L¹ Stability for scalar balance laws. Control of the continuity equation with a non-local flow.

Magali Mercier

Institut Camille Jordan, Lyon

Beijing, 16th June 2010

Pedestrian traffic

We consider

$$\partial_t u + \operatorname{Div}(uV(x,u)) = 0; \quad u_0 \in (L^1 \cap L^\infty \cap \mathsf{BV})(\mathbb{R}^N; \mathbb{R})$$

whith $V(u) = v(\eta *_{x} u)w(x)$.

Table of contents

- 1 L¹ Stability with respect to flow and source
 - Previous Results
 - Estimate on the total variation
 - Dependence with respect to flow and source
- The continuity equation with a non-local flow
 - Existence and uniqueness of a solution
 - Gâteaux derivative of the semi-group
 - Extrema of a Cost Functional

Introduction of the problem

Scalar balance laws:

$$\begin{cases} \partial_t u + \operatorname{Div} f(t, x, u) = F(t, x, u) & (t, x) \in \mathbb{R}_+^* \times \mathbb{R}^N \\ u(0, x) = u_0(x) \in \mathbf{L}^1 \cap \mathbf{L}^{\infty} \cap \mathsf{BV} & x \in \mathbb{R}^N \end{cases},$$

where
$$f \in \mathcal{C}^2([0,T] \times \mathbb{R}^N \times \mathbb{R}; \mathbb{R}^N)$$
, $F \in \mathcal{C}^1([0,T] \times \mathbb{R}^N \times \mathbb{R}; \mathbb{R})$.

- Existence and uniqueness, dependence w.r.t. initial conditions: Kružkov Theorem (1970, Mat. Sb. (N.S.));
- Dependence w.r.t. flow and source?

Theorem (Kružkov, 1970, Mat. Sb. (N.S.))

We consider the equation

$$\partial_t u + \operatorname{Div} f(t, x, u) = F(t, x, u),$$

with initial condition $u_0 \in L^1 \cap L^\infty(\mathbb{R}^N)$. Under the condition

(K)
$$\forall A > 0$$
, $\partial_u f \in L^{\infty}(\Omega_A)$, $\partial_u (F - \operatorname{div} f) \in L^{\infty}(\Omega_A)$
and $F - \operatorname{div} f \in L^{\infty}(\Omega_A)$

then there exists a unique weak entropy solution $u \in L^{\infty}([0, T]; L^{1}(\mathbb{R}^{N}; \mathbb{R}))$ continuous from the right in time.

Let
$$v_0 \in (\mathbf{L}^1 \cap \mathbf{L}^{\infty})(\mathbb{R}^N; \mathbb{R})$$
, then

$$||(u-v)(t)||_{L^1} \le e^{\gamma t} ||u_0-v_0||_{L^1}$$

where $\gamma = \|\partial_u F\|_{\mathsf{L}^{\infty}(\Omega_M)}$

Previous Results

Theorem (Kružkov, 1970, Mat. Sb. (N.S.))

We consider the equation

$$\partial_t u + \operatorname{Div} f(t, x, u) = F(t, x, u),$$

with initial condition $u_0 \in L^1 \cap L^\infty(\mathbb{R}^N)$. Under the condition

(K)
$$\forall A > 0$$
, $\partial_u f \in L^{\infty}(\Omega_A)$, $\partial_u (F - \operatorname{div} f) \in L^{\infty}(\Omega_A)$
and $F - \operatorname{div} f \in L^{\infty}(\Omega_A)$

then there exists a unique weak entropy solution $u \in L^{\infty}([0, T]; L^{1}(\mathbb{R}^{N}; \mathbb{R}))$ continuous from the right in time. Let $v_{0} \in (L^{1} \cap L^{\infty})(\mathbb{R}^{N}; \mathbb{R})$, then

$$||(u-v)(t)||_{L^1} \leq e^{\gamma t} ||u_0-v_0||_{L^1}$$

where $\gamma = \|\partial_{\mathbf{u}} F\|_{\mathbf{L}^{\infty}(\Omega_{\mathbf{M}})}$.

If $f,g:\mathbb{R}\to\mathbb{R}^N$ are globally lipschitz, then $\exists C>0$ such that $\forall u_0,v_0\in L^1\cap L^\infty(\mathbb{R}^N;\mathbb{R})$ initial conditions for

$$\partial_t u + \operatorname{Div} f(u) = 0, \qquad \partial_t v + \operatorname{Div} g(v) = 0.$$

with furthermore $v_0 \in \mathsf{BV}(\mathbb{R}^N; \mathbb{R})$, we have $\forall t \geq 0$,

$$||(u-v)(t)||_{\mathsf{L}^1} \le ||u_0-v_0||_{\mathsf{L}^1} + C t \, \mathrm{TV}(v_0) \, \mathsf{Lip}(f-g).$$

Theorem (Chen & Karlsen, 2005, Commun. Pure Appl. Anal.)

With
$$f(t, x, u) = \lambda(x) I(u)$$
, $g(t, x, v) = \mu(x) m(v)$, no source $F = G = 0$,

$$||(u-v)(t)||_{\mathsf{L}^{1}} \leq ||u_{0}-v_{0}||_{\mathsf{L}^{1}} + C_{1} t (||\lambda-\mu||_{\mathsf{L}^{\infty}} + ||\lambda-\mu||_{\mathsf{W}^{1,1}} + ||I-m||_{\mathsf{L}^{\infty}} + ||I-m||_{\mathsf{W}^{1,\infty}})$$

where $C_1 = C \sup_{[0,T]} (\mathrm{TV}(u(t)), \mathrm{TV}(v(t)))$.

Theorem (Lucier, 1986, Math. Comp.)

If $f,g:\mathbb{R}\to\mathbb{R}^N$ are globally lipschitz, then $\exists C>0$ such that $\forall u_0,v_0\in L^1\cap L^\infty(\mathbb{R}^N;\mathbb{R})$ initial conditions for

$$\partial_t u + \operatorname{Div} f(u) = 0, \qquad \partial_t v + \operatorname{Div} g(v) = 0.$$

with furthermore $v_0 \in \mathsf{BV}(\mathbb{R}^N; \mathbb{R})$, we have $\forall t \geq 0$,

$$||(u-v)(t)||_{\mathsf{L}^1} \le ||u_0-v_0||_{\mathsf{L}^1} + C t \, \mathrm{TV}(v_0) \, \mathsf{Lip}(f-g).$$

Theorem (Chen & Karlsen, 2005, Commun. Pure Appl. Anal.)

With $f(t, x, u) = \lambda(x) I(u)$, $g(t, x, v) = \mu(x) m(v)$, no source F = G = 0,

$$\begin{aligned} \left\| (u-v)(t) \right\|_{\mathsf{L}^{1}} &\leq \left\| u_{0} - v_{0} \right\|_{\mathsf{L}^{1}} + C_{1} t \left(\left\| \lambda - \mu \right\|_{\mathsf{L}^{\infty}} + \left\| \lambda - \mu \right\|_{\mathsf{W}^{1,1}} \\ &+ \left\| I - m \right\|_{\mathsf{L}^{\infty}} + \left\| I - m \right\|_{\mathsf{W}^{1,\infty}} \right) \end{aligned}$$

where $C_1 = C \sup_{[0,T]} (\mathrm{TV}(u(t)), \mathrm{TV}(v(t)))$.

Total Variation

Definition: For $u \in L^1_{loc}(\mathbb{R}^N; \mathbb{R})$ we denote

$$\begin{split} \mathrm{TV}(u) &= & \sup \left\{ \int_{\mathbb{R}^{N}} u \mathrm{div} \Psi \, ; \quad \Psi \in \mathcal{C}^{1}_{c}(\mathbb{R}^{N}; \mathbb{R}^{N}) \, , \quad \|\Psi\|_{L^{\infty}} \leq 1 \right\} \, ; \\ \mathrm{and} \\ \mathsf{BV}(\mathbb{R}^{N}; \mathbb{R}) &= & \left\{ u \in L^{1}_{loc}; \mathrm{TV}(u) < \infty \right\} \, . \end{split}$$

When f and F depend only on u we have

$$u_0 \in \mathsf{L}^\infty \cap \mathsf{BV} \Rightarrow \forall t \geq 0, \quad u(t) \in \mathsf{L}^\infty \cap \mathsf{BV}$$

and, denoting $\gamma = \|\partial_{\mathbf{u}} F\|_{\mathbf{L}^{\infty}(\Omega_{\mathbf{M}})}$,

$$\mathrm{TV}(u(t)) \leq \mathrm{TV}(u_0) e^{\gamma t} \,.$$

Goal: we want a more general estimate on the total variation.

Estimate on the total variation

Theorem (TV — Colombo, Mercier, Rosini, 2009, Comm. Math. Sciences) Assume (f,F) satisfies (K) + (H1). Let $\kappa_0 = (2N+1)\|\nabla_x\partial_u f\|_{L^\infty(\Omega_M)} + \|\partial_u F\|_{L^\infty(\Omega_M)}$. If $u_0 \in (L^\infty \cap BV)(\mathbb{R}^N;\mathbb{R})$, then $\forall t \in [0,T]$, $u(t) \in (L^\infty \cap BV)(\mathbb{R}^N;\mathbb{R})$ and

$$\begin{split} \mathrm{TV}(u(t)) \leq & \mathrm{TV}(u_0) e^{\kappa_0 t} \\ & + N W_N \int_0^t e^{\kappa_0 (t-\tau)} \int_{\mathbb{R}^N} \left\| \nabla_x (F - \mathrm{div} f)(\tau, x, \cdot) \right\|_{L^\infty(\mathrm{d} u)} \mathrm{d} x \, \mathrm{d} \tau \,. \end{split}$$

$$(\mathsf{H1}): \ \int_0^T \int_{\mathbb{R}^N} \left\| \nabla_x (F - \mathrm{div} f) \right\|_{\mathsf{L}^\infty(\mathrm{d} u)} \mathrm{d} x \mathrm{d} t < \infty \ \mathsf{and} \ \nabla_x \partial_u f \in \mathsf{L}^\infty(\Omega_M)$$

Remark: In some particular cases, we re-obtain optimal known estimates:

- f, F depending only on u,
- f, F not depending on u.

Estimate on the total variation

Theorem (TV — Colombo, Mercier, Rosini, 2009, Comm. Math. Sciences) Assume (f,F) satisfies (K)+(H1). Let $\kappa_0=(2N+1)\|\nabla_{\mathbf{x}}\partial_u f\|_{\mathbf{L}^\infty(\Omega_{\mathbf{M}})}+\|\partial_u F\|_{\mathbf{L}^\infty(\Omega_{\mathbf{M}})}.$ If $u_0\in(\mathbf{L}^\infty\cap\mathsf{BV})(\mathbb{R}^N;\mathbb{R})$, then $\forall t\in[0,T]$, $u(t)\in(\mathbf{L}^\infty\cap\mathsf{BV})(\mathbb{R}^N;\mathbb{R})$ and

$$\begin{split} \mathrm{TV}(u(t)) \leq & \mathrm{TV}(u_0) e^{\kappa_0 t} \\ &+ N W_N \int_0^t e^{\kappa_0 (t-\tau)} \int_{\mathbb{R}^N} \left\| \nabla_x (F - \mathrm{div} f)(\tau, x, \cdot) \right\|_{L^\infty(\mathrm{d} u)} \mathrm{d} x \, \mathrm{d} \tau \,. \end{split}$$

(H1):
$$\int_0^T \int_{\mathbb{R}^N} \|\nabla_x (F - \operatorname{div} f)\|_{L^{\infty}(\mathrm{d}u)} \mathrm{d}x \mathrm{d}t < \infty \text{ and } \nabla_x \partial_u f \in L^{\infty}(\Omega_M)$$

Remark: In some particular cases, we re-obtain optimal known estimates:

- f, F depending only on u,
- f, F not depending on u.

Estimate on the total variation

Theorem (TV — Colombo, Mercier, Rosini, 2009, Comm. Math. Sciences)

Assume (f, F) satisfies (K) + (H1). Let

 $\kappa_0 = (2N+1)\|\nabla_{\mathbf{x}}\partial_{\mathbf{u}}f\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{\mathbf{u}}F\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})}. \text{ If } u_0 \in (\mathsf{L}^{\infty}\cap\mathsf{BV})(\mathbb{R}^N;\mathbb{R}),$

then $\forall t \in [0, T], \ u(t) \in (\mathsf{L}^{\infty} \cap \mathsf{BV})(\mathbb{R}^N; \mathbb{R})$ and

$$\begin{split} \mathrm{TV}(u(t)) \leq & \mathrm{TV}(u_0) e^{\kappa_0 t} \\ & + N W_N \int_0^t e^{\kappa_0 (t-\tau)} \int_{\mathbb{R}^N} \left\| \nabla_x (F - \mathrm{div} f)(\tau, x, \cdot) \right\|_{L^\infty(\mathrm{d}u)} \mathrm{d}x \, \mathrm{d}\tau \,. \end{split}$$

(H1):
$$\int_0^T \int_{\mathbb{R}^N} \|\nabla_x (F - \operatorname{div} f)\|_{L^{\infty}(\mathrm{d}u)} \mathrm{d}x \mathrm{d}t < \infty \text{ and } \nabla_x \partial_u f \in L^{\infty}(\Omega_M)$$

Remark: In some particular cases, we re-obtain optimal known estimates:

- f, F depending only on u,
- f, F not depending on u.

L¹ Stability of the solution

Theorem (Flow/Source... — Colombo, Mercier, Rosini, 2009)

Assume (f,F),(g,G) satisfy **(K)**, (f,F) satisfies **(H1)** and (f-g,F-G) satisfies **(H2)**. Let $u_0, v_0 \in (L^1 \cap L^\infty \cap BV)(\mathbb{R}^N; \mathbb{R})$. We denote

$$\kappa = 2N \|\nabla_{\mathbf{x}} \partial_{\mathbf{u}} f\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{\mathbf{u}} F\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{\mathbf{u}} (F - G)\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})}.$$

Let u and v be the solutions associated to (f, F) and (g, G) respectively and with initial conditions u_0 and v_0 .

$$(\mathbf{H2}): \ \partial_u(F-G) \in \mathsf{L}^\infty(\Omega_M), \ \partial_u(f-g) \in \mathsf{L}^\infty(\Omega_M) \ ext{and} \ \int_{\mathbb{R}^N}^T \int_{\mathbb{R}^N} \left\| F-G - \operatorname{div}(f-g)
ight\|_{\mathsf{L}^\infty(\mathrm{d}u)} \mathrm{d}x \mathrm{d}t < \infty.$$

L¹ Stability of the solution

Theorem (Flow/Source... — Colombo, Mercier, Rosini, 2009)

Assume (f, F), (g, G) satisfy **(K)**, (f, F) satisfies **(H1)** and (f - g, F - G) satisfies **(H2)**. Let $u_0, v_0 \in (L^1 \cap L^\infty \cap BV)(\mathbb{R}^N; \mathbb{R})$. We denote

$$\kappa = 2N\|\nabla_x\partial_u f\|_{\mathsf{L}^\infty(\Omega_{\boldsymbol{M}})} + \|\partial_u F\|_{\mathsf{L}^\infty(\Omega_{\boldsymbol{M}})} + \left\|\partial_u (F-G)\right\|_{\mathsf{L}^\infty(\Omega_{\boldsymbol{M}})}.$$

Let u and v be the solutions associated to (f, F) and (g, G) respectively and with initial conditions u_0 and v_0 .

(H2):
$$\partial_u(F - G) \in L^{\infty}(\Omega_M)$$
, $\partial_u(f - g) \in L^{\infty}(\Omega_M)$ and $\int_0^T \int_{\mathbb{R}^N} \|F - G - \operatorname{div}(f - g)\|_{L^{\infty}(\mathrm{d}u)} \mathrm{d}x \mathrm{d}t < \infty$.

Theorem (...Flow/Source — Colombo, Mercier, Rosini, 2009) then $\forall t \in [0, T]$:

$$\begin{split} \big\| (u-v)(t) \big\|_{L^1} &\leq e^{\kappa t} \|u_0 - v_0\|_{L^1} + \frac{e^{\kappa_0 t} - e^{\kappa t}}{\kappa_0 - \kappa} \mathrm{TV}(u_0) \big\| \partial_u (f-g) \big\|_{L^\infty} \\ &+ \int_0^t \frac{e^{\kappa_0 (t-\tau)} - e^{\kappa (t-\tau)}}{\kappa_0 - \kappa} \int_{\mathbb{R}^{\boldsymbol{N}}} \big\| \nabla_x (F - \mathrm{div} f)(\tau, x, \cdot) \big\|_{L^\infty(\mathrm{d} u)} \mathrm{d} x \mathrm{d} \tau \\ & \times N W_N \big\| \partial_u (f-g) \big\|_{L^\infty} \\ &+ \int_0^t e^{\kappa (t-\tau)} \int_{\mathbb{R}^{\boldsymbol{N}}} \big\| ((F-G) - \mathrm{div} (f-g))(\tau, x, \cdot) \big\|_{L^\infty(\mathrm{d} u)} \mathrm{d} x \mathrm{d} \tau \,. \end{split}$$

Remark: As before, we re-obtain known estimates in some particular cases

- f, g depend only on u, F = G = 0,
- f, g, F, G not depend on u.

Theorem (...Flow/Source — Colombo, Mercier, Rosini, 2009) then $\forall t \in [0, T]$:

$$\begin{split} \big\| (u-v)(t) \big\|_{L^1} &\leq e^{\kappa t} \|u_0 - v_0\|_{L^1} + \frac{e^{\kappa_0 t} - e^{\kappa t}}{\kappa_0 - \kappa} \mathrm{TV}(u_0) \big\| \partial_u (f-g) \big\|_{L^\infty} \\ &+ \int_0^t \frac{e^{\kappa_0 (t-\tau)} - e^{\kappa (t-\tau)}}{\kappa_0 - \kappa} \int_{\mathbb{R}^{N}} \big\| \nabla_x (F - \mathrm{div} f)(\tau, x, \cdot) \big\|_{L^\infty(\mathrm{d}u)} \mathrm{d}x \mathrm{d}\tau \\ &\times NW_N \big\| \partial_u (f-g) \big\|_{L^\infty} \\ &+ \int_0^t e^{\kappa (t-\tau)} \int_{\mathbb{R}^{N}} \big\| ((F-G) - \mathrm{div} (f-g))(\tau, x, \cdot) \big\|_{L^\infty(\mathrm{d}u)} \mathrm{d}x \mathrm{d}\tau \,. \end{split}$$

Remark: As before, we re-obtain known estimates in some particular cases

- f, g depend only on u, F = G = 0,
- f, g, F, G not depend on u.

The continuity equation with a non-local flow

Continuity equation :

$$\partial_t u + \operatorname{Div}(uV(x,u(t))) = 0, \qquad u(0,\cdot) = u_0 \in \mathsf{L}^1 \cap \mathsf{L}^\infty \cap \mathsf{BV},$$

where $V: \mathbb{R}^N \times L^1(\mathbb{R}^N; \mathbb{R}) \to \mathcal{C}^2(\mathbb{R}^N; \mathbb{R})$ is a non-local averaging functional, for example, if $v: \mathbb{R} \to \mathbb{R}$ is a regular function:

- $V(u) = v\left(\int_{\mathbb{R}} u \, \mathrm{d}x\right)$ for a supply-chain [Armbuster et al.]
- $V(u) = v(\eta *_{x} u)w(x)$ for pedestrian traffic [Colombo et al.].

Goal

- Existence and uniqueness of an entropy solution?
- Gâteaux differentiability of the semi-group w.r.t. initial conditions?

Introduction of the problem

Continuity equation:

$$\partial_t u + \operatorname{Div}(uV(x, u(t))) = 0, \qquad u(0, \cdot) = u_0 \in L^1 \cap L^\infty \cap BV,$$

where $V: \mathbb{R}^N \times L^1(\mathbb{R}^N; \mathbb{R}) \to \mathcal{C}^2(\mathbb{R}^N; \mathbb{R})$ is a non-local averaging functional, for example, if $v: \mathbb{R} \to \mathbb{R}$ is a regular function :

- ullet $V(u)=v\left(\int_{\mathbb{R}}u\,\mathrm{d}x
 ight)$ for a supply-chain [Armbuster et al.]
- $V(u) = v(\eta *_{\times} u)w(x)$ for pedestrian traffic [Colombo et al.].

Goal:

- Existence and uniqueness of an entropy solution?
- Gâteaux differentiability of the semi-group w.r.t. initial conditions?

Pedestrian traffic

We consider

$$\partial_t u + \operatorname{Div}(uV(x,u)) = 0; \quad u_0 \in (\mathbf{L}^1 \cap \mathbf{L}^\infty \cap \mathsf{BV})(\mathbb{R}^N; \mathbb{R})$$

whith $V(u) = v(\eta *_{\times} u)w(x)$.

Theorem (Traffic — Colombo, Herty, Mercier, 2010, ESAIM-Control Opt. Calc. Var.)

If V satisfies (V1), then there exists a time $T_{\text{ex}}>0$ and a unique entropy solution

$$u \in \mathcal{C}^{0}([0, T_{\mathsf{ex}}[; \mathbf{L}^{1} \cap \mathbf{L}^{\infty} \cap \mathsf{BV}))$$

and we denote $S_t u_0 = u(t, \cdot)$.

We can bound by below the time of existence by

$$T_{\text{ex}} \geq \sup \left\{ \sum_{n} \frac{\ln(\alpha_{n+1}/\alpha_n)}{C(\alpha_{n+1})}; (\alpha_n)_n \text{ strict. increasing, } \alpha_0 = \|u_0\|_{L^{\infty}} \right\}.$$

If furthermore, V satisfies (V2) then

$$u_0 \in \mathbf{W}^{2,1} \cap \mathbf{L}^{\infty} \Rightarrow \forall t \in [0, T_{\mathsf{ex}}[, u(t) \in \mathbf{W}^{2,1}]$$

Hypotheses

(V1) There exists $C \in \mathsf{L}^\infty_{\mathrm{loc}}(\mathbb{R}_+;\mathbb{R}_+)$ such that $\forall u \in \mathsf{L}^1(\mathbb{R}^N;\mathbb{R})$

$$V(u) \in \mathbf{L}^{\infty}, \qquad \qquad \left\| \nabla_{x} V(u) \right\|_{\mathbf{L}^{\infty}} \leq C(\|u\|_{\mathbf{L}^{\infty}}),$$

$$\left\| \nabla_{x} V(u) \right\|_{\mathbf{L}^{1}} \leq C(\|u\|_{\mathbf{L}^{\infty}}), \qquad \qquad \left\| \nabla_{x}^{2} V(u) \right\|_{\mathbf{L}^{1}} \leq C(\|u\|_{\mathbf{L}^{\infty}}),$$

and $\forall u_1, u_2 \in \mathbf{L}^1(\mathbb{R}^N; \mathbb{R})$

$$||V(u_1) - V(u_2)||_{L^{\infty}} \le C(||u_1||_{L^{\infty}})||u_1 - u_2||_{L^1},$$

$$\|\nabla_x(V(u_1)-V(u_2))\|_{L^1} \leq C(\|u_1\|_{L^\infty})\|u_1-u_2\|_{L^1}$$
.

(V2) There exists $C \in \mathbf{L}^{\infty}_{loc}(\mathbb{R}_+; \mathbb{R}_+)$ such that $\left\| \nabla^3_x V(u) \right\|_{L^{\infty}} \leq C(\|u\|_{\mathbf{L}^{\infty}}).$

Idea of the proof:

Let us introduce the space $X_{\alpha} = \mathbf{L}^1 \cap \mathbf{BV}(\mathbb{R}^N; [0, \alpha])$ and the application \mathcal{Q} that associates to $w \in \mathcal{X}_{\beta} = \mathcal{C}^0([0, T[, X_{\beta})$ the solution $u \in \mathcal{X}_{\beta}$ of the Cauchy problem

$$\partial_t u + \operatorname{Div}(uV(w)) = 0, \quad u(0,\cdot) = u_0 \in X_\alpha$$

For w_1, w_2 , we obtain thanks to the estimate of Thm (Flow/Source)

$$\|\mathcal{Q}(w_1) - \mathcal{Q}(w_2)\|_{\mathsf{L}^{\infty}([0,T[,\mathsf{L}^1)])} \le f(T) \|w_1 - w_2\|_{\mathsf{L}^{\infty}([0,T[,\mathsf{L}^1)])}$$

where f is increasing , f(0)=0 and $f\to\infty$ when $T\to\infty$. Then we apply the Banach Fixed Point Theorem.

Idea of the proof:

Let us introduce the space $X_{\alpha} = \mathbf{L}^1 \cap \mathbf{BV}(\mathbb{R}^N; [0, \alpha])$ and the application \mathcal{Q} that associates to $w \in \mathcal{X}_{\beta} = \mathcal{C}^0([0, T[, X_{\beta})$ the solution $u \in \mathcal{X}_{\beta}$ of the Cauchy problem

$$\partial_t u + \operatorname{Div}(uV(w)) = 0, \quad u(0,\cdot) = u_0 \in X_\alpha$$

For w_1, w_2 , we obtain thanks to the estimate of Thm (Flow/Source)

$$\|Q(w_1) - Q(w_2)\|_{L^{\infty}([0,T[,L^1)]} \le f(T) \|w_1 - w_2\|_{L^{\infty}([0,T[,L^1)]},$$

where f is increasing , f(0) = 0 and $f \to \infty$ when $T \to \infty$. Then we apply the Banach Fixed Point Theorem.

Classical case : semi-group Lipschitz, not differentiable. Shift differentiability [Bressan, Guerra, Bianchini,...].

Definition: The application $S: L^1(\mathbb{R}^N; \mathbb{R}) \to L^1(\mathbb{R}^N; \mathbb{R})$ is said to be L^1 *Gâteaux differentiable in* $u_0 \in L^1$ *in the direction* $r_0 \in L^1$ if there exists a linear continuous application $DS(u_0): L^1 \to L^1$ such that

$$\left\| \frac{S(u_0 + hr_0) - S(u_0)}{h} - DS(u_0)(r_0) \right\|_{L^1} \to 0 \quad \text{when } h \to 0$$

Formally, we expect the Gâteaux derivative of the semi-group to be the solution of the linearized problem :

$$\partial_t r + \operatorname{Div}(rV(u) + uDV(u)(r)) = 0$$
, $r(0,\cdot) = r_0$

Classical case: semi-group Lipschitz, not differentiable. Shift differentiability [Bressan, Guerra, Bianchini,...].

Definition: The application $S: L^1(\mathbb{R}^N; \mathbb{R}) \to L^1(\mathbb{R}^N; \mathbb{R})$ is said to be L^1 *Gâteaux differentiable in* $u_0 \in L^1$ *in the direction* $r_0 \in L^1$ if there exists a linear continuous application $DS(u_0): L^1 \to L^1$ such that

$$\left\| \frac{S(u_0 + hr_0) - S(u_0)}{h} - DS(u_0)(r_0) \right\|_{L^1} \to 0 \quad \text{when } h \to 0$$

Formally, we expect the Gâteaux derivative of the semi-group to be the solution of the linearized problem :

$$\partial_t r + \operatorname{Div}(rV(u) + uDV(u)(r)) = 0, \quad r(0,\cdot) = r_0.$$

We introduce the hypotheses:

(V3) $V: \mathbf{L}^1 \to \mathcal{C}^2$ is differentiable and there exists $C \in \mathbf{L}^{\infty}_{\text{loc}}$ such that $\forall u, r \in \mathbf{L}^1$,

$$\begin{aligned} \left\| V(u+r) - V(u) - DV(u)(r) \right\|_{W^{2,\infty}} &\leq C \left(\|u\|_{L^{\infty}} + \|u+r\|_{L^{\infty}} \right) \|r\|_{L^{1}}^{2}, \\ \left\| DV(u)(r) \right\|_{W^{2,\infty}} &\leq C (\|u\|_{L^{\infty}}) \|r\|_{L^{1}}. \end{aligned}$$

(V4) There exists $C \in \mathbf{L}^{\infty}_{loc}(\mathbb{R}_+; \mathbb{R}_+)$ such that $\forall u, \tilde{u}, r \in \mathbf{L}^1$

$$\begin{aligned} \left\| \operatorname{div} \left(V(\tilde{u}) - V(u) - DV(u)(\tilde{u} - u) \right) \right\|_{\mathsf{L}^{1}} &\leq C(\|\tilde{u}\|_{\mathsf{L}^{\infty}} + \|u\|_{\mathsf{L}^{\infty}})(\|\tilde{u} - u\|_{\mathsf{L}^{1}})^{2} \\ \left\| \operatorname{div} \left(DV(u)(r) \right) \right\|_{\mathsf{L}^{1}} &\leq C(\|u\|_{\mathsf{L}^{\infty}}) \|r\|_{\mathsf{L}^{1}} \,. \end{aligned}$$

We show that the linearised problem has a unique entropy solution :

Theorem (Linearised — Colombo, Herty, Mercier, 2010)

Assume that V satisfies **(V1)**, **(V2)**, **(V3)**. Let $u \in \mathcal{C}^0([0, T_{ex}[; \mathbf{W}^{1,\infty} \cap \mathbf{W}^{1,1}], r_0 \in (\mathbf{L}^1 \cap \mathbf{L}^\infty)(\mathbb{R}^N; \mathbb{R})$. Then the linearised problem

$$\partial_t r + \operatorname{Div}(rV(u) + uDV(u)(r)) = 0$$
, with $r(0, x) = r_0$

has a unique entropy solution $r \in \mathcal{C}^0([0, T_{ex}[; \mathbf{L}^1(\mathbb{R}^N; \mathbb{R})))$ and we denote $\Sigma_t^u r_0 = r(t, \cdot)$.

If furthermore $r_0 \in W^{1,1}$, then $\forall t \in [0, T_{ex}[, r(t) \in W^{1,1}]$.

Theorem (Gâteaux Derivative — Colombo, Herty, Mercier, 2010)

Assume that V satisfies (V1),(V2),(V3),(V4). Let $u_0 \in W^{1,\infty} \cap W^{2,1}$, $r_0 \in W^{1,1} \cap L^{\infty}$ and let T_{ex} be the time of existence for the initial problem given by Thm (Trafic).

Then, for all $t \in [0, T_{ex}[$ the local semi-group of the pedestrian traffic problem is L^1 Gâteaux differentiable in the direction r_0 and

$$DS_t(u_0)(r_0) = \Sigma_t^{S_t u_0} r_0.$$

Idea of the proof : Thm (Flow/Source) allows to compare the solution with initial condition $u_0 + hr_0$ to the solution u + hr.

Extrema of a Cost Functional

Let J be a cost functional such that

$$J(\rho_0) = \int_{\mathbb{R}^N} f(S_t \rho_0) \, \psi(t, x) \mathrm{d}x.$$

Proposition (Colombo, Herty, Mercier, 2010)

Let $f \in \mathcal{C}^{1,1}(\mathbb{R};\mathbb{R}_+)$ and $\psi \in L^\infty(I_{\mathrm{ex}} \times \mathbb{R}^N;\mathbb{R})$. Let us assume that $S \colon I \times (L^1 \cap L^\infty)(\mathbb{R}^N;\mathbb{R}) \to (L^1 \cap L^\infty)(\mathbb{R}^N;\mathbb{R})$ is L^1 Gâteaux differentiable. If $\rho_0 \in (L^1 \cap L^\infty)(\mathbb{R}^N;\mathbb{R})$ is solution of

Find
$$\min_{\rho_0} J(\rho_0)$$
 s. t. $\{S_t \rho_0 \text{ is solution of (Traffic)}\}$.

then, for all $r_0 \in (L^1 \cap L^\infty)(\mathbb{R}^N; \mathbb{R})$

$$\int_{\mathbb{D}N} f'(S_t \rho_0) \, \Sigma_t^{\rho_0} \, r_0 \, \psi(t, x) \, \mathrm{d}x = 0 \, .$$

Perspectives

- Derivation with respect to the geometric parameter (speed law).
- \bullet Avoid blow-up of the \textbf{L}^{∞} norm.

References:

- Chen, G.-Q. and Karlsen, K. H., Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 2005
- Colombo, R. M., Mercier M. and Rosini, M.D., Stability and total Variation Estimates on General Scalar Balance Laws, Comm. Math. Sciences, 2009
- Colombo, R. M., Herty, M. and Mercier M., Control of the Continuity Equation with a Non-local Flow, accepted to Esaim-Control Opt. Calc. Var. in 2009
- Kružkov, S. N., First order quasilinear equations with several independent variables. , Mat. Sb. (N.S.), 1970
 - Lucier, B. J., A moving mesh numerical method for hyperbolic conservation laws., Math. Comp., 1986