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Abstract

We consider a discrete set of individual agents interacting with a continuum. Examples
might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd
of sheeps. Analytically, these situations can be described through a system of ordinary
differential equations coupled with a scalar conservation law in several space dimensions.
This paper provides a complete well posedness theory for the resulting Cauchy problem.
A few applications are considered in detail and numerical integrations are provided.
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1 Introduction

In various situations a small set of individuals interacts with a continuum. Below, we consider
a predator (the individual) seeking to split a flock of preys (the continuum). An entirely
different case is that of shepherd dogs (the individuals) confining, or steering, sheeps (the
continuum). A very famous, albeit fabulous, example comes from the fairy tale [7] of the pied
piper, where a musician (the individual) frees a city from rats (the continuum) using his magic
flute. These are sample instances that all fit in the analytical framework developed below,
but several other situations are conceivable. For instance, the dog-sheeps model can be easily
rephrased as police officers trying to confine, or steer, a large crowd of protesters. Similarly,
the pied piper case can be seen as a moving light attracting cells such as, for instance, the
chlamydomonas [15] through their phototactic response, see [8].

From a deterministic point of view, studying these phenomena leads to a dynamical system
consisting of ordinary differential equations for the evolution of the individuals and partial
differential equations for that of the continuum. Here, motivated by the present applications,
we choose scalar conservation laws for the description of the continuum’s evolution. In partic-
ular, no diffusion is here considered. On one side, this choice makes the analytical treatment
technically more difficult, due to the possible singularities arising in the density that describes
the continuum. On the other hand, we obtain a framework where all propagation speeds are
finite. As a consequence, for instance, a continuum initially confined in a bounded region will
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remain in a (larger but) bounded region at any positive time. This allows to state problems
concerning the support of the continuum, such as confinement problems (the rats should leave
the city, or the shepherd dogs should confine sheeps inside a given area) or far more complex
ones (how can a predator split the support of the density of its preys? How many policeman
are necessary to suitably confine a given group of protesters?).

In the current literature, individual vs. continuum interactions have been considered with
a great variety of analytical tools, see for instance [2] for a fire confinement problem modeled
through differential inclusions, or [3] for a tumor–induced angiogenesis described through a
stochastic geometric model. Other examples are provided by the interaction of a fluid (liquid
or gas) with a solid body, see [1, 13, 14]: the evolution of the rigid body is described by a
system of ordinary differential equations, while the evolution of the fluid is subject to partial
differential equations, like Navier-Stokes or Euler equations. Further results are currently
available in the case of 1D systems of conservation laws. For instance, a problem motivated
by traffic flow is considered in [10]; the piston problem, a blood circulation model and a supply
chain model are considered in [1].

Formally, we are thus lead to the dynamical system






















∂tρ+ divx f
(

t, x, ρ, p(t)
)

= 0 ,

ṗ = ϕ
(

t, p, A
(

ρ(t)
)

(p)
)

,

ρ(0, x) = ρ̄(x) ,
p(0) = p̄ .

(t, x) ∈ R
+ × R

d ,
ρ ∈ R

+ ,
p ∈ R

n ,
(1.1)

where the unknowns are ρ and p. The former one, ρ = ρ(t) is the density describing the
macroscopic state of the continuum while the latter, p = p(t), characterizes the state of
the individuals1. It can be for instance the vector of the individuals’ positions or of the
individuals’ positions and speeds. The dynamics of the continuum is described by the flow f ,
which in general can be thought as the product f = ρ v of the density ρ and a suitable speed
v = v(t, x, ρ, p). The vector field ϕ defines the dynamics of the individuals at time t and it
depends from the continuum density ρ(t) through a suitable average A(ρ(t)). Our driving
example below is the convolution in the space variable, so that for instance A

(

ρ(t)
)

(p) =
∫

Rd ρ(t, p− y) η(y) dy, with a smooth compactly supported kernel η.
Below we address and solve the first mathematical questions that arise about (1.1), i.e. the

existence and uniqueness of entropy solutions, their stability with respect the data and the
equation, and the existence of optimal controls. A first well posedness result, that applies to
general initial data, is provided in Theorem 2.2. As usual in this context, see also [4, 5, 9, 11],
the hypotheses on f are rather intricate. However, the present framework naturally applies
to situations in which the continuum can be supposed initially confined in a bounded region,
i.e. ρ vanishes outside a compact subset of Rd. In this case, Corollary 2.3 below applies and
the hypotheses on f are greatly simplified.

The present setting lacks any linear structure. Hence, a key role in the analytical tech-
niques employed is played by Banach Contraction Theorem. The necessary estimates are
obtained through an ad hoc adaptation of results from the standard theories of conservation
laws and from Caratheodory differential equations.

The next section presents the analytical well-posedness results. Section 3 is devoted to
various applications, while all proofs are deferred to the last section.

1We follow for the p.d.e. the standard o.d.e. convention: p ∈ R
n is a vector that varies with time, so that

p = p(t). Similarly, ρ ∈ L
1(Rd;R+) is a function of space which is time dependent and we write ρ = ρ(t).
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2 Notation and Analytical Results

We now collect the various assumptions on (1.1) that allow us to prove well posedness, i.e. the
existence of solutions, their uniqueness and their stability with respect to data and equations.
The hypotheses collected below are essentially those that ensure the well posedness of the
conservation law and, separately, of the ordinary differential equation.

Notation. Throughout, we denote R+ = [0,+∞[. Let Tmax ∈ ]0,+∞] and call I = [0, Tmax]
if Tmax < +∞, while I = R

+ otherwise. The real parameter R, i.e. the maximal possible
density, is fixed and positive. The space dimension is d and the number of components in the
individuals’ state is n. We denote Bk(ξ, δ) the closed ball in R

k centered at ξ ∈ R
k with radius

δ ∈ R
+. For a given compact setK in R

n and a T > 0, we denote ΩT = [0, T ]×R
d×[0, R]×K.

Flow of the Continuum. At point x and time t, the continuum flows with a flux f =
f
(

t, x, ρ(t, x), p(t)
)

that depends on time t, on the space variable x, on the continuum density
ρ evaluated at (t, x) and on the state p of the individuals at time t. We require the following
regularity:

(f) The flow f : I × R
d × [0, R]× R

n → R
d is such that

(f.1) f ∈ C2(I × R
d × [0, R]× R

n;Rd).

(f.2) For all (t, x, p) ∈ I × R
d × R

n, f(t, x, 0, p) = f(t, x,R, p) = 0.

(f.3) For all T ∈ I and for all compact subsets K ⊂ R
n, there exists a constant Cf such

that for t ∈ [0, T ], x ∈ R
d, ρ ∈ [0, R] and p ∈ K,

∥

∥∂ρf(t, x, ρ, p)
∥

∥ < Cf ,
∣

∣divx f(t, x, ρ, p)
∣

∣ < Cf .

(f.4) For all T ∈ I and for all compact subsets K ⊂ R
n, there exists a constant Cf such

that for t ∈ [0, T ], x ∈ R
d, ρ ∈ [0, R] and p ∈ K,

∥

∥∇x∂ρf(t, x, ρ, p)
∥

∥ < Cf .

(f.5) For all compact subsets K ⊂ R
n, there exists a constant Cf such that

∫

I

∫

Rd

sup
p∈K,ρ∈[0,R]

∥

∥∇x divx f(t, x, ρ, p)
∥

∥ dx dt < Cf .

(f.6) For all compact subsets K ⊂ R
n, there exists a constant Cf such that

∫

I

∫

Rd

sup
p∈K,ρ∈[0,R]

∥

∥divx f(t, x, ρ, p)
∥

∥ dx dt < Cf .

(f.7) For all T ∈ I and for all compact subsets K ⊂ R
n, there exists a constant Cf such

that for t ∈ [0, T ], ρ ∈ [0, R] and p ∈ K,

∫

Rd

∥

∥∇p divx f(t, x, ρ, p)
∥

∥ dx < Cf ,
∥

∥∇p∂ρf(t, x, ρ, p)
∥

∥ < Cf for all x ∈ R
d.

Condition (f.2) states that at the maximal density ρ = R, the continuum is at congestion
and can not move. Assumption (f.3) has a key importance. The bound on ∂ρf ensures the
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finite propagation speed of the solution to the partial differential equation, see Proposition 4.4
or [9, Theorem 1]. The bound on divx f ensures that the solutions are bounded, similarly to
the role of sublinearity in the ordinary differential equation, see (ϕ.3) below.

All these assumptions are satisfied, for instance, by vector fields of the form f(ρ, x, p) =
v(ρ)~v(x, p) with v ∈ C2([0, R];R) and ~v ∈ C2

c(R
d × R

n;Rd).
We note that if f does not depend explicitly on t and x, which is a usual situation

when dealing with systems of conservation laws in one space dimension, then the above
assumptions reduce to only (f.1), (f.2), the bound on ∂ρf in (f.3) and the bound on ∇p∂ρf
in (f.7). Moreover, Corollary 2.3 shows that whenever the initial density distribution ρ̄ has
compact support, then the requirements on f are reduced, since only (f.1), (f.2) and (f.3)
are necessary.

Speed of the Individuals. At time t, the individuals’ state changes with a speed ϕ =

ϕ
(

t, p(t), A
(

ρ(t)
) (

p(t)
)

)

that depends on time t, on the individuals’ state p at time t and

on an average A(ρ(t)) of the continuum density ρ evaluated at time t, computed at p(t). On
the averaging operator A we require the following conditions.

(A) A : L1(Rd;R) → W1,∞(Rn;Rm) is linear and continuous, i.e. there exists a constant CA

such that for all ρ ∈ L1(Rd;R)

‖Aρ‖
W1,∞ ≤ CA ‖ρ‖

L1 .

Below, the operator norm is denoted ‖A‖L(L1,W1,∞). For instance, in the case p is the position
of a single individual, so that n = d, a typical example of such an operator A is Aρ = ρ∗η for
a kernel η ∈ C1

c(R
d;R) with

∫

Rd η dx = 1, so that A
(

ρ(t)
) (

p(t)
)

=
∫

Rd ρ
(

t, p(t)− y
)

η(y) dy.
The speed law ϕ satisfies the assumptions:

(ϕ) The vector field ϕ : R+ × R
n × R

m → R
n is such that

(ϕ.1) t 7→ ϕ(t, p, a) is measurable for all p ∈ R
n and all a ∈ R

m;

(ϕ.2) there exists a Cϕ ∈ L1(I;R+) such that for a.e. t ∈ I, p1, p2 ∈ R
n and a1, a2 ∈ R

m,

∥

∥ϕ(t, p1, a1)− ϕ(t, p2, a2)
∥

∥ ≤ Cϕ(t)
(

‖p1 − p2‖+ ‖a1 − a2‖
)

;

(ϕ.3) there exists a Cϕ ∈ L1(I;R+) such that for a.e. t ∈ [0, T ], p ∈ R
n and a ∈ R

m,

∥

∥ϕ(t, p, a)
∥

∥ ≤ Cϕ(t)
(

1 + ‖p‖
)

.

The dummy variable a is used where it has to be replaced by Aρ. These hypotheses are
motivated by the theory of Caratheodory ordinary differential equations, see [6, § 1].

The assumptions (f), (A) and (ϕ) are satisfied in the applications considered in Section 3.
As a first step in the analytical treatment of (1.1), we rigorously state what we mean by

solution to (1.1).

Definition 2.1 Fix ρ̄ ∈ (L1 ∩BV)(Rd; [0, R]) and p̄ ∈ R
n. A pair (ρ, p) with

ρ ∈ C0

(

I;L1(Rd; [0, R])
)

and p ∈ W1,1(I;Rn)

is a solution to (1.1) with initial datum (ρ̄, p̄) if
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(i) the map ρ = ρ(t, x) is a Kružkov solution to the scalar conservation law

∂tρ+ divx f
(

t, x, ρ, p(t)
)

= 0 ,

(ii) the map p = p(t) is a Caratheodory solution to the ordinary differential equation

ṗ = ϕ
(

t, p, A
(

ρ(t)
)

(p)
)

,

(iii) ρ(0) = ρ̄ and p(0) = p̄.

For the standard definition of Kružkov solution we refer to [9, Definition 1], for that of
Caratheodory solution, see [6, § 1].

We are now ready to state the main result of this work.

Theorem 2.2 Under conditions (f), (ϕ) and (A), for any initial datum p̄ ∈ R
n and ρ̄ ∈

(L1 ∩BV)(Rd; [0, R]), problem (1.1) admits a unique solution in the sense of Definition 2.1.
This solution can be extended to all I.

Let now f1, f2 satisfy (f); A1, A2 satisfy (A) and ϕ1, ϕ2 satisfy (ϕ); in all cases for the
same interval I and the same parameters or functions R,Cf , CA, Cϕ. Then, there exists a
function K ∈ C0(I;R+) that vanishes at t = 0 such that for any initial data (ρ̄1, p̄1), (ρ̄2, p̄2) ∈
(L1 ∩BV)(Rd; [0, R]× R

n), the solutions (ρ1, p1) and (ρ2, p2) to the problems






















∂tρ1 + divx f1
(

t, x, ρ1, p1(t)
)

= 0 ,

ṗ1 = ϕ1

(

t, p1, A1

(

ρ1(t)
)

(p1)
)

,

ρ1(0, x) = ρ̄1(x) ,
p1(0) = p̄1 ,

and























∂tρ2 + divx f2
(

t, x, ρ2, p2(t)
)

= 0 ,

ṗ2 = ϕ2

(

t, p2, A2

(

ρ2(t)
)

(p2)
)

,

ρ2(0, x) = ρ̄2(x) ,
p2(0) = p̄2 .

(2.1)

satisfy the inequalities
∥

∥(ρ1 − ρ2)(t)
∥

∥

L1

≤
(

1 +K(t)
)

‖ρ̄1 − ρ̄2‖L1

+K(t)
(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)
+
∥

∥div (f1 − f2)
∥

∥

L1(Rd)×L∞([0,t]×[0,R]×Kt)

)

+K(t)
(

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]) + ‖A1 −A2‖L(L1,W1,∞) + ‖p̄1 − p̄2‖
)

and
∥

∥(p1 − p2)(t)
∥

∥

≤
(

1 +K(t)
)

‖p̄1 − p̄2‖
+K(t)

(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)
+
∥

∥div (f1 − f2)
∥

∥

L1(Rd)×L∞([0,t]×[0,R]×Kt)

)

+K(t)
(

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]) + ‖A1 −A2‖L(L1,W1,∞) + ‖ρ̄1 − ρ̄2‖L1

)

.

The proof is deferred to Section 4 and is obtained through Banach Contraction Theorem. The
necessary estimates for the convergence are a consequence of [9, Theorem 5], [5, Theorem 2.5]
and of adaptations from the standard theories of conservation laws and from Caratheodory
differential equations, collected in the lemmas 4.3 and 4.2. Detailed expressions of the various
coefficients are also provided presented in Section 4.

In the applications below, the support of the initial data is compact. Thanks to the finite
propagation speed typical of conservation laws, this allows the following major simplification
in the assumptions of Theorem 2.2.
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Corollary 2.3 Consider problem (1.1) with f satisfying (f.1), (f.2) and (f.3). Let A sat-
isfy (A) and ϕ satisfy (ϕ). If ρ̄ vanishes outside a compact set, then problem (1.1) admits
a unique solution in the sense of Definition 2.1. This solution can be extended to all of I.
Moreover, the stability estimates of Theorem 2.2 apply, provided both ρ̄1 and ρ̄2 vanish outside
a compact set.

The proof of Corollary 2.3 is described in Section 4.

3 Applications

This section is devoted to sample situations that fit into (1.1) and to which the above analytical
results can be applied. While the unknown ρ keeps throughout the meaning of a scalar density,
the state p of the individuals is a 4–vector position–speed in § 3.1, it is a vector of several
positions in § 3.2 and it becomes the position of a single agent in § 3.3.

Numerical integrations are provided in order to show the qualitative behavior of the so-
lutions. The algorithm used exploits both the Lax–Friedrichs method, see [12, § 12.5], for
the partial differential equation and the classical Euler method for the ordinary differential
equation.

3.1 Predator and Preys

As a first example, we consider a predator attacking a group of preys. We can think for
instance at a hawk pursuing a flock of smaller birds or at a shark attacking a group of
sardines. Here, ρ is the density of the preys with x ∈ R

3, p is now the pair (P, V ) ∈ R
6,

where P ∈ R
3 is the position of the predator, V ∈ R

3 is its speed and we postulate below an
equation for the acceleration P̈ = V̇ of the predator. Indeed, the framework in Theorem 2.2
allows to consider also second, or higher, order ordinary differential equations for the single
agents. The initial density of the preys is assumed to have a compact, connected support.
The aim of the predator is to divide this group into smaller groups. Hence, its acceleration
is directed along the gradient of the average preys’ density, say P̈ = αρ(t) ∗∇η for a suitable
α > 0. The preys have a speed Vmax(1− ρ/R)V0, for a fixed V0 ∈ R

2, and modify it trying to
escape from the predator. The resulting speed of the preys is thus

v(t, x, ρ, p) = Vmax(1− ρ/R)
(

V0 +B e−C‖x−p(t)‖ (x− p(t)
)

)

(3.1)

where B,C are positive constants. The former one is related to the speed at which preys
escape the predator and the latter to the distance at which preys feel the presence of the
predator. Once again, v is maximal at zero density and vanishes at the maximal density R,
which means that the preys can not move when their density is maximal.

Lemma 3.1 Let d = 3, n = 6, m = 3 and fix a positive R. Assume v is as in (3.1),
η ∈ C2

c(R
2,R) with

∫

R2 η dx = 1. Denote p = (P, V ) and define

f(t, x, ρ, p) = ρ v(t, x, ρ, p), ϕ



t,

[

P
V

]

, a



 =

[

V
αa

]

, Aρ = ρ ∗ ∇η . (3.2)

Then, this setting fits in the framework of Corollary 2.3 as soon as ρ̄ vanishes a.e. outside a
compact set.
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Solution at time 0.000
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Figure 1: Solution obtained through the numerical integration of (1.1)–(3.1)–(3.2)–(3.4) computed
at times 0, 0.091, 0.267, 0.358, 0.449 and 0.491.

Numerical Example: For graphical purposes, we limit the numerical integration to the 2D
case. With reference to (1.1)–(3.1)–(3.2), we choose the following parameters

Vmax = 2 , C = 5.25 , V0 = [0− 0.5]T , B = 40 , α = 400 ,

η(x) =
3

πrp6

(

max
{

0, rp
2 − ‖x‖2

}

)2

, rp = 0.5 .
(3.3)

and the initial datum

P0 =

[

0
−0.8

]

, V0 =

[

0
1

]

, ρ0(x, y) = χ
[−0.2,0.2]

(x)χ
[−0.2,−0.1]

(y) . (3.4)

The result is in Figure 1. In the case considered, apparently, the predator succeeds in splitting
the support of the preys. This may follow from the rise of discontinuities in the prey density
ρ, which in turn leads to discontinuities in the preys’ speed.

3.2 Shepherd Dogs

On the plane, consider a herd of, say, sheeps controlled by N shepherd dogs. Then, ρ is the
density of sheeps and p ≡ (p1, . . . , pN ) is the vector of the positions of the dogs, so that each
pi is in R

2. We assume that initially the sheeps are distributed around, say, the origin and
tend to disperse moving radially with a speed directed by ~vr(x). The duty of the dogs is to
prevent this dispersion and they pursue this goal moving around sheeps or, more precisely,
with a speed ϕ orthogonal to the gradient of the sheeps’ average density. The sheeps modify
their speed escaping from the dogs with a repulsive speed ~vd(x, p) =

∑N
i=1 ~v(x − pi), where

~v behaves qualitatively as in Figure 3. Finally, the speed of the sheeps is then given by

v(ρ)
(

~vr(x) +
∑N

i=1 ~v(x− pi)
)

where v is maximal at the density zero and vanishes at the

maximal density R. This last fact means that the sheeps can not move when their density is
maximal.
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Lemma 3.2 Let N ∈ N, d = 2, n = 2N , m = 2N and fix a positive R. Assume v ∈
C2([0, R];R), ~vr ∈ C2(R2;R2) ~v ∈ C2(R2;R2), η ∈ C2

c(R
2,R) with

∫

R2 η dx = 1. Assume
that v(R) = 0. Define

f(t, x, ρ, p) = ρ v(ρ)



~vr(x) +

N
∑

i=1

~v(x− pi)



 ,

ϕ(t, p, a) = Vd
a⊥

√

1 + ‖a‖2
,

Aρ = ρ ∗ ∇η .

(3.5)

Then, this setting fits in the framework of Corollary 2.3 as soon as ρ̄ vanishes a.e. outside a
compact set.

Here, a ≡ (a1, . . . , aN ) is a vector in (R2)N and we set a⊥ ≡ (a⊥1 , . . . , a
⊥
N ), where for any

x, y ∈ R, we have

[

x
y

]⊥

=

[

y
−x

]

.

In connection with the present shepherd dog model (1.1)–(3.5), several control problems
can be stated and the existence of an optimal control follows from Theorem 2.2. For instance,
let K ⊂ R

2 be the compact set from which sheeps should not escape. Then, one may look
for the best dogs’ speed choice Vd = Vd(t) that keeps as many sheeps as possible within K
throughout a given time interval [0, T ]. The existence of such an optimal choice is ensured
by the next proposition.

Proposition 3.3 Let N ∈ N \ {0} be the number of dogs, Tmax be finite and fix a compact
set K ⊂ R

2. Fix the set of the admissible dogs’ speed choices

S =
{

Vd ∈ W1,∞([0, Tmax];R
+) : ‖Vd‖W1,∞ ≤ C

}

,

where C is an upper bound for the dogs’ speed and acceleration. Given an initial sheeps’
distribution ρ̄ ∈ (L1 ∩BV)(R2; [0, R]) with spt ρ̄ ⊆ K, the time average of the total number
of sheeps kept in K when the dogs have speed Vd is

J (ρ̄, ϕ) =

∫ Tmax

0

∫

K
ρ(t, x) dx dt ,

ρ = ρ(t, x) being the solution to (1.1)–(3.5). Then, for any such ρ̄ there exists an optimal
speed choice Vd that maximizes J over S.

The proof relies on a direct application of Weierstraß and Ascoli–Arzelà theorems.

Suitably modifying the choices (3.5) of f and ϕ, one may pass to various other problems.
For instance, dogs may be asked to steer the sheeps towards a given area. On the other hand,
in view of the protesters–policemen setting, one can also look for the best strategy of sheeps
that let them dodge the dogs and escape from a given compact set.
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Numerical Example: To fix a specific situation, we choose N = 2 and the following
functions in (1.1):

v(ρ) = Vmax

(

1− ρ

R

)

, Vmax = 1 , R = 1 ,

~v(x) =
α√
ℓ
e−‖x‖2/ℓ x , α = 20 , ℓ = 0.2 ,

~vr(x) =
β x

1 + ‖x‖2
, β = 1 ,

η(x) =
3

πrp6

(

max
{

0, rp
2 − ‖x‖2

}

)2

, rp = 1 ,

Vd = 100 .

(3.6)

At time zero, sheeps are uniformly distributed at the maximal density R = 1 in the circumfer-
ence centered at (0, 0) with radius 0.2. Dogs start moving from (0.7, 0) and (−0.7, 0) Graphs

Solution at time 0.000

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.044

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.067

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.111

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.156

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.200

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 2: Solution to (1.1)–(3.5)–(3.6) at times t = 0, t = 0.044, t = 0.067, t = 0.111, t = 0.156,
t = 0.200. Sheeps are initially uniformly distributed at the maximal density R = 1 in the circumference
centered at (0, 0) with radius 0.2. Dogs start moving from (0.7, 0) and (−0.7, 0), they succeed in
confining the dispersion of the sheeps, at least for the tie interval considered.

of the corresponding solution are in Figure 2.

3.3 The Magic Piper

As a last toy application we consider the situation of a leader interacting with a group of
followers. This case can be illustrated for example by the fairy tale of the Pied Pier [7,
n. 246]. To lure rats away, the city of Hamelin (now Hamel) hires a rat-catcher who, playing
his magic pipe, attracts all mice out of the city. In this case, ρ = ρ(t, x) is the mice density
and p = p(t) is the position of the piper. Rats move with a speed v(ρ)~v(p − x), with the
scalar v and the vector ~v having the qualitative behavior in Figure 3. More precisely, at
density 0 mice have the fastest speed while at density R their speed vanishes, see Figure 3,
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0

v

ρ→ v(ρ)

R ρ 0 ‖x‖

‖~v‖
x→ ~v(x)

0

q

a→ q(a)

R a

Figure 3: Left, v is assumed C2 and decreasing. Center, ~v describes the attraction felt by the mice
towards the piper. Right, q accounts for the acceleration of the piper when surrounded by a high mice
density.

left. The term ~v accounts for the attraction of the mice towards the piper, see Figure 3,
center, and (3.8). According to this choice, when the piper is too far, mice are not attracted
by the music. The magic musician has a speed q(ρ ∗ η) ~ψ(t), with q as in Figure 3, right,
see also (3.8). The role of the map q is to allow the piper to move faster when the average
density of mice around him is higher. On the contrary, when only few rats are near to him,
he slows down. This choice is in order to avoid some of the mice remaining too far behind,
where they may not hear the music.

Lemma 3.4 Let d = 2, n = 2, m = 1 and fix a positive R. Assume v ∈ C2([0, R];R),
~v ∈ C2(R2;R2), q ∈ W1,∞([0, R];R), ~ψ ∈ W1,∞(R+;R2), η ∈ C2

c(R
2,R) with

∫

R2 η dx = 1.
Assume that v(R) = 0. Define

f(t, x, ρ, p) = ρ v(ρ)~v(p− x) , ϕ(t, p, a) = q(a) ~ψ(t) , Aρ = ρ ∗ η . (3.7)

Then, this setting fits in the framework of Corollary 2.3 as soon as ρ̄ vanishes a.e. outside a
compact set.

The proof is immediate and, hence, omitted.
Several optimization problems can now be stated with reference to (1.1)–(3.7)–(3.8). Re-

ferring to the situation [7, n. 246], a first natural question is the following. Let the compact
set K be the area of the city and fix a finite positive time Tmax. Then, find the initial position
p̄ and the trajectory ~ψ of the piper so that the amount of mice left in the city at time Tmax

is minimal. In other words, we want to minimize the functional

(p̄, ~ψ) 7→
∫

K

(

ρ(p̄, ~ψ)
)

(Tmax, x) dx

over a compact set of initial positions p̄ and over all strategies ~ψ with finite speed and
acceleration. Here, ρ(p̄, ~ψ) is the ρ–component of the solution to (1.1)–(3.7)–(3.8). The
existence of such an optimal strategy for the piper follows from Theorem 2.2 via a standard
application of Weierstraß Theorem.

Proposition 3.5 Let Tmax be finite. Denote by K ⊂ R
2 the compact Hamelin urban area.

Define the set of the possible piper’s strategies

S =

{

(p̄, ~ψ) ∈ K ×W1,∞(I;R2) :
∥

∥

∥

~ψ
∥

∥

∥

W1,∞
≤ 1

}
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and call J : S 7→ R the total amount of mice in Hamelin at time Tmax, i.e.

J (p̄, ~ψ) =

∫

K

(

ρ(p̄, ~ψ)
)

(Tmax, x) dx ,

where ρ(p̄, ~ψ) is the solution to (1.1)–(3.7)–(3.8). Then, there exists an optimal trajectory
(p̄∗, ~ψ∗) ∈ S such that J (p̄∗, ~ψ∗) = minS J (p̄, ~ψ).

Thanks to the stability estimates in Theorem 2.2, the proof of this proposition directly follows
from Ascoli–Arzelà Theorem that allows to prove the compactness of S.

Numerical Example: To fix a specific situation, we choose the following functions
in (1.1):

v(ρ) = Vmax

(

1− ρ
R

)

, Vmax = 9 , R = 1 ,

~v(x) = x e−‖x‖2 ,
q(a) = vp + (Vp − vp)

a
R , Vp = 7 , vp = 1 ,

~ψ(t) =

[

cosωt
− sinωt

]

, ω = 1 ,

η(x) = 3
πrp6

(

max
{

0, rp
2 − ‖x‖2

}

)2

, rp = 0.15 .

(3.8)

At time t = 0, we assume that rats are uniformly distributed with density R = 1 in the
rectangle [−0.5, 0]× [0.35, 0.85]. The piper starts moving at the point (−1, 0.5).

Solution at time 0.000

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.171

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.543

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 0.945

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 1.447

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Solution at time 1.930

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 4: The pied piper and the rats, at times 0, when p = (0, 0.5); 0.171, 0.543, 0.945, 1.447 and
1.930, when the rats almost completely left the rectangle and p = (0.366,−0.983).

4 Technical details

Throughout this section we letWd =
∫ π/2
0 (cos θ)d dθ. We state and prove below the Grönwall–

type lemma used in the sequel.
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Lemma 4.1 Let the functions α ∈ C0(I;R), β ∈ W1,1(I;R), γ ∈ C0(I;R+), ∆ ∈ C0(I;R)
be such that

∆(t) ≤ α(t)

(

β(t) +

∫ t

0
γ(τ)∆(τ) dτ

)

.

Then, for all t ∈ I,

∆(t) ≤ α(t)



β(0) exp

(

∫ t

0
α(τ) γ(τ) dτ

)

+

∫ t

0
β′(τ) exp

(

∫ t

τ
α(s) γ(s) ds

)

dτ



 .

Proof. Using the following straightforward computations, we have:

γ(t)∆(t) ≤ α(t)β(t) γ(t) + α(t) γ(t)

∫ t

0
γ(τ)∆(τ) dτ ,

(

e−
∫ t
0
α(τ)γ(τ)dτ

∫ t

0
γ(τ)∆(τ) dτ

)′

≤ α(t)β(t) γ(t) e−
∫ t
0
α(τ)γ(τ)dτ .

Then, by integration we obtain

∫ t

0
γ(τ)∆(τ) dτ ≤

∫ t

0
α(t)β(t) γ(t) e

∫ t
τ
α(s)γ(s)ds dτ .

Consequently, we have

∆(t) ≤ α(t)

[

β(t) +

∫ t

0
e
∫ t
τ
α(s)γ(s)dsα(τ)β(τ)γ(τ) dτ

]

.

Integrating by part the last integral, we have finally the desired estimate. �

Below, we describe independently some properties of the conservation law in Lemma 4.2
and some properties of the ordinary differential equation in Lemma 4.3.

Lemma 4.2 Let (f) hold. Choose any ρ̄ ∈ (L1 ∩ L∞ ∩ BV)(Rd; [0, R]). Fix a function
π ∈ C0(I;Rn). Then, the conservation law

{

∂tρ+ divx f
(

t, x, ρ, π(t)
)

= 0
ρ(0, x) = ρ̄(x)

(4.1)

admits a unique solution ρ ∈ C0

(

I;L1(Rd, [0, R])
)

. For all t ∈ I, introduce the compact set

Kt = Bn(0, ‖π‖C0([0,t])), denote Ωt = [0, t]× R
d × [0, R]×Kt and define

κt = (2d+ 1)
∥

∥∇x∂ρf
∥

∥

L∞(Ωt)
. (4.2)

Then, the following BV estimate holds: for all t ∈ I

TV
(

ρ(t)
)

≤
(

TV(ρ̄) + dWd t

∫

Rd

∥

∥∇x divx f(·, x, ·, ·)
∥

∥

L∞([0,t]×[0,R]×Kt)
dx

)

eκtt . (4.3)
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Moreover, there exists a function C ∈ C0(I;R+) such that, letting ρ1, ρ2 be the solutions
to (1.1) corresponding to the initial data ρ̄1, ρ̄2 and to the equation defined by π1, π2 ∈
C0(I;Rn) and by f1, f2, satisfying (f), the following estimate holds:

∥

∥(ρ1 − ρ2)(t)
∥

∥

L1
≤ ‖ρ̄1 − ρ̄2‖L1 + t C(t)

[

‖π1 − π2‖L∞([0,t]) +
∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)

+
∥

∥div (f1 − f2)
∥

∥

L1(Rd)×L∞([0,t]×[0,R]×Kt)

] (4.4)

where C(t) depends on TV(ρ̄1),
∥

∥∇x∂ρf1
∥

∥

L∞(Ωt)
, ‖∇x divx f1‖L1(Rd)×L∞([0,t]×[0,R]×Kt)

and
∥

∥∇p∂ρf2
∥

∥

L∞(Ωt)
,
∥

∥divx∇pf2
∥

∥

L1(Rd)×L∞([0,t]×[0,R]×Kt)
, t.

An explicit expression of C(t) is provided in (4.5).

Proof of Lemma 4.2. This proof consists in applying to the scalar conservation law
∂tρ + divx f

∗(t, x, ρ) = 0 with flux f∗(t, x, ρ) = f
(

t, x, ρ, p(t)
)

first the classical Kružkov
result [9, Theorem 5] and then the stability estimates in [5, 11].

To apply Kružkov Theorem, it is sufficient to verify condition (H1) in [5, Theorem 2.5] or
the slightly weakened form (H0*)-(H1*) in [11]. Note that: f∗ is C2 in x and ρ by (f.1), and
is C0 in t by the regularity of π. This regularity is sufficient in the proof of [5, Theorem 2.5],
see also [9, Remark 4 in § 5]. Moreover, for any t ∈ I

(f.3) ⇒ ∂ρf
∗ ∈ L∞([0, t]× R

d × [0, R];Rd) and divx f
∗ ∈ L∞([0, t]× R

d × [0, R];R) ,
(f.4) ⇒ ∂ρ divx f

∗ ∈ L∞([0, t]× R
d × [0, R];R) .

Kružkov Theorem can then be applied on any interval [0, t].
By (f.2), the constant functions ρ̌(t, x) ≡ 0 and ρ̂(t, x) ≡ R solve (4.1), independently

from π. Then, by the Maximum Principle [9, Theorem 3], we have that any solution ρ to (4.1)
satisfies ρ(t, x) ∈ [0, R] for a.e. (t, x) ∈ I × R

d and for all π ∈ C0(I;Rn).
To prove the L1 continuity in time and the TV bound, we apply [5, Theorem 2.5] in

the weaker form [11, Theorem 2.2]. To this aim, we verify also (H2) therein on [0, t], for
any t ∈ I. By (f.4) and the continuity of π, ∇x∂ρf

∗ ∈ L∞([0, t] × R
d × [0, R];Rd×d). Note

also that, by (f.5),
∫ t
0

∫

Rd

∥

∥∇x divx f
∗(τ, x, ρ)

∥

∥

L∞
dx dτ < +∞, with an upper bound that

depends on π.

We denote below Ωt = [0, t]×R
d× [0, R]×Kt where Kt is as above. By [11, Theorem 2.2]

or [5, Theorem 2.5] we obtain the estimate

TV
(

ρ(t)
)

≤ TV(ρ̄)eκtt + dWd

∫ t

0
eκt(t−τ)

∫

Rd

∥

∥

∥∇x divx f
(

τ, x, ·, π(τ)
)

∥

∥

∥

L∞([0,R])
dx dτ

where κt = (2d+ 1)
∥

∥∇x∂ρf
∥

∥

L∞(Ωt)
. This implies (4.3).

The L1–continuity in time of ρ follows from [5, Remark 2.4], thanks to (f.6) and to the
bound on the total variation, see also [4, Proof of Lemma 5.3].

To estimate the dependence of the solution from the initial datum, we check the hypothe-
ses (H3) in [11] or [5] and apply [11, Theorem 2.6] or [5, Theorem 2.6].

Let f1, f2 satisfy (f.1), . . ., (f.5). Assume that π1, π2 are in C0([0, t],Rn). Let f∗1 and f∗2
be the corresponding compositions. With obvious notation, define K = K1

t ∪K2
t and compute

sup
τ∈[0,t],x∈Rd,ρ∈[0,R]

∣

∣

∣
∂ρf

∗
1

(

τ, x, ρ, π1(τ)
)

− ∂ρf
∗
2

(

τ, x, ρ, π2(τ)
)

∣

∣

∣
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≤
∥

∥∂ρf1 − ∂ρf2
∥

∥

L∞(Ωt)
+
∥

∥∂ρ∇pf2
∥

∥

L∞(Ωt)
‖π1 − π2‖L∞([0,t])

which is bounded by (f.3) and (f.7).

To complete (H3), it remains only to estimate the quantity

∫ t

0

∫

Rd

∥

∥

∥

∥

divx

(

f1
(

τ, x, ·, π1(τ)
)

− f2
(

τ, x, ·, π2(τ)
)

)

∥

∥

∥

∥

L∞([0,R];R)

dx dτ

≤
∫ t

0

∫

Rd

∥

∥

∥
divx (f1 − f2)

(

τ, x, ·, π1(τ)
)

∥

∥

∥

L∞([0,R])
dx dτ

+

∫ t

0

∫

Rd

∥

∥∇p divx f2(x)
∥

∥

L∞

∥

∥π1(τ)− π2(τ)
∥

∥ dx dτ

which is bounded thanks to (f.6) and (f.7). Now, we compare ρ1 and ρ2, obtaining

∥

∥(ρ1 − ρ2)(t)
∥

∥

L1

≤‖ρ̄1 − ρ̄2‖L1

+

[

eκtt − 1

κt
TV(ρ̄) + dWd

∫ t

0

eκt(t−τ) − 1

κt

∫

Rd

∥

∥

∥∇x divx f1
(

τ, x, ·, π1(τ)
)

∥

∥

∥

L∞([0,R])
dx dτ

]

×
(

∥

∥∂ρf1 − ∂ρf2
∥

∥

L∞(Ωt)
+
∥

∥∂ρ∇pf2
∥

∥

L∞(Ωt)
‖π1 − π2‖L∞([0,t])

)

+

∫ t

0

∫

Rd

(

∥

∥

∥
div (f1 − f2)

(

τ, x, ·, π1(τ)
)

∥

∥

∥

L∞([0,R])

+
∥

∥∇p divx f2(τ, x, ·, ·)
∥

∥

L∞([0,R]×Kt)

∥

∥π1(τ)− π2(τ)
∥

∥

)

dx dτ (4.5)

which gives the final estimate. �

The following lemma concerns the estimates on the ordinary differential equation.

Lemma 4.3 Let (ϕ) and (A) hold. Choose an initial datum p̄ ∈ R
n and fix a function

r ∈ C0

(

I;L1(Rd; [0, R])
)

. Then, the ordinary differential equation







ṗ = ϕ
(

t, p, A
(

r(t)
)

(p)
)

,

p(0) = p̄ ,
(4.6)

admits a unique solution p ∈ W1,∞
loc

(I;Rn). The following bound holds:

∥

∥p(t)
∥

∥ ≤
(

‖p̄‖+ 1
)

e
∫ t
0
Cϕ(τ)dτ − 1 . (4.7)

Given two initial conditions p̄1, p̄2 ∈ R
n, two functions r1, r2 ∈ C0

(

I;L1(Rd; [0, R])
)

, two

speed laws ϕ1, ϕ2 satisfying (ϕ) and two averaging operators A1, A2 satisfying (A), define

F (t) =
(

1 + CA‖r1‖L∞([0,t];L1)

)

∫ t

0
Cϕ(τ) dτ . (4.8)
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Then,
∥

∥(p1 − p2)(t)
∥

∥

≤ eF (t)‖p̄1 − p̄2‖+
∫ t

0
eF (t)−F (τ)

∥

∥ϕ1(τ)− ϕ2(τ)
∥

∥

L∞
dτ

+

∫ t

0
eF (t)−F (τ)Cϕ(τ)

(

CA

∥

∥(r1 − r2)(τ)
∥

∥

L1
+ ‖A1 −A2‖L(L1,W1,∞)

∥

∥r2(τ)
∥

∥

L1

)

dτ .

(4.9)

Proof of Lemma 4.3. By (ϕ), we may apply [6, theorems 1 and 2, Chap. 1] to (4.6) and
get the local in time existence and uniqueness of the solution. The bound (4.7) follows from
a standard application of Grönwall Lemma and ensures that the solution can be extended to
the whole interval I. Assume for simplicity that ϕ1 and ϕ2 satisfy (ϕ) with the same function

Cϕ. Using the representation formula pi = p̄i +
∫ t
0 ϕi

(

τ, pi(τ), A
(

ri(τ)
)

(pi(τ))
)

dτ , we get

∥

∥(p1 − p2)(t)
∥

∥

≤ ‖p̄1 − p̄2‖+
∫ t

0

∥

∥

∥

∥

ϕ1

(

τ, p1(τ), A1

(

r1(τ)
)

(p1(τ))
)

− ϕ2

(

τ, p2(τ), A2

(

r2(τ)
)

(p2(τ))
)

∥

∥

∥

∥

dτ

≤ ‖p̄1 − p̄2‖+
∫ t

0

∥

∥(ϕ1 − ϕ2)(τ, p1(τ), A1(r1(τ))(p1(τ)))
∥

∥ dτ

+

∫ t

0
Cϕ(τ)

(

∥

∥(p1 − p2)(τ)
∥

∥+
∥

∥

∥
A1

(

r1(τ)
)

(p1(τ))−A2

(

r2(τ)
)

(p2(τ))
∥

∥

∥

)

dτ

≤ ‖p̄1 − p̄2‖+
∫ t

0
Cϕ(τ)

(

1 +
∥

∥∇pA1(r1)
∥

∥

L∞

)

∥

∥(p1 − p2)(τ)
∥

∥ dτ

+

∫ t

0
Cϕ(τ)

(

‖A1‖L(L1,W1,∞)

∥

∥(r1 − r2)(τ)
∥

∥

L1
+ ‖A1 −A2‖L(L1,W1,∞)

∥

∥r2(τ)
∥

∥

L1

)

dτ

+

∫ t

0

∥

∥(ϕ1 − ϕ2)(t, ·, ·)
∥

∥

L∞
dτ .

An application of Lemma 4.1 with

∆(t) =‖p̄1 − p̄2‖ ,
α(t) =1 ,

β(t) =‖p̄1 − p̄2‖+
∫ t

0

∥

∥(ϕ1 − ϕ2)(τ, ·, ·)
∥

∥

L∞
dτ ,

γ(t) =Cϕ(t)
(

1 + ‖A1‖L(L1,W1,∞)‖r1‖L1

)

+

∫ t

0
Cϕ(τ)

[

‖A1‖L(L1,W1,∞)

∥

∥(r1 − r2)(τ)
∥

∥

L1
+ ‖A1 −A2‖L(L1,W1,∞)

∥

∥r2(τ)
∥

∥

L1

]

dτ .

completes the proof of (4.9). �

Proof of Theorem 2.2. The proof is divided in several steps.

1. Local Existence. Here we rely on an application of Banach Fixed Point Theorem. Fix
first the initial data ρ̄ ∈ (L1 ∩ BV)(Rd; [0, R]) and p̄ ∈ R

n. Choose a positive T̂ ∈ I and,
motivated by (4.7), call

δ =
(

‖p̄‖+ 1
)

e
∫ T̂
0

Cϕ(τ)dτ − 1 .
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For any positive R, with
∫

Rd ρ̄dx ≤ R, and for any T ∈
]

0, T̂
]

, define the complete metric

spaces and the distance

Xρ =

{

ρ ∈ C0

(

[0, T ];L1(Rd; [0, R])
)

: sup
t∈[0,T ]

∫

Rd

ρ(t, x) dx ≤ R
}

,

X = Xρ ×C0
(

[0, T ];Bn(0, δ)
)

,

d
(

(ρ1, p1); (ρ2, p2)
)

= sup
t∈[0,T ]

∥

∥ρ1(t)− ρ2(t)
∥

∥

L1
+ sup

t∈[0,T ]

∥

∥p1(t)− p2(t)
∥

∥ .

Define the map T : X → X by T (r, π) = (ρ, p) if and only if ρ and p solve the problems

{

∂tρ+ divx f
(

t, x, ρ, π(t)
)

= 0
ρ(0, x) = ρ̄(x)

and







ṗ = ϕ
(

t, p, A
(

r(t)
)

(p)
)

p(0) = p̄ .
(4.10)

Note that both problems admit a unique solution, by lemmas 4.2 and 4.3. Moreover, by the
conservative form of the former problem in (4.10),

∫

Rd ρ(t, x) dx =
∫

Rd ρ̄(x) dx ≤ R, so that T
is well defined. Moreover, Lemma 4.3 shows that the solution to the latter problem in (4.10)
is in W1,∞

(

[0, T ];Bn(0, δ)
)

⊂ C0
(

[0, T ];Bn(0, δ)
)

.
To prove that T is a contraction, fix (r1, π1) and (r2, π2) and call (ρi, pi) = T (ri, πi).

Then, define KT̂ = Bn(0, δ) and apply Lemma 4.2 with t = T . Note that KT ⊆ KT̂ . The

former problem in (4.10) is then solvable in C0

(

[0, T ];L1(Rd; [0, R])
)

and (4.4) yields

sup
t∈[0,T ]

∥

∥ρ1(t)− ρ2(t)
∥

∥

L1
≤ T C(T̂ ) sup

t∈[0,T ]

∥

∥π1(t)− π2(t)
∥

∥ .

Apply now (4.9)

sup
t∈[0,T ]

∥

∥p1(t)− p2(t)
∥

∥ ≤ CA

∫ T

0
Cϕ(τ) e

F (T )−F (τ) dτ sup
t∈[0,T ]

∥

∥r1(t)− r2(t)
∥

∥

L1
,

where F is defined as in (4.8) and can here be bounded as

F (t) ≤ (1 + CAR)

∫ t

0
Cϕ(τ) dτ . (4.11)

Hence, d
(

T (ρ1, p1), T (ρ2, p2)
)

≤ max
{

T C(T̂ ), CA(e
F (T ) − 1)

}

d
(

(ρ1, p1), (ρ2, p2)
)

. Choose

now a sufficiently small T so that T is a contraction. Then, its unique fixed point is the
unique solution to (1.1) defined on the time interval [0, T ].

2. Global Uniqueness: Let now (ρ1, p1) and (ρ2, p2) be two solutions to the same prob-
lem (1.1) and defined at least on a common time interval [0, Ť ] ⊆ I. Define

T ∗ = sup
{

T ∈ [0, Ť ] : (ρ1, p1)(t) = (ρ2, p2)(t) for all t ∈ [0, T ]
}

.

By the uniqueness of the fixed point, (ρ1, p1)(t) = (ρ2, p2)(t) for all t ∈ [0, T ], so that the
set in the right hand side above is not empty. Repeat Step 1 with initial datum (ρ̄∗, p̄∗) =
(ρ1, p1)(T

∗) = (ρ2, p2)(T
∗), which is possible since p is bounded on [0, T ∗] and TV(ρ̄∗) is
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bounded, by (4.3). Thus, we obtain that (ρ1, p1)(t) = (ρ2, p2)(t) also on a right neighborhood
of T ∗. This contradicts the maximality of T ∗, unless T ∗ = Ť .

3. Global Existence: Define now

T∗ = sup
{

T ∈ I : ∃ a solution to (1.1) defined on [0, T ]
}

and assume that T∗ < +∞. By (4.7), p is bounded on [0, T∗[ and since

∥

∥p(t2)− p(t1)
∥

∥ ≤
∣

∣

∣

∣

∣

∫ t2

t1

Cϕ(τ)
(

1 +
∥

∥p(τ)
∥

∥

)

dτ

∣

∣

∣

∣

∣

≤
(

1 + sup
t∈[0,T∗]

∥

∥p(t)
∥

∥

) ∣

∣

∣

∣

∣

∫ t2

t1

Cϕ(τ) dτ

∣

∣

∣

∣

∣

,

p is also uniformly continuous. Hence the limit p∗ = limt→T−

∗

p(t) exists and is finite.

Apply now Lemma 4.2 on [0, T∗], obtaining that the solution ρ to (4.1) is defined on all
[0, T∗] and, together with p, also solves (1.1). Now, we repeat Step 1 with initial datum
(ρ̄∗, p̄∗) = (ρ̄, p̄)(T∗), which is possible thanks to (4.3). In turn, this allows to extend (ρ̄, p̄) to
a right neighborhood of T∗. This contradicts the maximality of T∗, unless T∗ = Tmax.

4. Stability Estimates: Fix t > 0 and let τ ∈ [0, t]. Let R ≥ max
{

∫

Rd ρ̄1 dx ,
∫

Rd ρ̄2 dx
}

.

Then, by (4.4) and (4.9), the solutions to (2.1) satisfy

∥

∥(ρ1 − ρ2)(t)
∥

∥

L1

≤ ‖ρ̄1 − ρ̄2‖L1 + t C(t)
[

‖p1 − p2‖L∞([0,t]) +
∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωt)

+
∥

∥div (f1 − f2)
∥

∥

L1(Rd)×L∞([0,t]×[0,R]×Kt)

]

,

∥

∥(p1 − p2)(t)
∥

∥

≤ eF (t)‖p̄1 − p̄2‖+
∫ t

0
eF (t)−F (τ)

∥

∥(ϕ1 − ϕ2)(τ, ·, ·)
∥

∥

L∞
dτ

+

∫ t

0
eF (t)−F (τ)Cϕ(τ)

(

CA

∥

∥(ρ1 − ρ2)(τ)
∥

∥

L1
+R‖A1 −A2‖L(L1,W1,∞)

)

dτ ,

with C as in Lemma 4.2, F as in (4.11), Kt = B(0, δt) and δt =
(

‖p̄‖+ 1
)

e
∫ t
0
Cϕ(τ)dτ − 1.

Insert now the former estimate in the latter one and apply Lemma 4.1 with

∆ =
∥

∥(p1 − p2)(t)
∥

∥ ,

α(t) = eF (t) ,

β(t) = ‖p̄1 − p̄2‖+
R

1 + CAR
(

1− e−F (t)
)

‖A1 −A2‖L(L1,W1,∞)

+

∫ t

0

∥

∥(ϕ1 − ϕ2)(τ, ·, ·)
∥

∥

L∞
e−F (τ) dτ + CA

∫ t

0
e−F (τ)Cϕ(τ)‖ρ̄1 − ρ̄2‖L1 dτ

+CA

∫ t

0
τ C(τ)Cϕ(τ) e

−F (τ)

×
(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞(Ωτ )
+
∥

∥div (f1 − f2)
∥

∥

L1(Rd)×L∞([0,τ ]×[0,R]×Kτ )

)

,

γ(t) = CA t Cϕ(t) C(t)eF (t) ,
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obtaining, with H(τ, t) = exp
∫ t
τ Cϕ(s)

(

1 + CAR+ CA s C(s)
)

ds,

‖p1 − p2‖ ≤



exp

(

F (t) + CA

∫ t

0
τCϕ(τ)C(τ) dτ

)



 ‖p̄1 − p̄2‖

+

(

∫ t

0
H(τ, t) dτ

)

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]

+

(

R
∫ t

0
Cϕ(τ)H(τ, t) dτ

)

‖A1 −A2‖L(L1,W1,∞)

+

(

CA

∫ t

0
Cϕ(τ)H(τ, t) dτ

)

‖ρ̄1 − ρ̄2‖L1

+

(

CA

∫ t

0
τCϕ(τ)C(τ)H(τ, t) dτ

)

×
[

∥

∥∂ρ(f1 − f2)
∥

∥

L∞([0,R]×Rd×Kt)
+
∥

∥divx (f1 − f2)
∥

∥

L1(Rd)×L∞([0,R]×Kt)

]

.

Then, we immediately get the other bound

‖ρ1 − ρ2‖L1

≤ ‖ρ̄1 − ρ̄2‖



1 + tC(t) exp
(

F (t) + CA

∫ t

0
τCϕ(τ)C(τ) dτ

)





+

(

tC(t)
∫ t

0
H(τ, t) dτ

)

‖ϕ1 − ϕ2‖L∞([0,t]×Kt×[0,CA]

+

(

RtC(t)
∫ t

0
Cϕ(τ)H(τ, t) dτ

)

‖A1 −A2‖L(L1,W1,∞)

+CAtC(t) exp
(

F (t) + CA

(

1 + TV(ρ̄1)
)

∫ t

0
τCϕ(τ)C(τ) dτ

)

‖p̄1 − p̄2‖L1

+tC(t)
(

1 + CA

∫ t

0
τCϕ(τ)C(τ)H(τ, t) dτ

)

×
(

∥

∥∂ρ(f1 − f2)
∥

∥

L∞([0,R]×Rd×Kt)
+
∥

∥divx (f1 − f2)
∥

∥

L1(Rd)×L∞([0,R]×Kt)

)

completing the proof. �

Now, we want to prove corollary 2.3. A first step is the following consequence of Kružkov
Theorem [9, Theorem 5].

Proposition 4.4 Let T > 0. Consider the conservation law
{

∂tρ+ divx f̄(t, x, ρ) = 0
ρ(t, 0) = ρ̄

(4.12)

with f̄ ∈ C0([0, T ] × R
d × R;Rd); ∂ρf̄ , ∂ρ∇xf̄ and ∇2

xf̄ continuous wherever defined; ∂ρf̄ ,
divx f̄ ∈ L∞([0, T ] × R

d × [−H,H]) for all H > 0. Assume that ρ̄ ∈ (L1 ∩ L∞)(Rd;R)
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is such that ρ̄(x) = 0 for a.e. x ∈ R
d \ Bd(0, ℓ) for a given ℓ > 0. Moreover, f̄(t, x, 0) =

0 for all t ∈ [0, T ] and x ∈ R
d. Call ρ the Kružkov solution to (4.12) and let K =

supt∈[0,T ]

∥

∥ρ(t)
∥

∥

L∞(Rd)
. Then, for all t ∈ [0, T ], ρ(t, x) = 0 for a.e. x ∈ R

d \ Bd(0, ℓ + V t),

where V =
∥

∥∂ρf̄
∥

∥

L∞([0,T ]×Rd×[−K,K])
.

Above, f̄ is assumed to satisfy the usual Kružkov conditions, see [11, (H1)], or [5, 9]. The
proof essentially relies on [9, Theorem 1].

Proof of Proposition 4.4. Choose an x ∈ R
d \ Bd(0, ℓ + V t). Let δ > 0 be such that

Bd(x, δ) ∩ Bd(0, ℓ + V t) = ∅, so that Bd(x, δ + V t) ∩ Bd(0, ℓ) = ∅. Applying [9, Theorem 1],
with u = ρ and v = 0, we have that

∫

Bd(x,δ)

∣

∣ρ(t, x)
∣

∣ dx ≤
∫

Bd(x,δ+V t)

∣

∣ρ̄(x)
∣

∣ dx = 0

hence ρ(t) vanishes a.e. outside Bd(0, ℓ+ V t). �

Proof of Corollary 2.3. Fix a positive T ∈ I. Let ℓ be such that ρ̄ vanishes outside
Bd(0, ℓ). Let χ ∈ C∞

c (R, [0, 1]) be such that χ(x) = 1 for all x ∈ Bd(0, ℓ + V T ). Define the
convolution in the space variable f∗ = f ∗ χ, so that f∗ has compact support in x. Then,
thanks also to the a priori bound (4.7), f∗ satisfies (f) on [0, T ]. Hence to the problem























∂tρ+ divx f
∗
(

t, x, ρ, p(t)
)

= 0 ,

ṗ = ϕ
(

t, p, A
(

ρ(t)
)

(p)
)

,

ρ(0, x) = ρ̄(x) ,
p(0) = p̄ .

Theorem 2.2 can be applied, yielding on all [0, T ] the existence and uniqueness of a solution
(ρ, p) in the sense of Definition 2.1. Let now f̄(t, x, ρ) = f∗

(

t, x, ρ, p(t)
)

. Then, ρ is a Kružkov
solution to (4.12) and by Proposition 4.4 its support is contained in Bd(0, ℓ + V T ), for all
t ∈ [0, T ]. Therefore, on the same time interval, by the definition of f∗, (ρ, p) is the unique
solution also to (1.1), always according to Definition 2.1. The rest of the proof follows. �
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