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Abstract

This paper focuses on the analytical properties of the solutions to the continuity equa-
tion with non local flow. Our driving examples are a supply chain model and an
equation for the description of pedestrian flows. To this aim, we prove the well posed-
ness of weak entropy solutions in a class of equations comprising these models. Then,
under further regularity conditions, we prove the differentiability of solutions with re-
spect to the initial datum and characterize this derivative. A necessary condition for
the optimality of suitable integral functionals then follows.
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1 Introduction

We consider the scalar continuity equation in N space dimensions{
∂tρ+ div

(
ρ V (ρ)

)
= 0 (t, x)∈R+ × RN

ρ(0, x) = ρ0(x) x∈RN (1.1)

with a non local speed function V . This kind of equations appears in numerous examples,
a first one being the supply chain model introduced in [3, 4], where V (ρ) = v

(∫ 1
0 ρ(x) dx

)
,

see Section 3. Another example comes from pedestrian traffic, in which a reasonable model
can be based on (1.1) with the functional V (ρ) = v(ρ ∗ η)~v(x), see Section 4. Throughout,
our assumptions are modeled on these examples. Other analytically similar situations are
found in [5], where a kinetic model for pedestrians is presented, and in [23], which concerns
the Keller–Segel model.

In the following we postulate assumptions on the function V which are satisfied in the
cases of the supply chain model and of the pedestrian model, but not for general functions.
In particular, we essentially require below that V is a non local function, see (2.1).

The first question we address is that of the well posedness of (1.1). Indeed, we show
in Theorem 2.2 that (1.1) admits a unique local in time weak entropy solution on a time
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interval I. For all t in I, we call St the nonlinear local semigroup that associates to the
initial condition ρ0 the solution Stρ0 of (1.1) at time t. As in the standard case, St turns
out to be L1–Lipschitz.

Then, we look for the Gâteaux differentiability of the map ρ0 7→ Stρ0, in any direc-
tion r0 and for all t ∈ I. A weak Gâteaux differentiability of the semigroup generated
by (1.1) is proved along any solution ρ ∈ C0(I; (W1,1 ∩ W1,∞)(RN ; R)) and in any direc-
tion r0 ∈ L1(RN ; R). Full differentiability follows under stronger assumptions. Moreover,
the Gâteaux derivative of St at ρ0 in the direction r0 is uniquely characterized as weak
entropy solution to the following linear non–local Cauchy problem, that can be formally
obtained by linearizing (1.1):{

∂tr + div
(
rV (ρ) + ρDV (ρ)(r)

)
= 0 (t, x)∈ I × RN

r(0, x) = r0(x) x∈RN (1.2)

where ρ(t, x) = (Stρ0)(x). Thus, also the well posedness of the nonlocal problem (1.2)
needed to be proved, see Proposition 2.8. Remark that, in both (1.1) and (1.2), solutions
are constructed in C0(I;L1(RN ; R)). Therefore, we mostly refer to Kružkov solutions,
see [21, Definition 1]. Indeed, this definition of solutions is more demanding than that of
weak solutions. Besides, it allows us to apply the results in [15], used in the subsequent
part concerning the differentiability of solutions with respect to the initial datum. However,
we note that in the case of the standard transport equation (5.2) and with the regularity
conditions assumed below, the two notions of solution coincide, see Lemma 5.1.

We recall here the well known standard (i.e. local) situation: the semigroup generated
by a conservation law is in general not differentiable in L1, not even in the scalar 1D
case, see [9, Section 1]. To cope with these issues, an entirely new differential structure
was introduced in [9], and further developed in [6, 10], also addressing optimal control
problems, see [11, 14]. However, the mere definition of the shift differential in the scalar
1D case takes alone about a page, see [14, p. 89–90]. We refer to [7, 8, 18, 24, 25] for
further results and discussions about the scalar one–dimensional case.

Then, we introduce a cost function J :C0(I,L1(RN ; R)) → R and, using the differen-
tiability property given above, we find a necessary condition on the initial data ρ0 in order
to minimize J along the solutions to (1.1) associated to ρ0. We stress that the present nec-
essary conditions are obtained within the functional setting typical of scalar conservation
laws, i.e. within L1 and L∞. No reflexivity property is ever used.

The paper is organized as follows. In Section 2, we state the main results of this paper.
The differentiability is proved in Theorem 2.10 and applied to a control in supply chain
management in Theorem 3.2. The sections 3 and 4 provide examples of models based
on (1.1), and in Section 5 we give the detailed proofs of our results.

2 Notation and Main Results

Denote R+ = [0,+∞[, R∗
+ = ]0,+∞[ and by I, respectively Iex, the interval [0, T [, respec-

tively [0, Tex[, for T, Tex > 0. The open ball in RN centered at 0 with radius δ is denoted
by B(0, δ). Furthermore, we introduce the norms:

‖v‖L∞ = ess sup
x∈RN

∥∥v(x)∥∥, ‖v‖W1,1 = ‖v‖L1 + ‖∇xv‖L1 ,

‖v‖W2,∞ = ‖v‖L∞ + ‖∇xv‖L∞ +
∥∥∥∇2

xv
∥∥∥
L∞
, ‖v‖W1,∞ = ‖v‖L∞ + ‖∇xv‖L∞ .
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2.1 Existence of a Weak Entropy Solution to (1.1)

Let V :L1(RN ; R) → C2(RN ; RN ) be a functional, not necessarily linear. A straightforward
extension of [21, Definition 1] yields the following definition of weak solutions for (1.1).

Definition 2.1 Fix ρ0 ∈ L∞(RN ; R). A weak entropy solution to (1.1) on I is a bounded
measurable map ρ ∈ C0

(
I;L1

loc(RN ; R)
)

which is a Kružkov solution to{
∂tρ+ div

(
ρw(t, x)

)
= 0

ρ(0, x) = ρ0(x)
where w(t, x) =

(
V
(
ρ(t)

))
(x) .

Here, differently from [21, Definition 1], we require the full continuity in time.
Introduce the spaces

X = (L1 ∩ L∞ ∩ BV)(RN ; R) and Xα = (L1 ∩ BV)
(
RN ; [0, α]

)
for α > 0

both equipped with the L1 distance. Obviously, Xα ⊂ L∞(RN ; R) for all α > 0.
We pose the following assumptions on V , all of which are satisfied in the examples on

supply chain and pedestrian flow as shown in Section 3 and Section 4, respectively.

(V1) There exists a function C ∈ C0(R+; R+) such that for all ρ ∈ L1(RN ,R),

V (ρ) ∈ L∞(RN ; RN ) ,∥∥∇xV (ρ)
∥∥
L∞(RN ;RN×N )

≤ C(‖ρ‖L∞(RN ;R)) ,∥∥∇xV (ρ)
∥∥
L1(RN ;RN×N )

≤ C(‖ρ‖L∞(RN ;R)) ,∥∥∥∇2
xV (ρ)

∥∥∥
L1(RN ;RN×N×N )

≤ C(‖ρ‖L∞(RN ;R)) .

There exists a function C ∈ C0(R+; R+) such that for all ρ1, ρ2 ∈ L1(RN ,R)∥∥V (ρ1) − V (ρ2)
∥∥
L∞(RN ;RN )

≤ C(‖ρ1‖L∞(RN ;R)) ‖ρ1 − ρ2‖L1(RN ;R) , (2.1)∥∥∇xV (ρ1) −∇xV (ρ2)
∥∥
L1(RN ;RN×N )

≤ C(‖ρ1‖L∞(RN ;R)) ‖ρ1 − ρ2‖L1(RN ;R) .

(V2) There exists a function C ∈ C0(R+; R+) such that for all ρ ∈ L1(RN ,R),∥∥∥∇2
xV (ρ)

∥∥∥
L∞(RN ;RN×N×N )

≤ C(‖ρ‖L∞(RN ;R)) .

(V3) V :L1(RN ; R) → C3(RN ; RN ) and there exists a function C ∈ C0(R+; R+) such that
for all ρ ∈ L1(RN ,R),∥∥∥∇3

xV (ρ)
∥∥∥
L∞(RN ;RN×N×N×N )

≤ C(‖ρ‖L∞(RN ;R)) .

Condition (2.1) essentially requires that V be a non local operator. Note that (V3) im-
plies (V2). Existence of a solution to (1.1) (at least locally in time) can be proved under
only assumption (V1), see Theorem 2.2. The stronger bounds on V ensure additional
regularity of the solution which is required later to derive the differentiability properties,
see Proposition 2.5.
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Theorem 2.2 Let (V1) hold. Then, for all α, β > 0 with β > α, there exists a time
T (α, β) > 0 such that for all ρ0 ∈ Xα, problem (1.1) admits a unique weak entropy solution
ρ ∈ C0

(
[0, T (α, β)];Xβ

)
in the sense of Definition 2.1. Moreover,

1.
∥∥ρ(t)∥∥

L∞ ≤ β for all t ∈ [0, T (α, β)].

2. There exists a function L ∈ C0(R+; R+) such that for all ρ0,1, ρ0,2 in Xα, the corre-
sponding solutions satisfy, for all t ∈ [0, T (α, β)],∥∥ρ1(t) − ρ2(t)

∥∥
L1 ≤ L(t)

∥∥ρ0,1 − ρ0,2

∥∥
L1

3. There exists a constant L = L(β) such that for all ρ0 ∈ Xα, the corresponding solution
satisfies for all t ∈ [0, T (α, β)]

TV
(
ρ(t)

)
≤
(
TV (ρ0) + Lt‖ρ0‖L∞

)
eLt and

∥∥ρ(t)∥∥
L∞ ≤ ‖ρ0‖L∞ eLt .

The above result is local in time. Indeed, as β grows, L(β) may well grow, even unbound-
edly. Hence, both the total variation and the L∞ norm of the solution may well blow up
in finite time. To ensure global existence in time we need additional conditions on V :

(A) V is such that for all ρ ∈ L1(RN ; R) and all x ∈ RN ,
(
div V (ρ)

)
(x) ≥ 0.

(B) The function C in (V1) is bounded, i.e. C ∈ L∞(R+; R+).

Note that in the supply chain model discussed in Section 3, condition (A) applies. On
the contrary, in the case of the pedestrian model in Section 4, iterating Theorem 2.2, we
obtain the existence of solution up to time

∑
i T (αi, αi+1). The latter turns out to be a

convergent series, see Remark 5.5.

Lemma 2.3 Assume all assumptions of Theorem 2.2. Let also (A) hold. Then, for
all α > 0, the set Xα is invariant for (1.1), hence if the initial datum ρ0 is such that
‖ρ0‖L∞(RN ;R) ≤ α, then

∥∥ρ(t)∥∥
L∞(RN ;R)

≤ α as long as the solution ρ(t) exists.

Condition (B), although it does not guarantee the boundedness of the solution, does
ensure the global existence of the solution to (1.1).

Theorem 2.4 Let (V1) hold. Assume moreover that (A) or (B) hold. Then, there exists
a unique semigroup S: R+ ×X → X with the following properties:

(S1): For all ρ0 ∈ X , the orbit t 7→ Stρ0 is a weak entropy solution to (1.1).

(S2): S is L1-continuous in time, i.e. for all ρ0 ∈ X , the map t 7→ Stρ0 is in C0(R+;X ).

(S3): S is L1-Lipschitz with respect to the initial datum, i.e. for a suitable positive L ∈
C0(R+; R+), for all t ∈ R+ and all ρ1, ρ2 ∈ X ,

‖Stρ1 − Stρ2‖L1(RN ;R) ≤ L(t) ‖ρ1 − ρ2‖L1(RN ;R) .

(S4): There exists a positive constant L such that for all ρ0 ∈ X and all t ∈ R+,

TV
(
ρ(t)

)
≤
(
TV (ρ0) + Lt ‖ρ0‖L∞(RN ;R)

)
eLt .
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Higher regularity of the solutions of (1.1) can be proved under stronger bounds on V .

Proposition 2.5 Let (V1) and (V2) hold. With the same notations as in Theorem 2.2,
if ρ0 ∈ Xα, then

ρ0 ∈ (W1,1 ∩ L∞)(RN ; R) =⇒ ∀t ∈ [0, T (α, β)], ρ(t) ∈ W1,1(RN ; R) ,
ρ0 ∈ W1,∞(RN ; R) =⇒ ∀t ∈ [0, T (α, β)], ρ(t) ∈ W1,∞(RN ; R) ,

and there exists a positive constant C = C(β) such that∥∥ρ(t)∥∥
W1,1 ≤ e2Ct ‖ρ0‖W1,1 and

∥∥ρ(t)∥∥
W1,∞ ≤ e2Ct ‖ρ0‖W1,∞ .

Furthermore, if V also satisfies (V3), then

ρ0 ∈ (W2,1 ∩ L∞)(RN ; [α, β]) =⇒ ∀t ∈ [0, T (α, β)], ρ(t) ∈ W2,1(RN ; R)

and for a suitable non–negative constant C = C(β), we have the estimate∥∥ρ(t)∥∥
W2,1 ≤ eCt(2eCt − 1)2 ‖ρ0‖W2,1 .

The proofs are deferred to Section 5.

2.2 Differentiability

This section is devoted to the differentiability of the semigroup S (defined in Theorem 2.2)
with respect to the initial datum ρ0, according to the following notion. Recall first that a
map F :L1(RN ; R) → L1(RN ; R) is strongly L1 Gâteaux differentiable in any direction at
ρ0 ∈ L1(RN ; R) if there exists a continuous linear map DF (ρ0):L1(RN ; R) → L1(RN ; R)
such that for all r0 ∈ L1(RN ; R) and for any real sequence (hn) with hn → 0,

F (ρ0 + hnr0) − F (ρ0)
hn

n→∞→ DF (ρ0)(r0) strongly in L1 .

Besides proving the differentiability of the semigroup, we also characterize the differen-
tial. Formally, a sort of first order expansion of (1.1) with respect to the initial datum can
be obtained through a standard linearizing procedure, which yields (1.2). Now, we rigor-
ously show that the derivative of the semigroup in the direction r0 is indeed the solution
to (1.2) with initial condition r0. To this aim, we need a forth and final condition on V .

(V4) There exists a function K ∈ C0(R+; R+) such that for all ρ ∈ L1(RN ; R+), for all
r ∈ L1(RN ; R),∥∥V (ρ+ r) − V (ρ) − DV (ρ)(r)

∥∥
W2,∞ ≤ K

(
‖ρ‖L∞ + ‖ρ+ r‖L∞

)
‖r‖2

L1 ,∥∥DV (ρ)(r)
∥∥
W2,∞ ≤ K

(
‖ρ‖L∞

)
‖r‖L1 .

Consider now system (1.2), where ρ ∈ C0(Iex,X ) is a given function. We introduce a notion
of solution for (1.2) and give conditions which guarantee the existence of a solution.
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Definition 2.6 Fix r0 ∈ L∞(RN ; R). A function r ∈ C0
(
I;L1

loc(RN ; R+)
)
, bounded and

measurable, is a weak solution to (1.2) if for any test function ϕ ∈ C∞
c (I̊ × RN ; R)∫ T

0

∫
RN

[
r ∂tϕ+ r a(t, x) · ∇xϕ− div b(t, x)ϕ

]
dx dt = 0 where

a=V (ρ)
b=ρDV (ρ)(r)

(2.2)

and r(0) = r0 a.e. in RN .

We now extend the classical notion of Kružkov solution to the present non local setting.

Definition 2.7 Fix r0 ∈ L∞(RN ; R+). A function r ∈ C0
(
I;L1

loc(RN ; R+)
)
, bounded and

measurable, is a Kružkov solution to the nonlocal problem (1.2) if it is a Kružkov solution
to {

∂tr + div
(
r a(t, x) + b(t, x)

)
= 0

r(0, x) = r0(x)
where a = V (ρ) and b = ρDV (ρ)(r) .

In other words, r is a Kružkov solution to (1.2) if for all k ∈ R and for any test function
ϕ ∈ C∞

c (I̊ × RN ; R+)∫ T

0

∫
RN

[
(r − k)∂tϕ+ (r − k)V (ρ) · ∇xϕ− div

(
kV (ρ) + ρDV (ρ)(r)

)
ϕ
]
sgn(r − k) dx dt ≥ 0

and lim
t→0+

∫
B(0,δ)

∣∣r(t) − r0
∣∣ dx = 0 for all δ > 0 .

Condition (V4) ensures that if ρ ∈ W1,1(RN ; R), then DV (ρ)(r) ∈ C2(RN ; RN ) and hence
for all t ≥ 0, the map x 7→ ρ(t, x)DV

(
ρ(t)

) (
r(t, x)

)
is in W1,1(RN ; R), so that the integral

above is meaningful.

Proposition 2.8 Let (V1) and (V4) hold. Fix ρ ∈ C0
(
Iex;L1(RN ; R)

)
such that ρ(t) ∈

(W1,∞ ∩W1,1)(RN ; R) for all t ∈ Iex. Then, for all r0 ∈ (L1 ∩L∞)(RN ; R) there exists a
unique weak entropy solution to (1.2) in C0

(
Iex;L1(RN ; R)

)
and for all time t ∈ Iex, with

C = C
(
‖ρ‖L∞([0,t]×RN ;R)

)
as in (V1) and K = K

(
‖ρ‖L∞([0,t]×RN ;R)

)
as in (V4)∥∥r(t)∥∥

L1 ≤ e
Kt‖ρ‖L∞(I;W1,1) eCt ‖r0‖L1∥∥r(t)∥∥

L∞ ≤ eCt ‖r0‖L∞ +K t e2Ct e
Kt‖ρ‖L∞(I;W1,1) ‖ρ‖L∞(I;W1,∞) ‖r0‖L1 .

If (V2) holds, ρ ∈ L∞(Iex; (W1,∞ ∩ W2,1)(RN ; R)
)

and r0 ∈ (W1,1 ∩ L∞)(RN ; R), then
for all t ∈ Iex, r(t) ∈ W1,1(RN ; R) and∥∥r(t)∥∥

W1,1 ≤ (1 + C ′t) e2C′t ‖r0‖W1,1 +Kt(1 + Ct) e4C′t ‖r0‖L1 ‖ρ‖L∞(I;W2,1) .

where C ′ = max
{
C,K‖ρ‖L∞(Iex;W1,1(RN ;R))

}
.

Under (V1) and (V4), the following mild differentiability result can be proved.

Proposition 2.9 Let (V1) and (V4) hold. Let ρ0 ∈ (W1,∞∩W1,1)(RN ; R) and r0 ∈ X1.
Then, there exist h∗ > 0 and T∗ = T∗(‖ρ0‖L∞), such that for all h ∈ [0, h∗] the solution ρ
to (1.1) and the solution ρh to{

∂tρh + div
(
ρh V (ρh)

)
= 0 (t, x)∈R+ × RN

ρh(0, x) = ρ0(x) + hr0(x) x∈RN (2.3)
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are defined for all t ∈ [0, T∗]. Morever, if there exists an r ∈ L1([0, T∗] × RN ; R) such that
(ρh − ρ)/h h→0

⇀ r, then r is a distributional solution to (1.2), i.e. it satisfies (2.2).

Below, we consider the following stronger hypothesis, under which we derive a result
of strong Gâteaux differentiability and uniqueness of the derivative.

(V5) There exists a function K ∈ C0(R+; R+) such that for all ρ, ρ̃ ∈ L1(RN ; R)∥∥∥div
(
V (ρ̃) − V (ρ) − DV (ρ)(ρ̃− ρ)

)∥∥∥
L1

≤ K
(
‖ρ‖L∞ + ‖ρ̃‖L∞

) (
‖ρ̃− ρ‖L1

)2
and the map r → div DV (ρ)(r) is a bounded linear operator on L1(RN ; R) →
L1(RN ; R), i.e. for all ρ, r ∈ L1(RN ; R)∥∥∥div

(
DV (ρ)(r)

)∥∥∥
L1(RN ;R)

≤ K
(
‖ρ‖L∞(RN ;R)

)
‖r‖L1(RN ;R) .

Theorem 2.10 Let (V1), (V3), (V4) and (V5) hold. Let ρ0 ∈ (W1,∞∩W2,1)(RN ; R),
r0 ∈ (W1,1∩L∞)(RN ; R), and denote Tex the time of existence of the solution of (1.1) with
initial condition ρ0. Then, for all time t ∈ Iex the local semigroup defined in Theorem 2.2
is strongly L1 Gâteaux differentiable in the direction r0. The derivative DSt(ρ0)(r0) of St

at ρ0 in the direction r0 is
DSt(ρ0)(r0) = Σρ0

t (r0) .

where Σρ0 is the linear application generated by the Kružkov solution to (1.2), where ρ =
Stρ0, then for all t ∈ Iex.

2.3 Necessary Optimality Conditions for Problems Governed by (1.1)

Aiming at necessary optimality conditions for non linear functionals defined on the solutions
to (1.1), we prove the following chain rule formula.

Proposition 2.11 Let T > 0 and I = [0, T [. Assume that f ∈ C1,1(R; R+), ψ ∈ L∞(I ×
RN ; R) and that S: I × (L1 ∩ L∞)(RN ; R) → (L1 ∩ L∞)(RN ; R) is strongly L1 Gâteaux
differentiable. For all t ∈ I, let

J(ρ0) =
∫

RN

f (Stρ0) ψ(t, x) dx . (2.4)

Then, J is strongly L∞ Gâteaux differentiable in any direction r0 ∈ (W1,1 ∩ L∞)(RN ; R).
Moreover,

DJ(ρ0)(r0) =
∫

RN

f ′(Stρ0)Σρ0
t (r0)ψ(t, x) dx .

Proof. Since
∣∣f(ρh) − f(ρ) − f ′(ρ)(ρh − ρ)

∣∣ ≤ Lip(f ′) |ρh − ρ|2, we have∣∣∣∣J(ρ0 + hr0) − J(ρ0)
h

−
∫

RN

f ′(Stρ0)DSt(ρ0)(r0)ψ(t, x) dx
∣∣∣∣

≤
∫

RN

∣∣f ′(Stρ0)
∣∣∣∣∣∣St(ρ0 + hr0) − St(ρ0)

h
− DSt(ρ0)(r0)

∣∣∣∣ ∣∣ψ(t, x)
∣∣ dx

+Lip(f ′)
1
|h|

∫
RN

∣∣St(ρ0 + hr0) − St(ρ0)
∣∣2 ∣∣ψ(t, x)

∣∣ dx .
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The strong Gâteaux differentiability of St in L1 then yields∫
RN

∣∣f ′(Stρ0)
∣∣ ∣∣∣∣St(ρ0 + hr0) − St(ρ0)

h
− DSt(ρ0)(r0)

∣∣∣∣ ∣∣ψ(t, x)
∣∣ dx = o(1) as h→ 0

thanks to Stρ0 ∈ L∞ and to the local boundedness of f ′. Furthermore,

St(ρ0), St(ρ0 + hr0) ∈ L∞

1
h

(
St(ρ0 + hr0) − St(ρ0)

) h→0−→ DSt(ρ0)(r0) pointwise a.e.

St(ρ0 + hr0) − St(ρ0)
h→0−→ 0 pointwise a.e.

the Dominated Convergence Theorem ensures that the higher order term in the latter
expansion tend to 0 as h→ 0. �

The above result can be easily extended. First, to more general (non linear) functionals
J(ρ0) = J (Stρ0), with J :X → R+ such that for all ρ ∈ X there exists a continuous linear
application DJ (ρ):X → R such that for all ρ, r ∈ X :∣∣∣∣J (ρ+ hr) − J (ρ)

h
− DJ (ρ)(r)

∣∣∣∣ h→0−→ 0 .

Secondly, to functionals of the type

J(ρ0) =
∫ T

0

∫
RN

f(Stρ0)ψ(t, x) dx dt or J(ρ0) =
∫ T

0
J (Stρ0) dt .

This generalization, however, is immediate and we omit the details.
Once the differentiability result above is available, a necessary condition of optimality

is straightforward.

Proposition 2.12 Let f ∈ C1,1(R; R+) and ψ ∈ L∞(Iex × RN ; R). Assume that S: I ×
(L1 ∩L∞)(RN ; R) → (L1 ∩L∞)(RN ; R) is strongly L1 Gâteaux differentiable. Define J as
in (2.4). If ρ0 ∈ (L1 ∩ L∞)(RN ; R) solves the problem

find min
ρ0

J (ρ) subject to {ρ is solution to (1.1)}.

then, for all r0 ∈ (L1 ∩ L∞)(RN ; R)∫
RN

f ′(Stρ0)Σρ0
t r0 ψ(t, x) dx = 0 . (2.5)

3 Demand Tracking Problems for Supply Chains

Recently, D. Armbruster et al. [4], introduced a continuum model to simulate the aver-
age behavior of highly re-entrant production systems at an aggregate level appearing, for
instance, in large volume semiconductor production line. The factory is described by the
density of products ρ(t, x) at stage x of the production at a time t. Typically, see [1, 4, 20],
the production velocity V is a given smooth function of the total load

∫ 1
0 ρ(t, x) dx, for

example

v(u) = vmax/(1 + u) and V (ρ) = v

(∫ 1

0
ρ(t, s) ds

)
. (3.1)

The full model, given by (1.1)–(3.1) with N = 1, fits in the present framework.
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Proposition 3.1 Let v ∈ C1
(
[0, 1]; R

)
. Then, the functional V defined as in (3.1) satis-

fies (A), (V1), (V2), (V3). Moreover, if v ∈ C2
(
[0, 1]; R

)
, then V satisfies also (V4)

and (V5).

The proof is deferred to Paragraph 5.4.
The supply chain model with V given by (3.1) satisfies (V1) to (V5) and (A). There-

fore, Theorem 2.4 applies and, in particular, the set [0, 1] is invariant yielding global well
posedness. By Theorem 2.10, the semigroup Stρ0 is Gâteaux differentiable in any direction
r0 and the differential is given by the solution to (1.2).

Note that the velocity is constant across the entire system at any time. In fact, in a
real world factory, all parts move through the factory with the same speed. While in a
serial production line, speed through the factory is dependent on all items and machines
downstream, in a highly re-entrant factory this is not the case. Since items must visit
machines more than once, including machines at the beginning of the production process,
their speed through factory is determined by the total number of parts both upstream
and downstream from them. Such re-entrant production is characteristic for semiconduc-
tor production lines. Typically, the output of the whole factory over a longer timescale,
e.g. following a seasonal demand pattern or ramping up or down a new product, can be
controlled by prescribing the inflow density to a factory ρ(t, x = 0) = λ(t). The influx
should be chosen in order to achieve either of the following objective goals [4]:

(1) Minimize the mismatch between the outflow and a demand rate target d(t) over a
fixed time period (demand tracking problem). This is modelled by the cost functional
1
2

∫ T
0

(
d(t) − ρ(1, t)

)2
dt.

(2) Minimize the mismatch between the total number of parts that have left the factory
and the desired total number of parts over a fixed time period d(t). The backlog of a
production system at a given time t is defined as the total number of items that have
been demanded minus the total number of items that have left the factory up to that
time. Backlog can be negative or positive, with a negative backlog corresponding to
overproduction and a positive backlog corresponding to a shortage. This problem is

modeled by 1
2

∫ T
0

(∫ t
0 d(τ)u− ρ(1, τ)dτ

)2
dt.

In both cases we are interested in the influx λ(t). A numerical integration of this problem
has been studied in [22]. In order to apply the previous calculus we reformulate the
optimization problem for the influx density λ(t) = ρ0(−t) where ρ0 is the solution to a
minimization problem for

J1(ρ0) =
1
2

∫ 1

0
(d(x) − STρ0(x))2 dx

J2(ρ0) =
1
2

∫ 1

0

(∫ x

0

(
d(ξ) − STρ0(ξ)

)
dξ
)2

dx ,
(3.2)

respectively, where Stρ0 is the solution to (1.1) and (3.1). Clearly, J1 and J2 satisfy the
assumptions imposed in the previous section. The assertions of Proposition 2.12 then state
necessary optimality conditions, which we summarize in the theorem below.
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Theorem 3.2 Let T > 0 be given. Let the assumptions of Proposition 3.1 hold. Let
ρ0 ∈ (W1,∞ ∩ W2,1)(R; R) be a minimizer of J1 as defined in (3.2), with S being the
semigroup generated by (1.1)–(3.1). Then, for all r0 ∈ (W1,∞ ∩ W2,1)(R; R) we have∫ 1

0

(
d(x) − ρ(T, x)

)
r(T, x) dx = 0 , where

∂tr + ∂x

vmax

(
r
∫ 1
0 ρ dx+ ρ

∫ 1
0 r dx

)
(
1 +

∫ 1
0 ρ dx

)2

 = 0 , r(0, x) = r0(x) .

The latter Cauchy problem is in the form (1.2) and Proposition 2.8 proves its well posedness.
The latter proof is deferred to Paragraph 5.4.

4 A Model for Pedestrian Flow

Macroscopic models for pedestrian movements are based on the continuity equation, see [12,
13, 16, 19], possibly together with a second equation, as in [17]. In these models, pedestrians
are assumed to instantaneously adjust their (vector) speed according to the crowd density
at their position. The analytical construction in Section 2 allows to consider the more
realistic situation of pedestrian deciding their speed according to the local mean density
at their position. We are thus led to consider (1.1) with

V (ρ) = v(ρ ∗ η)~v (4.1)

where
η ∈ C2

c

(
R2; [0, 1]

)
has support spt η ⊆ B(0, 1) and ‖η‖L1 = 1 , (4.2)

so that (ρ ∗ η)(x) is an average of the values attained by ρ in B(x, 1). Here, ~v = ~v(x)
is the given direction of the motion of the pedestrian at x ∈ R2. Then, the presence of
boundaries, obstacles or other geometric constraint can be described through ~v, see [13].

Note that condition (A) does not allow any increase in the crowd density. Hence, it
may not hold when describing, say, the evacuation through a narrow exit. Therefore, in
general, for this example we have only a local in time solution by Theorem 2.2.

As in the preceding example, first we state the hypotheses that guarantee assump-
tions (V1) to (V5).

Proposition 4.1 Let V be defined in (4.1) and η be as in (4.2).

1. If v ∈ C2 (R; R) and ~v ∈ (C2 ∩ W2,1)(R2; S1), then V satisfies (V1) and (V2).

2. If moreover v ∈ C3(R; R), ~v ∈ C3(R2; R2) and η ∈ C3(R2; R) then V satisfies (V3).

3. If moreover v ∈ C4(R; R), ~v ∈ C2(R2; R2) and η ∈ C2(R2; R), then V satisfies (V4)
and (V5).

The proof is deferred to Paragraph 5.4.
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A typical problem in the management of pedestrian flows consists in keeping the crowd
density ρ(t, x) below a given threshold, say ρ̂, in particular in a sensible compact region Ω.
To this aim, it is natural to introduce a cost functional of the type

J(ρ0) =
∫ T

0

∫
RN

f
(
Stρ0(x)

)
ψ(t, x) dxdt (4.3)

where

(f) f ∈ C1,1(R; R+), f(ρ) = 0 for ρ ∈ [0, ρ̂], f(ρ) > 0 and f ′(ρ) > 0 for ρ > ρ̂.

(ψ) ψ ∈ C∞([0, T ] × RN ; [0, 1]), with sptψ(t) = Ω, is a smooth approximation of the
characteristic function of the compact set Ω, with Ω̊ 6= ∅.

Paragraph 2.3 then applies, yielding the following necessary condition for optimality.

Theorem 4.2 Let T > 0 and the assumptions of 1.–3. in Proposition 4.1 hold, together
with (f) and (ψ). Let ρ0 ∈ (W1,∞ ∩ W2,1)(R; R) be a minimizer of J as defined
in (4.3), with S being the semigroup generated by (1.1)–(4.1). Then, for all r0 ∈ (W1,∞ ∩
W2,1)(R; R), ρ0 satisfies (2.5).

The proof is deferred to Paragraph 5.4.
Consider the problem of evacuating a meeting room. Then, the optimal ρ0 corresponds

to the best distribution of people during meetings, so that the room is evacuated in the
minimal time in case of need.

5 Detailed Proofs

Below, we denote by WN the Wallis integral

WN =
∫ π/2

0
(cosα)N dα . (5.1)

5.1 A Lemma on the Transport Equation

In what follows, a key role will be played by the transport equation{
∂tr + div

(
r w(t, x)

)
= R(t, x)

r(0, x) = r0(x)
(5.2)

The next lemma is similar to other results in recent literature, see for instance [2]. It
provides the existence and uniqueness of solutions to (5.2) with the present regularity
conditions, showing also that the concepts of weak and Kružkov solution here coincide, see
also [26].

Lemma 5.1 Let T > 0, so that I = [0, T [, and w be such that

w ∈ C0(I × RN ; RN ) w(t) ∈ C1(RN ; RN ) ∀t ∈ I
w ∈ L∞(I × RN ; RN ) ∇xw ∈ L∞(I × RN ; RN×N ) .

(5.3)

Assume that R ∈ L∞
(
I;L1(RN ; R)

)
∩L∞

(
I × RN ; R

)
and r0 ∈ (L1∩L∞)(RN ; R). Then,
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1. the function r defined by

r(t, x) = r0
(
X(0; t, x)

)
exp

(
−
∫ t

0
divw

(
τ,X(τ ; t, x)

)
dτ

)

+
∫ t

0
R
(
τ,X(τ ; t, x)

)
exp

(
−
∫ t

τ
divw

(
u,X(u; t, x)

)
du

)
dτ ,

(5.4)

where t 7→ X(t; t0, x0) is the solution to the Cauchy problem
dχ

dt
= w(t, χ)

χ(t0) = x0 .
(5.5)

is such that r ∈ C0
(
I;L1(RN ; R)

)
;

2. the function r, as defined by (5.4), is a Kružkov solution to (5.2);

3. any weak solution to (5.2) coincides with r as defined in (5.4).

Recall that, in the present case, [21, Definition 1] amounts to define Kružkov solution
to (5.2) a function r ∈ L∞(I;L1

loc(RN ; R)
)
, continuous from the right in time, such that

for all k ∈ R, for all test function ϕ ∈ C∞
c (]0, T [×RN ; R+)∫ T

0

∫
RN

[
(r − k)(∂tϕ+ w · ∇xϕ) + (R− k divw)ϕ

]
sgn(r − k) dx dt ≥ 0 (5.6)

and such that for almost every t ∈ [0, T ], for any δ > 0,

lim
t→0

∫
B(0,δ)

∣∣r(t, x) − r0(x)
∣∣dx = 0 . (5.7)

On the other hand, by weak solution to (5.3) we mean a map r ∈ C0(I;L1(RN ; R))∩L∞(I×
RN ; R) that satisfies (5.3) in distributional sense. Remark that as an immediate corollary
of Lemma 5.1, we obtain that any weak solution to (5.2) is also a Kružkov solution and is
represented by (5.4).

Note that the expression (5.4) is formally justified integrating (5.2) along the charac-
teristics (5.5) and obtaining

d

dt

(
r
(
t, χ(t)

))
+ r

(
t, χ(t)

)
divw

(
t, χ(t)

)
= R

(
t, χ(t)

)
.

Recall for later use that the flow X = X(t; t0, x0) generated by (5.5) can be used to intro-
duce the change of variable y = X(0; t, x), so that x = X(t; 0, y), due to standard properties
of the Cauchy problem (5.5). Denote by J(t, y) = det

(
∇yX(t; 0, y)

)
the Jacobian of this

change of variables. Then, J satisfies the equation

dJ(t, y)
dt

= divw
(
t,X(t; 0, y)

)
J(t, y) (5.8)

with initial condition J(0, y) = 1. Hence J(t, y) = exp
(∫ t

0 divw
(
τ,X(τ ; 0, y)

)
dτ
)

which,

in particular, implies J(t, y) > 0 for all t ∈ I, y ∈ RN .
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Proof of Lemma 5.1. 1. Let Rn ∈ L∞(I; C1(RN ; R)) and r0,n ∈ C1(RN ; R) approxi-
mate R and r0 in the sense

‖Rn −R‖L∞(I;L1(RN ;R)) → 0 and
∥∥r0,n − rn

∥∥
L1(RN ;R)

→ 0 as n→ +∞ .

Call rn the corresponding quantity as given by (5.4). Then, by (5.4), also

‖rn − r‖L∞(I;L1(RN ;R)) → 0 as n→ +∞

so that r ∈ L∞(I;L1(RN ; R)). Concerning continuity in time, simply note that, by (5.4),
rn ∈ C0(I;L1(RN ; R)) and r is the uniform limit of the rn.

2. The boundedness requirement follows from (5.4):∥∥r(t)∥∥
L∞(RN ;R)

≤
(
‖r0‖L∞(RN ;R) + t‖R‖L∞(I×RN ;R)

)
e
t‖divw‖

L∞(I×RN ;R) . (5.9)

Let k ∈ R and ϕ ∈ C∞
c (I̊ × RN ; R+). Then, according to [21, Definition 1], we prove (5.6)

for r given as in (5.4). By (5.8), the semigroup property of X and denoting R(t, y) =∫ t
0 R

(
τ,X(τ ; 0, y)

)
J(τ, y) dτ , so that R is W1,1 in time, we get∫ +∞

0

∫
RN

[
(r − k)(∂tϕ+ w · ∇xϕ) + (R− k divw)ϕ

]
sgn(r − k) dx dt

=
∫ +∞

0

∫
RN

[(
r0(y)
J(t, y)

+
R(t, y)
J(t, y)

− k

)
×
(
∂tϕ

(
t,X(t; 0, y)

)
+ w

(
t,X(t; 0, y)

)
· ∇xϕ

(
t,X(t; 0, y)

))
+
(
R
(
t,X(t; 0, y)

)
− k div

(
w
(
t,X(t; 0, y)

)))
ϕ
(
t,X(t; 0, y)

)]

× sgn
(
r0(y)
J(t, y)

+
R(t, y)
J(t, y)

− k

)
J(t, y) dy dt

=
∫ +∞

0

∫
RN

[
r0(y)

d

dt
ϕ
(
t,X(t; 0, y)

)
− k J(t, y)

d

dt
ϕ
(
t,X(t; 0, y)

)
−k ϕ

(
t,X(t; 0, y)

) d
dt
J(t, y) +

d

dt

(
R(t, y)ϕ

(
t,X(t; 0, y)

))]
× sgn

(
r0(y) + R(t, y) − k J(t, y)

)
dy dt

=
∫ +∞

0

∫
RN

d

dt

((
r0(y) + R(t, y) − k J(t, y)

)
ϕ
(
t,X(t; 0, y)

))
× sgn

(
r0(y) + R(t, y) − k J(t, y)

)
dy dt

=
∫ +∞

0

∫
RN

d

dt

(∣∣r0(y) + R(t, y) − k J(t, y)
∣∣ϕ (t,X(t; 0, y)

))
dy dt

= 0 .

Finally, (5.7) holds by the continuity proved above.

3. Let r be a weak solution to (5.3). It is enough to consider the case R = 0 and r0 = 0,
thanks to the linearity of (5.3). Then, fix τ ∈ ]0, T ], choose any ϕ ∈ C1

(
I; C1

c (RN ; R)
)
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and let βε ∈ C1(I; R) such that βε(t) = 1 for t ∈ [ε, τ − ε], β′ε(t) ∈ [0, 2/ε] for t ∈ [0, ε],
β′ε(t) ∈ [−2/ε, 0] for t ∈ [τ − ε, τ ] and β(t) = 0 for t ∈ [τ, T ]. By the definition of weak
solution,

0 =
∫ τ

0

∫
RN

(r ∂tϕ+ r w · ∇ϕ)βε dxdt+
∫ ε

0
β′ε

∫
RN

r ϕ dxdt+
∫ τ

τ−ε

∫
RN

r ϕβ′
ε dxdt

=
∫ τ

0
βε

∫
RN

(r ∂tϕ+ r w · ∇ϕ) dxdt+
∫ 1

0
εβ′ε(εt)

∫
RN

r(εt, x)ϕ(εt, x) dx dt

+
∫ τ

τ−ε
β′ε(t)

∫
RN

r(t, x)ϕ(t, x) dxdt

Consider the three terms separately. As ε → 0, the first summand above converges to∫
RN

∫ τ
0 r (∂tϕ+ w · ∇ϕ) dt dx. Consider the second summand, by the Dominated Conver-

gence Theorem, it tends to 0, since r0 = 0. Passing to the latter term, note that:∣∣∣∣∣
∫ τ

τ−ε
β′ε(t)

∫
RN

r(t, x)ϕ(t, x) dxdt+
∫

RN

r(τ, x)ϕ(τ, x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ τ

τ−ε
β′ε(t)

∫
RN

(
r(t, x)ϕ(t, x) − r(τ, x)ϕ(τ, x)

)
dxdt

∣∣∣∣∣
→ 0 as ε→ 0

by the continuity of r in time and the smoothness of ϕ.
Therefore, choose any η ∈ C1

c (RN ; R) and define ϕ as the backward solution to ∂tϕ +
w · ∇ϕ = 0 with ϕ(τ) = η. Then,

0 =
∫

RN

∫ τ

0
r (∂tϕ+ w · ∇ϕ) dt dx−

∫
RN

r(τ, x)ϕ(τ, x) dx

=
∫

RN

r(τ, x)ε(x) dx

proving that r(τ), and hence r, vanishes identically. �

5.2 Proof of Theorem 2.2

Corollary 5.2 In the same setting of Lemma 5.1, if R = 0 then:

ρ0 ≥ 0 for a.e. x ⇒ ρ(t) ≥ 0 for a.e. x and for all t ∈ I ,

divw ≥ 0 for a.e. (t, x) ⇒
∥∥ρ(t)∥∥

L∞ ≤ ‖ρ0‖L∞for all t ∈ I ,∥∥ρ(t)∥∥
L∞(RN ;R)

≤ ‖ρ0‖L∞(RN ;R) exp
(
t ‖divw‖L∞([0,t]×RN ;R)

)
. (5.10)

The proof follows directly from Lemma 5.1 using in particular (5.4).

Lemma 5.3 In the same setting of Lemma 5.1, if R = 0 and also

divw ∈ L∞
(
I;L1(RN ; R)

)
and ∇x divw ∈ L∞

(
I;L1(RN ; RN )

)
(5.11)
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then, setting

κ0 = NWN (2N + 1)‖∇xw‖L∞(I×RN ;RN×N ) and κ = 2N‖∇xw‖L∞(I×RN ;RN×N )

we have the following bound on the total variation:

TV
(
ρ(t)

)
≤ TV (ρ0)eκ0t

+NWN

∫ t

0
eκ0(t−s)

∫
RN

es‖divw‖L∞
∥∥∇x divw(s, x)

∥∥ dx ds ‖ρ0‖L∞
(5.12)

where
∥∥∇x divw(s, x)

∥∥ is the usual Euclidean norm of a vector in RN .
Let ρ1, ρ2 be the solutions of (5.2) associated to w1, w2 with R1 = R2 = 0 and with

initial conditions ρ1,0, ρ2,0 in X . Then∥∥(ρ1 − ρ2)(t)
∥∥
L1

≤ eκt
∥∥ρ1,0 − ρ2,0

∥∥
L1 +

eκ0t − eκt

κ0 − κ
TV (ρ1,0)‖w1 − w2‖L∞

+NWN

∫ t

0

eκ0(t−s) − eκ(t−s)

κ0 − κ

∫
RN

es‖divw‖L∞
∥∥∇x divw1(s, x)

∥∥ dx ds (5.13)

×
∥∥ρ1,0

∥∥
L∞ ‖w1 − w2‖L∞

+
∫ t

0
eκ(t−s)es‖divw‖L∞

∫
RN

∣∣div (w1 − w2)(s, x)
∣∣ dx ds

∥∥ρ1,0

∥∥
L∞ ,

where

κ0 = NWN (2N + 1)‖∇xw1‖L∞(I×RN ;RN×N ) and κ = 2N‖∇xw1‖L∞(I×RN ;RN×N )

Proof. The bound (5.12) follows from [15, Theorem 2.5], the hypotheses on w being
satisfied thanks to (5.3) and (5.11). More precisely, we do not have here the C2 regularity
in time as required in [15, Theorem 2.5], but going through the proof of this result, we can
see that only the continuity in time of the flow function f(t, x, r) = rw(t, x) is necessary.
Indeed, time derivatives of f appear in the proof of [15, Theorem 2.5] when we bound the
terms Jt and Lt, see [15, between (4.18) and (4.19)]. However, the use of the Dominated
Convergence Theorem allows to prove that Jt and Lt converge to zero when η goes to 0
without any use of time derivatives. The continuity in times follows from [15, Remark 2.4],
thanks to (5.11) of w and the bound on the total variation.

Similarly, the stability estimate (5.13) is based on [15, Theorem 2.6]. Indeed, we use
once again a flow that is only C0 instead of C2 in time. Besides, in the proof of [15,
Theorem 2.6], the L∞ bound into the integral term in [15, Theorem 2.6] can be taken only
in space, keeping time fixed. With this provision, the proof of (5.13) is exactly the same
as that in [15], so we do not reproduce it here. The same estimate is thus obtained, except
that the L∞ bound of the integral term is taken only in space. �

Lemma 5.4 In the same setting of Lemma 5.1, if R = 0 and (5.11) holds, together with∥∥∥∇2
xw
∥∥∥
L∞(I×RN ;RN×N×N )

≤ C
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for a suitable C > 0, where we assume that C > ‖∇xw‖L∞(I×RN ;RN×N ), then

ρ0 ∈ W1,1(RN ; R) ⇒

{
ρ(t) ∈ W1,1(RN ; R) for all t ∈ I∥∥ρ(t)∥∥

W1,1 ≤ e2Ct‖ρ0‖W1,1 ,

ρ0 ∈ W1,∞(RN ; R) ⇒

{
ρ(t) ∈ W1,∞(RN ; R) for all t ∈ I∥∥ρ(t)∥∥

W1,∞ ≤ e2Ct ‖ρ0‖W1,∞ .

If moreover
∥∥∇3

xw
∥∥
L∞(I×RN ;RN×N×N×N )

≤ C then ρ0 ∈ W2,1(RN ; R) implies that ρ(t) ∈
W2,1(RN ; R) for all t ∈ I and∥∥ρ(t)∥∥

W2,1 ≤ (1 + Ct)2e3Ct ‖ρ0‖W2,1 . (5.14)

Proof. The W1,1 and W1,∞ bounds follow from the representation (5.4) with R = 0,
noting that ‖∇xX‖L∞ ≤ eCt. Indeed,

∇xX(t; 0, x) = Id +
∫ t

0
∇xw(τ ;X(τ ; 0, x))∇xX(τ ; 0, x) dτ , hence

∥∥∇xX(t; 0, x)
∥∥ ≤ 1 +

∫ t

0

∥∥∇xw(τ ;X(τ ; 0, x))
∥∥∥∥∇xX(τ ; 0, x)

∥∥dτ

≤ 1 +
∫ t

0
C
∥∥∇xX(τ ; 0, x)

∥∥dτ

and a direct application of Gronwall Lemma gives the desired bound. Hence, we obtain∥∥∇ρ(t)∥∥
L∞ ≤ (e2Ct − eCt) ‖ρ0‖L∞ + e2Ct ‖∇ρ0‖L∞

and consequently ∥∥ρ(t)∥∥
W1,∞ ≤ e2Ct ‖ρ0‖W1,∞ .

Similarly, the W1,1 estimate also comes from (5.4).
To obtain the W2,1 bound (5.14), apply (5.4) and Gronwall Lemma to get

∥∥∇2
xX
∥∥
L∞ ≤

e2Ct − eCt. Using the estimates above, together with∥∥∥∇2ρ(t)
∥∥∥
L1

≤ (2e2Ct − 3eCt + 1)eCt ‖ρ0‖L1 + 3(eCt − 1)e2Ct ‖∇ρ0‖L1 + e3Ct
∥∥∥∇2ρ0

∥∥∥
L1
,

we obtain
∥∥ρ(t)∥∥

W2,1 ≤ (2eCt − 1)2eCt ‖ρ0‖W2,1 , concluding the proof. �

We use now these tools in order to obtain the existence of a solution for (1.1).

Proof of Theorem 2.2. Fix α, β > 0 with β > α. Let T (α, β) =
(
ln(β/α)

)
/C(β), with

C as in (V1). Define the map

Q :
C0
(
I;Xβ

)
→ C0

(
I;Xβ

)
σ 7→ ρ

where I =
[
0, T (α, β)

[
and ρ is the Kružkov solution to{
∂tρ+ div (ρw) = 0
ρ(0, x) = ρ0(x)

with
w = V (σ)
ρ0 ∈ Xα .

(5.15)
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Assumptions (V1) imply the hypotheses on w necessary in Corollary 5.2 and Lemma 5.3.
Therefore, a solution ρ to (5.15) exists, is unique and in X . Note that by (5.10), by the
choice of T (α, β) and by (V1), we have

∥∥ρ(t)∥∥
L∞ ≤ β and hence Q is well defined.

Fix σ1, σ2 in C0(I;Xβ). Call wi = V (σi) and ρi the corresponding solutions. With the
same notations of [15, Theorem 2.6], we let

κ0 = N WN (2N + 1) ‖∇xw1‖L∞(I×RN ;RN×N ) , κ = 2N ‖∇xw1‖L∞(I×RN ;RN×N ) .

Note that by (5.1)

κ0

κ
≥
(
N +

1
2

)∫ π/2

0

(
1 − 2

π
x

)N

dx =
π

2

(
1 − 1

2(N + 1)

)
≥ 3π

8
> 1

hence κ0 > κ. Then, by (V1), we obtain a bound on κ0. Indeed,∥∥∇xV (σ1)
∥∥
L∞(I×RN ;RN×N )

≤ C
(
‖σ1‖L∞(I×RN ;R)

)
,

and since σ1 ∈ C0(I;Xβ), finally κ0 ≤ NWN (2N + 1)C(β). Let us denote

C = C(β) and C ′ = N WN (2N + 1)C(β) . (5.16)

Again, (V1) implies the following uniform bounds on all σ1, σ2 ∈ C0(I;Xβ):∥∥∥∇2
xV (σ1)

∥∥∥
L∞(I;L1(RN ;RN×N×N ))

≤ C ,∥∥V (σ1) − V (σ2)
∥∥
L∞(I×RN ;RN )

≤ C ‖σ1 − σ2‖L∞(I;L1(RN ;R)) ,∥∥∥div
(
V (σ1) − V (σ2)

)∥∥∥
L∞(I;L1(RN ;R))

≤ C ‖σ1 − σ2‖L∞(I;L1(RN ;R)) .

Thus, we can apply [15, Theorem 2.6]. We get, for all t ∈ I,∥∥(ρ1 − ρ2)(t)
∥∥
L1 ≤ CteC

′t TV (ρ0)‖σ1 − σ2‖L∞([0,t];L1)

+C2NWNe
Ct‖ρ0‖L∞‖σ1 − σ2‖L∞([0,t];L1)

∫ t

0
(t− s)eC

′(t−s) ds

+C eCt‖ρ0‖L∞

∫ t

0
eC

′(t−s)
∥∥(σ1 − σ2)(s)

∥∥
L1 ds .

Therefore, we obtain the following Lipschitz estimate:∥∥Q(σ1) −Q(σ2)
∥∥
L∞(I;L1)

≤ CTeC
′T
[
TV (ρ0) + (NWNCT + 1)eCT ‖ρ0‖L∞

]
‖σ1 − σ2‖L∞(I;L1).

Here we introduce the strictly increasing function

f(T ) = CTeC
′T
[
TV (ρ0) + (NWNCT + 1)eCT ‖ρ0‖L∞

]
and we remark that f(T ) → 0 when T → 0. Choose now T1 > 0 so that f(T1) = 1/2.
Banach Contraction Principle now ensures the existence and uniqueness of a solution ρ∗

to (1.1) on [0, T̄ ] in the sense of Definition 2.1, with T̄ = min{T (α, β), T1}. In fact, if
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T1 < T (α, β), we can prolongate the solution until time T (α, β). Indeed, if we take ρ∗(T1)
as initial condition, we remark that

∥∥ρ∗(T1)
∥∥
L∞ ≤ ‖ρ0‖L∞eC(β)T1 . Consequently, the

solution of (5.15) on [T1, T (α, β)] instead of I satisfy, thanks to (5.10)∥∥ρ(t)∥∥
L∞ ≤

∥∥ρ∗(T1)
∥∥
L∞e

C(β)(t−T1) ≤ ‖ρ0‖L∞e
C(β)T1eC(β)(t−T1) ≤ ‖ρ0‖L∞e

C(β)T (α,β) ,

which is less than β thanks to the definition of T (α, β) and since ρ0 ∈ Xα.
Now, we want to define a sequence (Tn) such that Tn ≥ T (α, β) for n sufficiently

large. Let assume that the sequence is constructed up to time Tn with Tn < T (α, β). For
Tn+1 ∈]Tn, T (α, β)], we obtain the contraction estimate∥∥Q(σ1) −Q(σ2)

∥∥
L∞([Tn,Tn+1];L1)

≤ C(Tn+1 − Tn)eC
′(Tn+1−Tn)

[
TV

(
ρ(Tn)

)
+ (NWNC(Tn+1 − Tn) + 1)eCTn‖ρ0‖L∞

]
×‖σ1 − σ2‖L∞([Tn,Tn+1];L1)

≤
[
TV (ρ0) eC

′Tn + C ′Tne
C′Tn + (NWNC(Tn+1 − Tn) + 1)eCTn‖ρ0‖L∞

]
×C ′(Tn+1 − Tn)eC

′(Tn+1−Tn)‖σ1 − σ2‖L∞([Tn,Tn+1];L1)

where we used the bounds on TV
(
ρ(Tn)

)
and

∥∥ρ(Tn)
∥∥
L∞(RN ;R)

provided by Lemma 5.3
and Corollary 5.2 associated to (V1). We may thus extend the solution up to time Tn+1,
where we take Tn+1 > Tn such that[

TV (ρ0) eC
′Tn + CTne

C′Tn +
(
NWNC(Tn+1 − Tn) + 1

)
eCTn‖ρ0‖L∞

]
×

×C(Tn+1 − Tn)eC
′(Tn+1−Tn) =

1
2
.

If Tn+1 > T (α, β), then we are done.
If we assume that the sequence (Tn) defined by induction as above remains less than

T (α, β), in particular it is bounded. Consequently the left hand side above tends to 0,
whereas the right hand side is taken equal to 1/2 > 0. Hence, the sequence (Tn) is
unbounded. In particular, for n large enough, Tn is larger than T (α, β); thus the solution
to (1.1) is defined on all I.

The Lipschitz estimate follows by applying the same procedure as above, in the case
when the initial conditions are not the same. The L∞ and TV bounds follow from (5.10)
and from Lemma 5.3. �

The proof of Lemma 2.3 directly follows from Lemma 5.3.

Proof of Theorem 2.4. We consider the assumptions (A) and (B) separately.

(A): Let T > 0, so that I = [0, T [, and fix a positive α. As in the proof of Theorem 2.2,
we define the map

Q :
C0 (I;Xα) → C0 (I;Xα)

σ 7→ ρ

where ρ is the Kružkov solution to (5.15) with ρ0 ∈ Xα. The existence of a weak entropy so-
lution for (5.15) in C0(I,L1(RN ; R)) is given by Lemma 5.1, the set of assumptions (V1)
allowing to check the hypotheses on w necessary to apply Lemma 5.3. Note that fur-
thermore (A), thanks to Corollary 5.2, gives an L∞ bound on ρ, so that for all t ∈ I,

18



ρ(t) ∈ [0, α], a.e. in x. Fix σ1, σ2 in C0 (I;Xα), call wi = V (σi) and let ρ1, ρ2 be the
associated solutions. With the same notations of [15, Theorem 2.6], we let as in the proof
of Theorem 2.2,

κ0 = N WN (2N + 1) ‖∇xw1‖L∞(I×RN ;RN×N ) , κ = 2N ‖∇xw1‖L∞(I×RN ;RN×N ) .

so that κ0 > κ. Then, by (V1) we have:∥∥∇xV (σ1)
∥∥
L∞(I×RN ;RN×N )

≤ C
(
‖σ1‖L∞(I×RN ;RN×N )

)
,

and since σ1 ∈ C0 (I;Xα), we have ‖σ1‖L∞ ≤ α so that κ0 ≤ NWN (2N + 1)C(α). Denote

C ′ = NWN (2N + 1)C(α) and C = C(α) . (5.17)

The following bounds are also available uniformly for all σ1, σ2 ∈ C0 (R+;Xα), by (V1):∥∥∥∇2
xV (σ1)

∥∥∥
L∞(I;L1(RN ;RN×N×N ))

≤ C ,∥∥V (σ1) − V (σ2)
∥∥
L∞(I×RN ;R)

≤ C ‖σ1 − σ2‖L∞(I;L1(RN ;R)) ,∥∥∥div
(
V (σ1) − V (σ2)

)∥∥∥
L∞(I;L1(RN ;R))

≤ C ‖σ1 − σ2‖L∞(I;L1(RN ;R)) .

Applying [15, Theorem 2.6], we get∥∥(ρ1 − ρ2)(t)
∥∥
L1 ≤ CteC

′t TV (ρ0)‖σ1 − σ2‖L∞([0,t];L1)

+C2NWN

∫ t

0
(t− s)eC

′(t−s) ds ‖σ1 − σ2‖L∞([0,t];L1)

+
∫ t

0
C eC

′(t−s)
∥∥(σ1 − σ2)(s)

∥∥
L1 ds .

So that∥∥Q(σ1) −Q(σ2)
∥∥
L∞(I;L1)

≤ CTeC
′T
[
TV (ρ0) +NWNCT + 1

]
‖σ1 − σ2‖L∞(I;L1) .

Here we introduce the function f(T ) = CTeC
′T
[
TV (ρ0) +NWNCT + 1

]
and we remark

that f(T ) → 0 when T → 0. Choose now T1 > 0 so that f(T1) = 1
2 . Banach Contraction

Principle now ensures the existence and uniqueness of a solution to (1.1) on [0, T1] in the
sense of Definition 2.1.

Let assume that we have defined T1 < T2 < . . . < Tn. Let Tn+1 > Tn, then∥∥Q(σ1) −Q(σ2)
∥∥
L∞([Tn,Tn+1];L1)

≤ C(Tn+1 − Tn)eC
′(Tn+1−Tn)

[
TV

(
ρ(Tn)

)
+NWNC(Tn+1 − Tn) + 1

]
×‖σ1 − σ2‖L∞([Tn,Tn+1];L1)

≤
[
TV (ρ0) eC

′Tn + C ′Tne
C′Tn +NWNC(Tn+1 − Tn) + 1

]
×C ′(Tn+1 − Tn)eC

′(Tn+1−Tn)‖σ1 − σ2‖L∞([Tn,Tn+1];L1)
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where we used the bounds on
∥∥ρ(Tn)

∥∥
L∞(RN ;R)

and TV
(
ρ(Tn)

)
provided by Corollary 5.2

and Lemma 5.3 associated to the conditions (A) and (V1). We may thus extend the
solution up to time Tn+1, that we define implicitly by[

TV (ρ0) eC
′Tn + CTne

C′Tn +NWNC(Tn+1 − Tn) + 1
]
C(Tn+1 − Tn)eC

′(Tn+1−Tn) =
1
2
.

Note that this equation defines a unique Tn+1, the function

T 7→
[
TV (ρ0) eC

′Tn + CTne
C′Tn +NWNC(T − Tn) + 1

]
C(T − Tn)eC

′(T−Tn) ,

being increasing, taking value 0 in T = Tn and going to +∞ when T goes to ∞.
If the sequence (Tn) is bounded, then the left hand side above tends to 0, whereas the

right hand side is taken equal to 1/2 > 0. Hence, the sequence (Tn) is unbounded and the
solution to (1.1) is defined on all R+.

(S2) follows from Lemma 5.1 and (V1). (S3) is proved as (S1). Note that the Lipschitz
constant so obtained is dependent on time. The bound (S4) follows from Lemma 5.3, that
gives

TV
(
ρ(t)

)
≤ TV (ρ0)eC

′t +NWNCte
C′t‖ρ0‖L∞ .

(B): Repeat the proof of Theorem 2.2 and, with the notation therein, note that if we
find a sequence (αn) such that

∑
n T (αn, αn+1) = +∞ where T (α, β) =

[
ln
(
β/α

)]
/C(β),

then the solution is defined on the all R+. It is immediate to check that (B) implies that

k∑
n=1

T (αn, αn+1) ≥
(
‖C‖L∞(R+;R+)

)−1
lnαk → +∞ as k → +∞

completing the proof. �

Proof of Proposition 2.5. The bounds on ρ in W1,∞ and W1,1 follow from Lemma 5.4,
thanks to (V2). The W2,1 bound comes from (5.14) in Lemma 5.4, thanks to (V3). �

5.3 Gâteaux Differentiability

First of all, if r0 ∈ (L∞ ∩ L1)(RN ; R) and ρ ∈ L∞(Iex; (W1,1 ∩ W1,∞)(RN ; R)
)
, we prove

that the equation (1.2) admits a unique solution r ∈ C0
(
Iex;L1(RN ; R)

)
.

Proof of Proposition 2.8. We use here once again Lemma 5.1 in order to get an
expression of the Kružkov solution for (5.2).

We assume now that ρ ∈ C0
(
Iex; (W1,∞ ∩W1,1)(RN ; R)

)
and we define w = V (ρ); we

also set, for all s ∈ C0
(
Iex;L1(RN ; R)

)
, R = div

(
ρDV (ρ)(s)

)
. Thanks to the assumptions

on ρ and (V4), we obtain R ∈ L∞(Iex;L1(RN ; R)
)
∩L∞(Iex ×RN ; R). Let ε ∈ I̊ex. Then,

on [0, Tex − ε] we can apply Lemma 5.1 giving the existence of a Kružkov solution to

∂tr + div (rw) = R , r(x, 0) = r0 ∈ (L∞ ∩ L1)(RN ; R) .

Let T ∈ [0, Tex − ε] and I = [0, T [. We denote Q the application that associates to
s ∈ C0

(
I;L1(RN ; R)

)
the Kružkov solution r ∈ C0

(
I;L1(RN ; R)

)
of (5.2) with initial
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condition r0 ∈ (L∞ ∩ L1)(RN ; R), given by Lemma 5.1. That is to say

Q : s 7→ r(t, x) = r0
(
X(0; t, x)

)
exp

(
−
∫ t

0
div V (ρ)

(
τ,X(τ ; t, x)

)
dτ

)

−
∫ t

0
div
(
ρDV (ρ)(s)

) (
τ,X(τ ; t, x)

)
exp

(
−
∫ t

τ
div V (ρ)

(
u,X(u; t, x)

)
du

)
dτ .

Let us give some bounds on r. The representation of the solution (5.4) allows indeed
to derive a L∞ bound on r. For all t ∈ I, thanks to (V1) and (V4) we get, with
C = C

(
‖ρ‖L∞([0,Tex−ε]×RN ;R)

)
,∥∥r(t)∥∥

L∞ ≤ ‖r0‖L∞e
Ct + teCt‖ρ‖L∞([0,t];W1,∞)

∥∥DV (ρ)
∥∥
W1,∞‖s‖L∞([0,t],L1) .

The same expression allows also to derive a L1 bound on r(t)∥∥r(t)∥∥
L1 ≤ ‖r0‖L1e

Ct + teCt‖ρ‖L∞([0,t];W1,1)

∥∥DV (ρ)
∥∥
W1,∞‖s‖L∞([0,t],L1) .

Now, we want to show that Q is a contraction. We use once again the assumption (V4).
For all s1, s2 ∈ L∞(I; (L1 ∩ BV)(RN ; R)

)
continuous from the right, we have∥∥∥div

(
ρDV (ρ)(s1 − s2)

)∥∥∥
L1(RN ;R)

≤ C‖ρ‖W1,1(RN ;R)‖s1 − s2‖L1(RN ;R) .

Thus, we get:∥∥Q(s1) −Q(s2)
∥∥
L∞(I;L1)

≤ C‖ρ‖L∞(I;W1,1)‖s1 − s2‖L∞(I;L1)

∫ T

0
exp

(
(T − τ)

∥∥div V (ρ)
∥∥
L∞

)
dτ

≤ (eCT − 1)‖ρ‖L∞([0,Tex−ε];W1,1)‖s1 − s2‖L∞(I;L1) .

Then, for T small enough, can apply the Fixed Point Theorem, that gives us the existence
of a unique Kružkov solution to the problem. Furthermore, as the time of existence does
not depend on the initial condition, we can iterate this procedure to obtain existence on
the interval [0, Tex − ε]. Finally, as this is true for all ε ∈ I̊ex, we obtain the same result on
the all interval Iex.

The L1 bound follows from (5.4). Let T ∈ Iex and t ∈ I, then for a suitable C =
C
(
‖ρ‖L∞(I×RN ;R)

)
∥∥r(t)∥∥

L1 ≤ ‖r0‖L1e
Ct + ‖ρ‖L∞(I;W1,1)

∥∥div DV (ρ)
∥∥
L∞

∫ t

0

∥∥r(τ)∥∥
L1 dτ .

A use of (V4) and an application of Gronwall Lemma gives∥∥r(t)∥∥
L1 ≤ eCte

K‖ρ‖L∞(I,W1,1)t ‖r0‖L1 ,

where K = K
(
‖ρ‖L∞(I×RN ;R)

)
is as in (V4).
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The L∞ bound comes from the same representation formula. Indeed, for T ∈ Iex and
t ∈ I we have∥∥r(t)∥∥

L∞ ≤ eCt‖r0‖L∞ + ‖ρ‖L∞(I;W1,∞)

∥∥div DV (ρ)
∥∥
L∞

∫ t

0

∥∥r(τ)∥∥
L1 dτ .

Then, the last
∥∥r(τ)∥∥

L1 is bounded just as above. We get∥∥r(t)∥∥
L∞ ≤ eCt‖r0‖L∞ +Kte2Cte

K‖ρ‖L∞(I,W1,1)t‖r0‖L1‖ρ‖L∞(I,W1,∞) .

Finally, we get a W1,1 bound using the expression of the solution given by Lemma 5.1.
Indeed, assuming in addition (V2) and (V4), we get∥∥∇r(t)∥∥

L1(RN ;R)
≤ e2Ct‖∇r0‖L1 + Cte2Ct‖r0‖L1

+K(1 + Ct)e2Ct‖ρ‖L∞(I;W2,1)

∫ t

0

∥∥r(τ)∥∥
L1 dτ

≤ e2Ct‖∇r0‖L1 + Cte2Ct‖r0‖L1

+Kt(1 + Ct)e3Cte
K‖ρ‖L∞(I,W1,1)t‖r0‖L1‖ρ‖L∞(I;W2,1) .

Hence, denoting C ′ = max{C,K‖ρ‖L∞(I,W1,1)}, we obtain∥∥r(t)∥∥
W1,1 ≤ ‖r0‖W1,1(1 + C ′t)e2C′t +Kt(1 + Ct)e4C′t‖r0‖L1‖ρ‖L∞(I;W2,1)

concluding the proof. �

Now, we address the weak Gâteaux differentiability of the semigroup generated by (1.1).

Proof of Proposition 2.9. Let α = max{‖ρ0‖L∞ , 1} and β > α. Fix h ∈ [0, h∗] with
h∗ small enough so that β > α(1 + h∗). Note that ρ0, r0 ∈ Xα. By Theorem 2.2, (1.1)
admits the weak entropy solutions ρ ∈ C0([0, T (α, β)];Xβ), and (2.3) admits the solution
ρh ∈ C0([0, T (α(1 + h), β)];Xβ). Note that

T (α(1 + h), β) =
ln(β/(α(1 + h)))

C(β)
= T (α, β) − ln(1 + h)

C(β)
≤ T (α, β)

and T (α(1+h), β) tends to T (α, β) as h goes to 0. In particular, both solutions are defined
on the interval [0, T∗], where T∗ = T (α(1 + h∗), β).

Write now the definition of weak solution for ρ, ρh. Let ϕ ∈ C∞
c ([0, T∗] × RN ; R)∫

R∗
+

∫
RN

(
ρ∂tϕ+

(
ρV (ρ)

)
· ∇xϕ

)
dx dt = 0 ,∫

R∗
+

∫
RN

(
ρh∂tϕ+

(
ρhV (ρh)

)
· ∇xϕ

)
dx dt = 0 ,

use (V4) and write, for a suitable function ε = ε(ρ, ρh), V (ρh) = V (ρ) + DV (ρ)(ρh − ρ) +

ε(ρ, ρh), with
∥∥ε(ρ, ρh)

∥∥
L∞(RN ;R)

≤ K(2β)
(
‖ρh − ρ‖L1(RN ;R)

)2
. Then,

ρV (ρ) − ρhV (ρh) = (ρ− ρh)V (ρ) + ρDV (ρ)(ρ− ρh) + (ρ− ρh)DV (ρ)(ρ− ρh) − ρhε(ρ, ρh).
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Consequently,

∫
R∗

+

∫
RN

ρ− ρh

h
∂tϕ+

(
ρ− ρh

h
V (ρ) + ρDV (ρ)

(
ρ− ρh

h

)

+
ρ− ρh

h
DV (ρ)(ρ− ρh) − ρh

ε(ρ, ρh)
h

)
· ∇xϕ

]
dx dt = 0 .

Using (V4), ρ(t) ∈ Xβ and the estimate on ε we obtain for all t ∈ [0, T∗]:∫
RN

|∇xϕ|
∣∣∣∣ρ− ρh

h
DV (ρ)(ρ− ρh) − ρh

ε(ρ, ρh)
h

∣∣∣∣dx
≤

∫
RN

(
C(β) |ρ− ρh| + β K(2β) ‖ρ− ρh‖L1

) ∥∥∥∥ρ− ρh

h

∥∥∥∥
L1

|∇xϕ|dx ,

→ 0 as h→ 0 ,

by the Dominated Convergence Theorem, since ρh−ρ
h is bounded in L1([0, T∗] × RN ; R).

Then, if (ρh − ρ)/h h→0
⇀ r, we get∫

R

∫
RN

[
r∂tϕ+

(
rV (ρ) + ρDV (ρ)(r)

)
· ∇xϕ

]
dx dt = 0 .

That is to say, r is a distributional solution to (1.2). �

As this is true for all h∗ small enough, finally we obtain a solution on the all interval
[0, T (α, β)[. Hence, we observe that if ρ ∈ C0(Iex × RN ; R), then r is defined on all Iex.

Assume now that (V4) and (V5) are satisfied by V . We want to show that with these
hypotheses, we have now strong convergence in L1 to the Kružkov solution of (1.2).

Proof of Theorem 2.10. Let α, β > 0 with β > α, and h ∈ [0, h∗] with h∗ small enough
so that β > α(1 + h∗). Let us denote T (h) = T (α(1 + h), β) for h ∈ [0, h∗] the time of
existence of the solution of (1.1) given by Theorem 2.2.

Fix ρ0 ∈ (W1,∞ ∩W2,1)(RN ; [0, α]), r0 ∈ (L∞ ∩W1,1)(RN ; [0, α]). Let ρ, respectively
ρh, be the weak entropy solutions of (1.1) given by Theorem 2.2 with initial condition ρ0,
respectively ρ0 +hr0. Note that these both solutions are in C0

(
[0, T (h∗)];L1(RN ; R)

)
. Fur-

thermore, under these hypotheses for ρ0 and r0, we get thanks to Proposition 2.5 that the
corresponding solutions ρ and ρh of (1.1) are in C0

(
[0, T (h∗)]; (W1,∞ ∩W2,1)(RN ; [0, β])

)
,

condition (V3) being satisfied. Hence, we can now introduce the Kružkov solution r ∈
C0
(
[0, T (h∗)[;L1(RN ; R)

)
of (1.2), whose existence is given in this case by Proposition 2.8.

Note that, r0 being in W1,1(RN ; R) and ρ ∈ L∞
(
[0, T (h∗)];W2,1(RN ; R)

)
and (V2),

(V4) being satisfied, r(t) is also in W1,1(RN ; R) for all t ∈
[
0, T (h∗)

[
thanks to the W1,1

bound of Proposition 2.8.
Let us denote zh = ρ+hr. We would like to compare ρh and zh thanks to [15, Theorem

2.6]. A straightforward computation shows that zh is the solution to the following problem, ∂tzh + div
(
zh
(
V (ρ) + hDV (ρ)(r)

))
= h2 div

(
rDV (ρ)(r)

)
,

zh(0) = ρ0 + hr0 ∈ Xα(1+h) .
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Note that the source term being in C0
([

0, T (h∗)
[
;L1(RN ; R)

)
, and the flow being regular,

we can apply to this equation Lemma 5.1 that gives existence of a Kružkov solution.
As in the proof of Lemma 5.1, we make here the remark that [15, Theorem 2.6] can

be used with the second source term in C0
([

0, T (h∗)
[
;L1(RN ; R)

)
and the flow C2 in

space and only C0 in time. Besides, we also use the same slight improvement as in the
proof of Lemma 5.3, taking the L∞ norm in the integral term only in space, keeping
the time fixed. We get, with κ0 = NWN (2N + 1)

∥∥∇xV (ρh)
∥∥
L∞([0,T (h∗)]×RN ;R)

and κ =
2N
∥∥∇xV (ρh)

∥∥
L∞([0,T (h∗)]×RN ;R)

, for some T ∈ [0, T (h∗)] and with I = [0, T ],

‖ρh − zh‖L∞(I;L1)

≤ Teκ0T TV (ρ0 + hr0)
∥∥V (ρh) − V (ρ) − hDV (ρ)(r)

∥∥
L∞([0,T (h∗)]×RN ;RN )

+NWN

∫ T

0
(T − t)eκ0(T−t)

∫
RN

∥∥ρh(t)
∥∥
L∞

∥∥∇x div V (ρh)
∥∥dxdt

×
∥∥V (ρh) − V (ρ) − hDV (ρ)(r)

∥∥
L∞([0,T (h∗)]×RN ;RN )

+h2

∫ T

0
eκ(T−t)

∫
RN

∣∣∣div
(
rDV (ρ)(r)

)∣∣∣dx dt

+
∫ T

0
eκ(T−t)

∫
RN

∣∣∣div
(
V (ρh) − V (ρ) − hDV (ρ)(r)

)∣∣∣dx dt

× max
t∈[0,T ]

{∥∥ρh(t)
∥∥
L∞ ,

∥∥zh(t)
∥∥
L∞

}
.

Then, setting C = C(β) and K = K(2β), we use:

• the bound of ρ and ρh in L∞ given by Corollary 5.2∥∥ρ(t)∥∥
L∞ ≤ ‖ρ0‖L∞e

Ct ≤ β and
∥∥ρh(t)

∥∥
L∞ ≤ ‖ρ0 + hr0‖L∞e

Ct ≤ β ;

• the properties of V given in (V1) to get∥∥∇x div V (ρh)
∥∥
L∞(R+×RN ;R)

≤ C and
∥∥∇x div V (ρh)

∥∥
L∞(I;L1(RN ;R))

≤ C ;

• the property (V4), respectively (V5), to get∥∥V (ρh) − V (ρ) − hDV (ρ)(r)
∥∥
L∞(I×RN ;R)

≤ K
(
‖ρh − ρ‖2

L∞(I;L1(RN ;R)) + ‖ρh − zh‖L∞(I;L1(RN ;R))

)
, respectively∥∥∥div

(
V (ρh) − V (ρ) − hDV (ρ)(r)

)∥∥∥
L∞(I;L1(RN ;R))

≤ K
(
‖ρh − ρ‖2

L∞(I;L1(RN ;R)) + ‖ρh − zh‖L∞(I;L1(RN ;R))

)
;

• the property (V4) to get∥∥∥div
(
rDV (ρ)(r)

)∥∥∥
L1

≤ K ‖r‖W1,1‖r‖L1 .
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Gathering all these estimates, denoting C ′ = NWN (2N + 1)C, we obtain

‖ρh − zh‖L∞(I;L1)

≤ TeC′T
(
TV (ρ0 + hr0) +NWNCTβ

)
K
(
‖ρh − ρ‖2

L∞(I;L1) + ‖ρh − zh‖L∞(I;L1)

)
+h2KTeC

′T ‖r‖L∞(I;W1,1)‖r‖L∞(I;L1)

+

(
β + h sup

t∈I

∥∥r(t)∥∥
L∞

)
TeC

′TK
(
‖ρh − ρ‖2

L∞(I;L1) + ‖ρh − zh‖L∞(I;L1)

)
.

Then, dividing by h and introducing

Fh(T ) = KTeC′T
[
TV (ρ0) + hTV (r0) +NWNCTβ + β + h

∥∥r(t)∥∥
L∞

]
,

we obtain∥∥∥∥ρh − zh
h

∥∥∥∥
L∞(I;L1)

≤ Fh(T )

[
‖ρh − ρ‖L∞(I;L1)

∥∥∥∥ρh − ρ

h

∥∥∥∥
L∞(I;L1)

+
∥∥∥∥ρh − zh

h

∥∥∥∥
L∞(I;L1)

]
+hKTeC

′T ‖r‖L∞(I;W1,1)‖r‖L∞(I;L1) .

Note that Fh is a function that vanishes in T = 0 and that depends also on ρ0, r0 and h.
Hence, we can find T̄ ≤ T (h∗) small enough such that Fh∗(T̄ ) ≤ 1/2. Furthermore, for all
T ≤ T (h∗), h 7→ Fh(T ) is increasing and hence h ≤ h∗ implies Fh(T ) ≤ Fh∗(T ). Noting
moreover that

∥∥∥ρh−ρ
h

∥∥∥
L∞(I;L1)

has a uniform bound M in h by 2. in Theorem 2.2, we get

for T ≤ T̄

1
2

∥∥∥∥ρh − ρ

h
− r

∥∥∥∥
L∞(I;L1)

=
1
2

∥∥∥∥ρh − zh
h

∥∥∥∥
L∞(I;L1)

≤ M

2
‖ρh − ρ‖L∞(I;L1) + hKTeC

′T ‖r‖L∞(I,W1,1)‖r‖L∞(I;L1) .

The right side above goes to 0 when h→ 0, so we have proved the Gâteaux differentiability
of the semigroup S for small time. Finally, we iterate like in the proof of Theorem 2.2 in
order to have existence on the all interval [0, T (h∗)]. Let T1 be such that Fh∗(T1) = 1/2
and assume T1 < T (h∗). If we assume the Gâteaux differentiability is proved until time
Tn ≤ T (h∗), we make the same estimate on [Tn, Tn+1], Tn+1 being to determine. We get

‖ρh − zh‖L∞([Tn,Tn+1];L1)

≤ (Tn+1 − Tn)eC
′(Tn+1−Tn)

(
TV (ρh(Tn)) +NWNC(Tn+1 − Tn)β

)
×K

(
‖ρh − ρ‖2

L∞([Tn,Tn+1];L1) + ‖ρh − zh‖L∞([Tn,Tn+1];L1)

)
+h2K(Tn+1 − Tn)eC

′(Tn+1−Tn)‖r‖L∞([Tn,Tn+1];W1,1)‖r‖L∞([Tn,Tn+1];L1)

+

(
β + h sup

[Tn,Tn+1]

∥∥r(t)∥∥
L∞

)
(Tn+1 − Tn)eC

′(Tn+1−Tn)

×K
(
‖ρh − ρ‖2

L∞([Tn,Tn+1];L1) + ‖ρh − zh‖L∞([Tn,Tn+1];L1)

)
.

25



Then, we divide by h and we introduce, for T ≥ Tn

Fh,n(T ) = K(T − Tn)eC
′(T−Tn)

[
(TV (ρ0) + hTV (r0))eCTn + βC ′Tne

C′Tn

+NWNC(T − Tn)β + β + h sup
[Tn,Tn+1]

∥∥r(t)∥∥
L∞

]
.

We define Tn+1 > Tn such that Fh,n(Tn+1) = 1
2 . This is possible since Fh,n vanishes in

T = Tn and increases to infinity when T → ∞. Hence, as long as Tn+1 ≤ T (h∗), we get∥∥∥∥ρh − ρ

h
− r

∥∥∥∥
L∞([Tn,Tn+1];L1)

≤ KM‖ρh − ρ‖L∞([Tn,Tn+1];L1)

+2hK(Tn+1 − Tn)eC
′(Tn+1−Tn)‖r‖L∞([Tn,Tn+1],W1,1)‖r‖L∞([Tn,Tn+1];L1) .

The next question is to wonder if (Tn) goes up to T (h∗). We assume that it is not the
case: then necessarily, Fh,n(Tn+1)

n→∞−→ 0, since Tn+1 − Tn → 0. This is a contradiction to
Fh,n(Tn+1) = 1/2.

Consequently, Tn
n→∞−→ ∞ and the Gâteaux differentiability is valid for all time t ∈

[0, T (h∗)]. Then, making h∗ goes to 0, we obtain that the differentiability is valid on in the
interval [0, T (α, β)[.

It remains to check that the Gâteaux derivative is a bounded linear operator, for t and
ρ0 fixed. The linearity is immediate. Additionally, due to the L1 estimate on the solution
r of the linearized equation (1.2) given by Proposition 2.8, we obtain∥∥DSt(ρ0)(r0)

∥∥
L1 =

∥∥r(t)∥∥
L1 ≤ e

Kt‖ρ‖L∞(I;W1,1)eCt‖r0‖L1 ,

so that the Gâteaux derivative is bounded, at least for t ≤ T < Tex. �

5.4 Proofs Related to Sections 3 and 4

Proof of Proposition 3.1. Note that v(ρ) is constant in x, hence div V (ρ) = 0,
and (A) is satisfied. Besides, we easily obtain

∥∥∂xV (ρ)
∥∥
L∞(R;R)

= 0,
∥∥∂xV (ρ)

∥∥
L1(R;R)

= 0,∥∥∂2
xV (ρ)

∥∥
L1(R;R)

= 0 and∥∥V (ρ1) − V (ρ2)
∥∥
L∞(R;R)

≤
∥∥v′∥∥

L∞(R;R)
‖ρ1 − ρ2‖L1(R;R) ,∥∥∂xV (ρ1) − ∂xV (ρ2)

∥∥
L1(R;R)

= 0 ,

so that (V1) is satisfied. Similarly, ∂2
xV (ρ) = 0 and ∂3

xV (ρ) = 0 imply easily that (V2)
and (V3) are satisfied.

We consider now (V4): is v is C2 then, for all A,B ∈ R,

v(B) = v(A) + v′(A)(B −A) +
∫ 1

0
v′′
(
sB + (1 − s)A

)
(1 − s)(B −A)2 ds .
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Choosing A =
∫ 1
0 ρ(ξ) dξ and B =

∫ 1
0 ρ̃(ξ) dξ, we get∥∥∥∥∥∥v

(∫ 1

0
ρ̃(ξ) dξ

)
− v

(∫ 1

0
ρ(ξ) dξ

)
− v′

(∫ 1

0
ρ(ξ) dξ

)∫ 1

0
(ρ̃− ρ) (ξ) dξ

∥∥∥∥∥∥
L∞

≤ 1
2

∥∥v′′∥∥
L∞‖ρ̃− ρ‖2

L1

and we choose K = 1
2

∥∥v′′∥∥
L∞ , DV (ρ)(r) = v′

(∫ 1
0 ρ(ξ) dξ

) ∫ 1
0 r(ξ) dξ. Condition (V4) is

then satisfied since there is no x-dependence, so∥∥V (ρ̃) − V (ρ) − DV (ρ)(ρ̃− ρ)
∥∥
W2,∞ =

∥∥V (ρ̃) − V (ρ) − DV (ρ)(ρ̃− ρ)
∥∥
L∞

≤ 1
2

∥∥v′′∥∥
L∞‖ρ̃− ρ‖2

L1 .

Similarly,
∥∥DV (ρ)(r)

∥∥
W2,∞ =

∥∥DV (ρ)(r)
∥∥
L∞ ≤

∥∥v′∥∥
L∞‖r‖L1 . Finally, consider (V5):∥∥∥∥∥∥∥div

v(∫ 1

0
ρ̃(ξ) dξ

)
− v

(∫ 1

0
ρ(ξ) dξ

)
− v′

(∫ 1

0
ρ(ξ) dξ

)∫ 1

0
(ρ̃− ρ) (ξ) dξ


∥∥∥∥∥∥∥
L1

= 0 ,

∥∥∥∥∥∥∥div

v′(∫ 1

0
ρ(ξ)dξ

)∫ 1

0
r(ξ)dξ


∥∥∥∥∥∥∥
L1

= 0 .

Concluding the proof. �

Proof of Proposition 4.1. The proof exploits the standard properties of the convolution.
Consider first (V1):∥∥∇xV (ρ)

∥∥
L∞ =

∥∥v′∥∥
L∞ ‖ρ‖L∞‖∇xη‖L1 ‖~v‖L∞ + ‖v‖L∞ ‖∇x~v‖L∞

≤ C(‖ρ‖L∞) ,∥∥∇xV (ρ)
∥∥
L1 ≤ ‖v‖W1,∞‖~v‖W1,1(1 + ‖ρ‖L∞‖∇xη‖L1) ,∥∥∥∇2

xV (ρ)
∥∥∥
L1

≤ ‖v‖W2,∞ ‖~v‖W2,1

×
[
1 + ‖ρ‖2

L∞‖∇xη‖2
L1 + ‖ρ‖L∞

∥∥∥∇2
xη
∥∥∥
L1

+ 2‖ρ‖L∞‖∇xη‖L1

]
≤ C(‖ρ‖L∞) ,∥∥V (ρ1) − V (ρ2)

∥∥
L∞ ≤

∥∥v′∥∥
L∞ ‖~v‖L∞ ‖η‖L∞ ‖ρ1 − ρ2‖L1 ,∥∥∥∇x

(
V (ρ1) − V (ρ2)

)∥∥∥
L1

= ‖v‖W2,∞‖~v‖W1,∞‖η‖W1,1

(
2 + ‖∇xη‖L1 ‖ρ1‖L∞

)
‖ρ1 − ρ2‖L1 .

Then, we check (V2):∥∥∥∇2
xV (ρ)

∥∥∥
L∞

≤ 2‖v‖W2,∞ ‖~v‖W2,∞

×
(

1 + ‖ρ‖2
L∞‖∇xη‖2

L1 + ‖ρ‖L∞

∥∥∥∇2
xη
∥∥∥
L1

+ ‖ρ‖L∞‖∇xη‖L1

)
.

Entirely analogous computations allow to prove also (V3).
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Consider (V4). First we look at the Fréchet derivative of V (ρ): v being C2, we can
write, for all A,B ∈ R,

v(B) = v(A) + v′(A)(B −A) +
∫ 1

0
v′′(sB + (1 − s)A)(1 − s)(B −A)2 ds .

If we take A = ρ ∗ η and B = ρ̃ ∗ η, then we get, for ρ, ρ̃ ∈ L1(RN ; R)∥∥∥∥(v (ρ̃ ∗ η) − v (ρ ∗ η) − v′ (ρ ∗ η)
(
(ρ̃− ρ) ∗ η

))
~v

∥∥∥∥
L∞

≤ 1
2

∥∥v′′∥∥
L∞‖η‖2

L∞‖ρ̃− ρ‖2
L1‖~v‖L∞ ;

and ∥∥∥∥∥∇x

[(
v (ρ̃ ∗ η) − v (ρ ∗ η) − v′ (ρ ∗ η)

(
(ρ̃− ρ) ∗ η

))
~v

]∥∥∥∥∥
L∞

≤ 3
2

∥∥v′′∥∥
L∞‖η‖2

W1,∞‖ρ̃− ρ‖2
L1‖~v‖W1,∞

+
1
2

∥∥v′′′∥∥
L∞‖η‖2

L∞‖ρ‖L∞‖∇xη‖L1‖ρ̃− ρ‖2
L1‖~v‖L∞ ;∥∥∥∥∥∇2

x

[(
v (ρ̃ ∗ η) − v (ρ ∗ η) − v′ (ρ ∗ η)

(
(ρ̃− ρ) ∗ η

))
~v

]∥∥∥∥∥
L∞

≤
∥∥∥v(4)

∥∥∥
L∞

‖ρ̃− ρ‖2
L1‖η‖2

L∞‖∇xη‖2
L1

(
‖ρ‖L∞ + ‖ρ̃‖L∞

)2 ‖~v‖L∞

+2
∥∥∥v(3)

∥∥∥
L∞

‖ρ̃− ρ‖2
L1‖η‖2

W1,∞
(
‖ρ‖L∞ + ‖ρ̃‖L∞

)
‖∇η‖L1‖~v‖L∞

+
1
2

∥∥∥v(3)
∥∥∥
L∞

‖ρ̃− ρ‖2
L1‖η‖2

L∞
(
‖ρ‖L∞‖η‖W2,1 + 1

)
‖~v‖W1,∞

+6
∥∥v′′∥∥

L∞‖ρ̃− ρ‖2
L1‖η‖2

W2,∞‖~v‖W2,∞ .

Then, DV (ρ)(r) = v′(ρ ∗ η)r ∗ η ~v. To satisfy (V4), we have to check that the derivative is
a bounded operator from C2 to L1. We have,∥∥DV (ρ)(r)

∥∥
L∞ ≤

∥∥v′∥∥
L∞‖η‖L∞‖~v‖L∞‖r‖L1 ,∥∥∇xDV (ρ)(r)

∥∥
L∞ ≤ ‖v‖W2,∞‖~v‖W1,∞‖η‖W1,∞

(
2 + ‖ρ‖L∞‖η‖W1,1

)
‖r‖L1 ,∥∥∥∇2

xDV (ρ)(r)
∥∥∥
L∞

≤ ‖v‖W3,∞‖η‖W2,∞‖~v‖W2,∞

×
(
4 + 5‖ρ‖L∞‖η‖W2,1 + ‖ρ‖2

L∞‖∇η‖2
L1

)
‖r‖L1 .

Finally, we check that also (V5) is satisfied:∥∥∥div
(
V (ρ̃) − V (ρ) − DV (ρ)(ρ̃− ρ)

)∥∥∥
L1

≤ 1
2
‖v‖W3,∞‖ρ̃− ρ‖2

L1‖η‖L1‖η‖W1,∞‖~v‖W1,∞
(
3 + ‖ρ‖L∞‖η‖W1,1

)
,∥∥div DV (ρ)(r)

∥∥
L1

=
∥∥div (v′(ρ ∗ η)r ∗ η ~v)

∥∥
L1

≤ ‖v‖W2,∞‖η‖W1,1‖~v‖W1,∞
(
2 + ‖ρ‖L∞‖∇xη‖L1

)
‖r‖L1

completing the proof. �
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Remark 5.5 The above proof shows that (B) is not satisfied by (4.1): here C grows
linearly, C(α) = 1 + α. Hence, with the notation in the proof of Theorem 2.4, for α1 > 0,

n∑
k=1

T (αk, αk+1) ≤
n∑

k=1

1
1 + αk+1

∫ αk+1

αk

1
t

dt ≤
n∑

k=1

∫ αk+1

αk

1
(1 + t)t

dt ≤
∫ +∞

α1

1
(1 + t)t

dt

and the latter expression is bounded. This shows that, in the case of (4.1), the technique
used in Theorem 2.4 does not apply.
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