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Pedestrian traffic

We consider

∂tu + Div(uV (x , u)) = 0 ; u0 ∈ (L1 ∩ L∞ ∩ BV)(RN ; R)

whith V (u) = v(η ∗x u)w(x).
.

support of !(·− x0) obstacles

x0

pedestrians’ trajectories

.
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Introduction of the problem

Scalar balance laws :(
∂tu + Divf (t, x , u) = F (t, x , u) (t, x) ∈ R∗+ × RN

u(0, x) = u0(x) ∈ L1 ∩ L∞ ∩ BV x ∈ RN ,

where f ∈ C2([0,T ]× RN × R; RN), F ∈ C1([0,T ]× RN × R; R).

Existence and uniqueness, dependence w.r.t. initial conditions : Kružkov
Theorem (1970, Mat. Sb. (N.S.)) ;

Dependence w.r.t. flow and source ?
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Previous Results

Theorem (Kružkov, 1970, Mat. Sb. (N.S.))
We consider the equation

∂tu + Divf (t, x , u) = F (t, x , u) ,

with initial condition u0 ∈ L1 ∩ L∞(RN). Under the condition

(K) ∀A > 0 , ∂uf ∈ L∞(ΩA) , ∂u(F − divf ) ∈ L∞(ΩA)

and F − divf ∈ L∞(ΩA)

then there exists a unique weak entropy solution u ∈ L∞([0,T ]; L1(RN ; R))
continuous from the right in time.
Let v0 ∈ (L1 ∩ L∞)(RN ; R), then‚‚(u − v)(t)

‚‚
L1 ≤ eγt‖u0 − v0‖L1 ,

where γ = ‖∂uF‖L∞(ΩM ).
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Theorem (Lucier, 1986, Math. Comp.)
If f , g : R→ RN are globally lipschitz, then ∃C > 0 such that
∀u0, v0 ∈ L1 ∩ L∞(RN ; R) initial conditions for

∂tu + Divf (u) = 0 , ∂tv + Divg(v) = 0 .

with furthermore v0 ∈ BV(RN ; R), we have ∀t ≥ 0,‚‚(u − v)(t)
‚‚

L1 ≤ ‖u0 − v0‖L1 + C t TV(v0) Lip (f − g) .

Theorem (Chen & Karlsen, 2005, Commun. Pure Appl. Anal.)
With f (t, x , u) = λ(x) l(u), g(t, x , v) = µ(x)m(v), no source F = G = 0,‚‚(u − v)(t)

‚‚
L1 ≤ ‖u0 − v0‖L1 + C1 t

`
‖λ− µ‖L∞ + ‖λ− µ‖W1,1

+‖l −m‖L∞ + ‖l −m‖W1,∞
´

where C1 = C sup[0,T ]

`
TV(u(t)),TV(v(t))

´
.
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Total Variation

Definition : For u ∈ L1
loc(RN ; R) we denote

TV(u) = sup
Z

RN
udivΨ ; Ψ ∈ C1

c (RN ; RN) , ‖Ψ‖L∞ ≤ 1
ff

;

and
BV(RN ; R) =

n
u ∈ L1

loc; TV(u) <∞
o
.

When f and F depend only on u we have

u0 ∈ L∞ ∩ BV⇒ ∀t ≥ 0 , u(t) ∈ L∞ ∩ BV

and, denoting γ = ‖∂uF‖L∞(ΩM ),

TV(u(t)) ≤ TV(u0)eγt .

Goal : we want a more general estimate on the total variation.
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Estimate on the total variation

Theorem (TV — Colombo, Mercier, Rosini, 2009, Comm. Math. Sciences)
Assume (f ,F ) satisfies (K) + (H1). Let
κ0 = (2N + 1)‖∇x∂uf ‖L∞(ΩM ) + ‖∂uF‖L∞(ΩM ). If u0 ∈ (L∞ ∩ BV)(RN ; R),
then ∀t ∈ [0,T ] , u(t) ∈ (L∞ ∩ BV)(RN ; R) and

TV(u(t)) ≤TV(u0)eκ0t

+ NWN

Z t

0
eκ0(t−τ)

Z
RN

‚‚∇x(F − divf )(τ, x , ·)
‚‚

L∞(du)
dx dτ .

(H1) :
R T
0

R
RN

‚‚∇x(F − divf )
‚‚

L∞(du)
dxdt <∞ and ∇x∂uf ∈ L∞(ΩM)

Remark : In some particular cases, we re-obtain optimal known estimates :

f ,F depending only on u,

f ,F not depending on u.
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L1 Stability of the solution

Theorem (Flow/Source... — Colombo, Mercier, Rosini, 2009)
Assume (f ,F ), (g ,G) satisfy (K), (f ,F ) satisfies (H1) and (f − g ,F − G)
satisfies (H2). Let u0, v0 ∈ (L1 ∩ L∞ ∩ BV)(RN ; R). We denote

κ = 2N‖∇x∂uf ‖L∞(ΩM ) + ‖∂uF‖L∞(ΩM ) +
‚‚∂u(F − G)

‚‚
L∞(ΩM )

.

Let u and v be the solutions associated to (f ,F ) and (g ,G) respectively and
with initial conditions u0 and v0.

(H2) : ∂u(F − G) ∈ L∞(ΩM), ∂u(f − g) ∈ L∞(ΩM) andR T
0
R

RN
‚‚F − G − div(f − g)

‚‚
L∞(du)

dxdt <∞.
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Theorem (...Flow/Source — Colombo, Mercier, Rosini, 2009)
then ∀t ∈ [0,T ] :‚‚(u − v)(t)

‚‚
L1 ≤ eκt‖u0 − v0‖L1 +

eκ0t − eκt

κ0 − κ
TV(u0)

‚‚∂u(f − g)
‚‚

L∞

+

Z t

0

eκ0(t−τ) − eκ(t−τ)

κ0 − κ

Z
RN

‚‚∇x(F − divf )(τ, x , ·)
‚‚

L∞(du)
dxdτ

× NWN
‚‚∂u(f − g)

‚‚
L∞

+

Z t

0
eκ(t−τ)

Z
RN

‚‚((F − G)− div(f − g))(τ, x , ·)
‚‚

L∞(du)
dxdτ .

Remark : As before, we re-obtain known estimates in some particular cases

f , g depend only on u, F = G = 0,

f , g ,F ,G not depend on u.
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Introduction of the problem

Continuity equation :

∂tu + Div(uV (x , u(t))) = 0 , u(0, ·) = u0 ∈ L1 ∩ L∞ ∩ BV ,

where V : RN × L1(RN ; R)→ C2(RN ; R) is a non-local averaging functional, for
example, if v : R→ R is a regular function :

V (u) = v
“R

R u dx
”
for a supply-chain [Armbuster et al.]

V (u) = v(η ∗x u)w(x) for pedestrian traffic [Colombo et al.].

Goal :

Existence and uniqueness of an entropy solution ?

Gâteaux differentiability of the semi-group w.r.t. initial conditions ?
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Existence of a solution

Theorem (Traffic — Colombo, Herty, Mercier, 2010, ESAIM-Control Opt.
Calc. Var.)
If V satisfies (V1), then there exists a time Tex > 0 and a unique entropy
solution

u ∈ C0([0,Tex [; L1 ∩ L∞ ∩ BV)

and we denote Stu0 = u(t, ·).

We can bound by below the time of existence by

Tex ≥ sup
nX

n

ln(αn+1/αn)

C(αn+1)
; (αn)n strict. increasing , α0 = ‖u0‖L∞

o
.

If furthermore, V satisfies (V2) then

u0 ∈W2,1 ∩ L∞ ⇒ ∀t ∈ [0,Tex [ , u(t) ∈W2,1 .



L1 Stability with respect to flow and source The continuity equation with a non-local flow Conclusion

Hypotheses

(V1) There exists C ∈ L∞loc(R+; R+) such that ∀u ∈ L1(RN ; R)

V (u) ∈ L∞ ,
‚‚∇xV (u)

‚‚
L∞ ≤ C(‖u‖L∞) ,‚‚∇xV (u)

‚‚
L1 ≤ C(‖u‖L∞) ,

‚‚‚∇2
xV (u)

‚‚‚
L1
≤ C(‖u‖L∞) ,

and ∀u1, u2 ∈ L1(RN ; R)‚‚V (u1)− V (u2)
‚‚

L∞ ≤ C(‖u1‖L∞)‖u1 − u2‖L1 ,‚‚∇x(V (u1)− V (u2))
‚‚

L1 ≤ C(‖u1‖L∞)‖u1 − u2‖L1 .

(V2) There exists C ∈ L∞loc(R+; R+) such that
‚‚‚∇3

xV (u)
‚‚‚

L∞
≤ C(‖u‖L∞).
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Idea of the proof :

Let us introduce the space Xα = L1 ∩ BV(RN ; [0, α]) and the application Q
that associates to w ∈ Xβ = C0([0,T [,Xβ) the solution u ∈ Xβ of the Cauchy
problem

∂tu + Div(uV (w)) = 0 , u(0, ·) = u0 ∈ Xα

For w1,w2, we obtain thanks to the estimate of Thm (Flow/Source)‚‚Q(w1)−Q(w2)
‚‚

L∞([0,T [,L1)
≤ f (T )‖w1 − w2‖L∞([0,T [,L1) ,

where f is increasing , f (0) = 0 and f →∞ when T →∞.
Then we apply the Banach Fixed Point Theorem.
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Gâteaux derivative of the semi-group

Classical case : semi-group Lipschitz, not differentiable. Shift differentiability
[Bressan, Guerra, Bianchini,...].

Definition : The application S : L1(RN ; R)→ L1(RN ; R) is said to be L1

Gâteaux differentiable in u0 ∈ L1 in the direction r0 ∈ L1 if there exists a linear
continuous application DS(u0) : L1 → L1 such that‚‚‚‚S(u0 + hr0)− S(u0)

h
− DS(u0)(r0)

‚‚‚‚
L1
→ 0 when h→ 0

Formally, we expect the Gâteaux derivative of the semi-group to be the solution
of the linearized problem :

∂tr + Div(rV (u) + uDV (u)(r)) = 0 , r(0, ·) = r0 .
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We introduce the hypotheses :
(V3) V : L1 → C2 is differentiable and there exists C ∈ L∞loc such that
∀u, r ∈ L1,‚‚V (u + r)− V (u)− DV (u)(r)

‚‚
W2,∞ ≤ C

`
‖u‖L∞ + ‖u + r‖L∞

´
‖r‖2L1 ,‚‚DV (u)(r)

‚‚
W2,∞ ≤ C(‖u‖L∞)‖r‖L1 .

(V4) There exists C ∈ L∞loc(R+; R+) such that ∀u, ũ, r ∈ L1‚‚‚div
`
V (ũ)− V (u)− DV (u)(ũ − u)

´‚‚‚
L1
≤ C(‖ũ‖L∞ + ‖u‖L∞)(‖ũ − u‖L1)2‚‚‚div

`
DV (u)(r)

´‚‚‚
L1
≤ C(‖u‖L∞)‖r‖L1 .
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We show that the linearised problem has a unique entropy solution :

Theorem (Linearised — Colombo, Herty, Mercier, 2010)
Assume that V satisfies (V1), (V2), (V3). Let u ∈ C0([0,Tex [;W1,∞ ∩W1,1),
r0 ∈ (L1 ∩ L∞)(RN ; R). Then the linearised problem

∂tr + Div(rV (u) + uDV (u)(r)) = 0 , with r(0, x) = r0

has a unique entropy solution r ∈ C0([0,Tex [; L1(RN ; R)) and we denote
Σu

t r0 = r(t, ·).
If furthermore r0 ∈W1,1, then ∀t ∈ [0,Tex [, r(t) ∈W1,1.
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Theorem (Gâteaux Derivative — Colombo, Herty, Mercier, 2010)
Assume that V satisfies (V1),(V2),(V3),(V4). Let u0 ∈W1,∞ ∩W2,1,
r0 ∈W1,1 ∩ L∞ and let Tex be the time of existence for the initial problem
given by Thm (Trafic).
Then, for all t ∈ [0,Tex [ the local semi-group of the pedestrian traffic problem
is L1 Gâteaux differentiable in the direction r0 and

DSt(u0)(r0) = ΣStu0
t r0 .

Idea of the proof : Thm (Flow/Source) allows to compare the solution with initial
condition u0 + hr0 to the solution u + hr .
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Extrema of a Cost Functional

Let J be a cost functional such that

J(ρ0) =

Z
RN

f (Stρ0) ψ(t, x)dx .

Proposition (Colombo, Herty, Mercier, 2010)
Let f ∈ C1,1(R; R+) and ψ ∈ L∞(Iex × RN ; R). Let us assume that
S : I × (L1 ∩ L∞)(RN ; R)→ (L1 ∩ L∞)(RN ; R) is L1 Gâteaux differentiable.
If ρ0 ∈ (L1 ∩ L∞)(RN ; R) is solution of

Find min
ρ0

J(ρ0) s. t.
˘
Stρ0 is solution of (Traffic)

¯
.

then, for all r0 ∈ (L1 ∩ L∞)(RN ; R)Z
RN

f ′(Stρ0) Σρ0t r0 ψ(t, x) dx = 0 .
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Perspectives

Derivation with respect to the geometric parameter (speed law).

Avoid blow-up of the L∞ norm.
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