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Abstract

We present a new class of macroscopic models for pedestrian flows. Each individual is assumed to move towards

a fixed target, deviating from the best path according to the crowd distribution. The resulting equation is a

conservation law with a nonlocal flux. Each equation in this class generates a Lipschitz semigroup of solutions

and is stable with respect to the functions and parameters defining it. Moreover, key qualitative properties such

as the boundedness of the crowd density are proved. Two specific models in this class are considered.

Résumé

Nous présentons ici un nouveau modèle macroscopique de trafic piéton dans lequel chaque individu se dirige

vers une cible fixe en déviant du plus court chemin en fonction de la distribution de la population. On obtient

une loi de conservation avec flux non-local qui génère un semi-groupe de solutions et est stable par rapport aux

fonctions et paramètres qu’elle contient. On montre de plus que la densité reste bornée pour tout temps. On

s’intéresse plus particulirement à deux modèles précis.

1. Introduction

From a macroscopic point of view, a moving crowd is described by its density ρ = ρ(t, x). In standard
situations, the number of individuals is constant, so that conservation laws of the type ∂tρ+divx (ρv) = 0
are a natural tool for the description of crowd dynamics. A key issue is the choice of the speed v. On the
one hand, it describes the chosen pedestrians’ path and speed. On the other hand, it also has to model
the pedestrians’ attitude to adapt to the crowd density they estimate to meet. Therefore, we propose the
following class of Cauchy problems :











∂tρ+ div
(

ρ v(ρ)
(

ν(x) + I(ρ)
)

)

= 0

ρ(0, x) = ρo(x) .
(1.1)

An individual at time t and position x ∈ R
N moves at a speed with modulus v

(

ρ(t, x)
)

. The vector

ν(x)+
(

I
(

ρ(t)
)

)

(x) describes the direction that the individual located at x follows at time t, given that

the density is ρ(t). The vector ν is tangent at x to a suitable optimal path with respect to the visible
geometry, for instance the geodesic. As soon as walls or obstacles are relevant, ν takes into consideration

the discomfort felt by pedestrians, see for instance [8] and the references therein. The vector
(

I
(

ρ(t)
)

)

(x)
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describes the deviation from the direction ν(x) due to the density distribution ρ(t) at time t. The op-

erator I is in general nonlocal, so that
(

I
(

ρ(t)
)

)

(x) depends on all the values of the density ρ(t) in a

neighborhood of x. The constructions in [6], [10] and [11] fit in the present setting.
Here we present two specific choices that fit in (1.1). A first criterion assumes that each individual

aims at avoiding high crowd densities. Fix a mollifier η. Then, the convolution (ρ ∗ η) is an average of the
crowd density around x. This leads to the natural choice, related to [1] :

I(ρ) = −ε
∇(ρ ∗ η)

√

1 +
∥

∥∇(ρ ∗ η)
∥

∥

2
, (1.2)

which states that individuals deviate from the optimal path trying to avoid entering regions with higher
densities. Remarkably, this model displays a pattern formation phenomenon, coherent with the widely
studied feature of lane formation in pedestrian dynamics, see for instance [7], [9]. Moreover, preliminary
analytical investigation show that the convolution is essential in obtaining these patterns.
In (1.2), pedestrian evaluate the crowd density all around their position. When restrictions on the angle

of vision are relevant, the following choice is reasonable :

I(ρ) = ε∇

∫

RN

ρ(y) η(x− y) g
(

(y − x) · ν(x)
)

dy . (1.3)

Here, η is as above and the smooth function g weights the deviation from the preferred direction ν(x).
This choice of the operator I is related to [5], [13].

2. Analytical Results

This section is devoted to the analytical properties of (1.1). All proofs are deferred to [2]. In the
following, N ∈ N \ {0} is the (fixed) space dimension. We denote R

+ = [0,+∞[ ; the open ball in R
N

centered at x with radius r > 0 is B(x, r). Let WN =
∫ π/2

0
(cos θ)N dθ.

Our first step in the study of (1.1) is the formal definition of solution.
Definition 2.1 Fix T > 0 and ρo ∈ L1(RN ; [0, R]). A function ρ ∈ C0

(

[0, T ];L1(RN ;R)
)

is a weak
entropy solution to (1.1) if it is a Kružkov solution, see [12, Definition 1], to the Cauchy problem











∂tρ+ div
(

ρ v(ρ)w(t, x)
)

= 0

ρ(0, x) = ρo(x)
where w(t, x) = ν(x) +

(

I
(

ρ(t)
)

)

(x) .

On the functions defining the general model (1.1), we introduce the following hypotheses :

(v) v ∈ C2
(

[0, R]; [0, V ]
)

is non increasing, v(0) = V and v(R) = 0 for fixed V,R > 0.

(ν) ν ∈ C2
(

R
N ;B(0, 1)

)

, ∇ν ∈ L∞(RN ;RN×N ) and div ν ∈ (W1,1 ∩W1,∞)(RN ;R).

(I) I ∈ C0
(

L1(RN ; [0, R]);C2(RN ;RN )
)

satisfies the following estimates :

(I.1) There exists an increasing CI ∈ L∞

loc(R
+,R+) such that, for all r ∈ L1(RN ; [0, R]),

∥

∥I(r)
∥

∥

L∞
+

∥

∥∇I(r)
∥

∥

L∞
6 CI(‖r‖L1) ,

∥

∥I(r)
∥

∥

L1
+
∥

∥∇I(r)
∥

∥

L1
6 CI(‖r‖L1) .

(I.2) There exists an increasing CI ∈ L∞

loc(R
+,R+) such that, for all r ∈ L1(RN ; [0, R]),

∥

∥

∥
∇2I(r)

∥

∥

∥

L1

6 CI(‖r‖L1) .

(I.3) There exists a constant KI such that for all r1, r2 ∈ L1(RN ; [0, R]),
∥

∥I(r1)− I(r2)
∥

∥

L∞
+
∥

∥I(r1)− I(r2)
∥

∥

L1
+

∥

∥div (I(r1)− I(r2))
∥

∥

L1
6 KI · ‖r1 − r2‖L1 .
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As a first justification of these conditions, we note that they make Definition 2.1 acceptable.
Lemma 2.2 Let (v), (ν) and (I.1) hold. Choose r ∈ C0

(

R
+;L1(RN ; [0, R])

)

. Then, the Cauchy problem










∂tρ+ div
(

ρ v(ρ)w(t, x)
)

= 0

ρ(0, x) = ρo(x)
with w(t, x) = ν(x) +

(

I
(

r(t)
)

)

(t, x)

satisfies the assumptions of Kružkov Theorem [12, Theorem 5].
Now, we check that the above assumption (I) allows to comprehend the cases (1.2) and (1.3).

Lemma 2.3 Fix ε > 0, η ∈ C3
c(R

N ;R+) with
∫

RN η(ξ) dξ = 1. Then, the operator I in (1.2) satisfies (I).
If moreover g ∈ W3,∞(R; [0, 1]) and ν ∈ W3,∞(RN ,R), then the operator I in (1.3) satisfies (I).

We obtain a result of existence and uniqueness by iteration and use of the Banach fixed point Theorem.
Theorem 2.4 Let (v), (ν) and (I) hold. Choose any ρo ∈ L1(RN ; [0, R]). Then, there exists a unique
weak entropy solution ρ to (1.1). Moreover, ρ satisfies the following bounds

ρ(t) ∈ [0, R] for a.e. x ∈ R
N ,

∥

∥ρ(t)
∥

∥

L1
= ‖ρo‖L1 for all t ∈ R

+ ,

TV (ρ(t))6TV (ρo)e
kt + tektNWN‖q‖

L∞([0,R])

(

‖∇div ν‖
L1 + CI(‖ρo‖L1)

)

,

where we set q(ρ) = ρ v(ρ) and k = (2N + 1)
∥

∥q′
∥

∥

L∞([0,R])

(

‖∇ν‖
L∞ + CI(‖ρo‖L1)

)

.

Using the techniques in [4], [3], we obtain the continuous dependence of the solution to (1.1) from the
initial datum and its stability with respect to v, ν and I in the natural norms.
Theorem 2.5 Fix ρo,1, ρo,2 ∈ (L1 ∩BV)(RN ; [0, R]). Let (v), (ν) and (I) be satisfied by











∂tρ+ div
[

ρ v1(ρ)
(

ν1(x) + I1(ρ)
)

]

= 0

ρ(0, x) = ρo,1(x)
and











∂tρ+ div
[

ρ v2(ρ)
(

ν2(x) + I2(ρ)
)

]

= 0

ρ(0, x) = ρo,2(x) .

Let qi(ρ) = ρi vi(ρi). Then, the two corresponding solutions ρ1 and ρ2 satisfy
∥

∥ρ1(t)− ρ2(t)
∥

∥

L1
6 C(t)

(

∥

∥ρo,1 − ρo,2
∥

∥

L1
+‖q1 − q2‖W1,∞+‖ν1 − ν2‖L∞+

∥

∥div (ν1 − ν2)
∥

∥

L1
+d (I1, I2)

)

where d(I1, I2) = sup
{

∥

∥I1(ρ)− I2(ρ)
∥

∥

L∞
+
∥

∥div I1(ρ)− div I2(ρ)
∥

∥

L1
: ρ ∈ L1(RN ; [0, R])

}

, the map C ∈

C0(R+;R+) vanishes at t = 0 and depends on TV (ρo,1),
∥

∥ρo,1
∥

∥

L1
, ‖ν1‖L∞ , ‖div ν‖

W1,1 , ‖q1‖W1,∞ ,
‖q2‖W1,∞ . (For the explicit expression of C(t) we refer to [2]).
The above result allows to prove the existence of optimal controls in various problems. For instance,

assume that the region Ω needs to be quickly evacuated. Then, it is natural to find, for instance, the
initial distribution ρo and the path ν such that the integral J (ρo, ν) =

∫

Ω
ρ(t, x) dx is minimal. Theo-

rem 2.5 ensures the continuity of J and, hence, the existence of minimizers in suitable compact subsets
of L1(RN ; [0, R])×C2

(

R
N ;B(0, 1)

)

constrained by ‖ρo‖L1 = M .

3. Qualitative Properties

To integrate (1.1)–(1.2) we use the classical Lax-Friedrichs method with dimensional splitting. The
vector I(ρ) needs to be computed at every time step and, due to the presence of the convolution, signifi-
cantly lengthens the computation. Due to the choice of ν and of the initial data, the solution ρ vanishes
in a neighborhood of 3 sides of the boundary of the computational domain. Along the exit, a free flow
condition allows pedestrians to exit.
A widely detected pattern studied in crowd dynamics is that of lane formation. This feature has

been often related to the specific qualities of each individual, i.e. it has usually been explained from a

3



microscopic point of view. Here, in a purely macroscopic setting, we show in Figure 1 that the solutions

Figure 1. Solution to (1.1)–(1.2)–(3.1) at time t = 0, 4.043, 8.086. Note the formation first of 4 and then of 5 lanes.
Solution du système (1.1)–(1.2)–(3.1) aux temps t = 0, 4.043, 8.086. On remarque la formation de 4 files puis de 5.

to (1.1)–(1.2) also displays this phenomenon. Indeed, from a locally constant initial datum, first 4 lanes
form and then they develop into 5 lanes. More precisely, we consider (1.1)–(1.2) with

v(ρ) =
1

2
(1− ρ) , η(x, y) = (1− 4x2)3 (1− 4y2)3 χ

[−1/2,1/2]2
(x, y) ,

ν(x) =

[

1

0

]

+ d(x) , ρo(x, y) = χ
[3/5,4]×[−3/5,3/5]

(x) , ε = 2/5 ,
(3.1)

where d = d(x) describes the discomfort due to walls : it is a vector normal to the walls, pointing inward,
with intensity 1 along the walls, decreasing linearly to 0 at a distance 7/10 from the walls.
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