, 1) for N = 0 mod 2k with the sequence (r, s|1, L) for N = k mod
2k. More generally, other sequences converge to the same character, namely (r, s|m, 1) for
N = 2k—m mod 2k and (r, s|m, L) for N = k—m mod 2k. Indeed, these boundary conditions
are all compatible with the sawtooth shaped ground state. We discovered that this shift and
flip procedure not only applies for the vacuum but for any boundary condition (see table 11).
This method of interleaving sequences allowed us to improve dramatically the accuracy of
our numerics. A typical extrapolated numerical estimate of a conformal weight agrees to 5 or
6 digit accuracy with the exact entry in the parafermion Kac table.

In addition to producing the correct conformal weight A, the numerical spectra should, in
the case of a single character, also reproduce the correct degeneracies of the associated string
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Figure 1. The extrapolated sequences corresponding to the first ten energy levels of the double row
transfer matrix for the As parafermion model with (1, 3|1, 3) boundary conditions. The horizontal
axis is 1/N where N is the number of faces.

function x(¢.m). This means that if the eigenvalues AV of the double row transfer matrix with

N faces are placed in decreasing order withn = 0, 1, 2, ... then
27 sin ¥ 1
AN = AWM exp [ 22 a,+o| — 5.1

where a,, is an increasing integer sequence encoding the degeneracies in the character in terms
of the modular parameter g = exp(—%’ sin ). The leading corrections in the 0(%) term are
negative integer powers of N so a plot of the normalized log value against 1/N becomes a
straight line near zero and a polynomial fitin 1/N gives a good extrapolation to N = oo.

After investigating all the boundary conditions leading to a single character we turned
to the other boundary conditions and compared the numerical spectra with the predictions of
the parafermion fusion algebra. In these cases the cylinder partition functions are sums of
characters. As a typical example, consider the (As, Zg) parafermion model with (1, 3|1, 3)
boundary conditions and N = 0 mod 8. According to table 10, the normalized partition
function should converge to the sum of characters:

Z1313(@) = Z2,002.0(@) = X0.0(q) + X2.0(q) + X4.0/(q)
=q U +q" P +q+2¢* +2¢° +3¢"7 +5¢° +o(¢?))  (5.2)

so the energy levels and their degeneracies should be given by the sequence
fa,} =101, 1,4, 422,771,723, (5.3)

13030 13233
Table 14 and figure 1 show a comparison of the extrapolated sequences and the exact values.
The accuracy in other cases is at least as good as this case. As can be seen in figure 1,
in extrapolating the sequences, the eigenvalues cannot simply be ordered according to their
values at a given N. However, a given eigenvalue can be uniquely identified and tracked for
each N by examining its pattern of zeros in the complex u-plane.

The D and E parafermion models can be studied numerically by the same direct numerical
diagonalization techniques as the A-type models. However, in these cases, it is better to use
the intertwiner relations (4.4) to relate [27] the spectra of the D or E model to the spectra
of various sectors (or boundary conditions) of the associated A model with the same Coxeter
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Table 14. Comparison of the exact values and numerical estimates of the first ten energy levels for
the As parafermion model with (1, 3|1, 3) boundary conditions. The cylinder partition function is
Z1313(q) = Z2,0)12.0)(q) = X0.0)(@) + X2,0)(@) + X4.0)(9)-

Energy 1 2 3 4 5 6 7 8 9 10
Numerical 1.04 x 1076 0.33331 0.999502 1.33363 1.33304 1.99795 2.01268 2.35139 2.33541 2.3362
Exact 0 % 1 % % 2 2 % % %

number. In this way, for example, the spectra of the D, model with given boundary conditions
is related to sectors of the As model. Although it is not necessary to directly diagonalize the
double row transfer matrices of the D and E parafermion models we did diagonalize some
cases as checks on the numerics.

6. Discussion

In this paper we have shown how to associate integrable lattice boundary conditions to each
conformal boundary condition (a, m) of the A-D-E 52(2) parafermion models. Moreover, we
have shown how the conformal labels (a, m) of the string functions are related to the labels
(r, @) that naturally arise in the construction of the integrable boundary conditions. In contrast
to the unitary minimals models, we observe (3.12) that the symmetry between the left and
right boundaries is broken for the parafermion models due to the presence of an intrinsic cyclic
chirality. We note also that there does not exist a gauge in which the local Boltzmann weights
of the parafermion lattice models are all positive. Since the local weights should represent
probabilities, this means that these models are not well defined as lattice models in statistical
mechanics. Nevertheless, as is also the case for the non-unitary minimal models, these models
yield well-defined conformal field theories in the continuum scaling limit.

In this paper we have focussed on the principal parafermion models. It would be of interest
to extend our results to the non-principal models. We expect these models to correspond to
fused versions of the lattice models studied here.
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