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Chapitre 1

Introduction : un peu de logique

Avant d’apprendre la poésie, il faut connâıtre la grammaire et l’orthographe de la langue. De la même
manière, on peut voir la logique comme une grammaire des mathématiques. Les phrases en sont les énoncés, et
peuvent être connectées entre elles, ou quantifiées pour former d’autres phrases.

1.1 Enoncés, équivalence logique

Définition 1 (énoncé)

Un énoncé est une phrase dont on peut dire si elle est vraie ou fausse sans ambigüıté (dans un contexte
donné).

Exemple. ”10 < 100”, ”1 = 2”, ”10 est un entier pair”, ”100 < 10” sont tous des énoncés. ”x2 = x” aussi. Mais
”1 + 2 + 3 + · · ·+ n” n’est pas un énoncé.

Définition 2 (implication)

A et B sont deux énoncés. On dit que A implique B si B est vrai dès que A est vrai. On note A =⇒ B.

Exemple. (x = 1) =⇒ (x2 = 1).

Définition 3 (équivalence logique)

Deux énoncés A et B sont équivalents si A implique B et B implique A. On note alors A ⇐⇒ B et on
dit que ”A est équivalent à B”, on encore que ”A est vrai si et seulement si B l’est”.

Exemple. Si a et b sont deux nombres réels, on a les équivalences suivantes :

(a2 = b2) ⇐⇒ (a2 − b2 = 0) ⇐⇒ (a− b)(a+ b) = 0 ⇐⇒ (a = b ou a = −b)

Nota bene. Les symboles =⇒ et ⇐⇒ relient deux énoncés, et seulement deux énoncés. Ne pas écrire
n’importe quoi. La suite de symboles ”22 =⇒ 4” ne veut rien dire.

Nota bene. A, B et C sont des énoncés. L’énoncé A implique toujours A. Si A implique B et B implique C,
alors A implique C. En particulier, si A et B sont équivalents, et si B et C sont équivalents, alors A et C sont
équivalents.

1.2 Opérations sur les énoncés

Dans la suite, A et B sont des énoncés.

Définition 4 (négation)

La négation de A est un énoncé qui est vraie si et seulement si A est faux. On le note non(A).

Nota bene. On nonnon(non(A)) est toujours équivalenet à A.

Définition 5 (conjonction)

La conjonction de A et B est l’énoncé AetB est vrai si et seulement si A est vrai et B est vrai. On la note
AetB.
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Définition 6 (disjonction)

La disjonction de A et B est l’énoncé noté AouB qui est vrai si et seulement si A est vrai ou B est vrai.
On la note AouB

On résume souvent par des ”tables de vérités” qui indiquent la valeur (vrai ou faux) que peut prendre
l’énoncé en fonction des valeurs de A et B. Le 1 est associé à ”vrai” et le 0 à ”faux”.

A non(A) non(non(A))
0 1 0
1 0 1

A et B A
0 1

B 0 0 0
1 0 1

A ou B A
0 1

B 0 0 1
1 1 1

Proposition 7

A, B et C sont trois énoncés. Les équivalences suivantes sont toujours vraies.

1. non(AetB) ⇐⇒ non(A)ounon(B)

2. non(AouB) ⇐⇒ non(A)etnon(B)

3. Aet(BetC) ⇐⇒ (AetB)etC (associativité du ”et” logique)

4. Aou(BouC) ⇐⇒ (AouB)ouC (associativité du ”ou” logique)

5. Aet(BouC) ⇐⇒ (AetB)ou(AetC) (distributivité de ”et” sur ”ou”)

6. Aou(BetC) ⇐⇒ (AouB)et(AouC) (distributivité de ”ou” sur ”et”)

Démonstration : 4 ou 8 cas à vérifier.

Définition 8 (contraposée d’une implication)

On appelle contraposée de l’impliquation A =⇒ B l’impliquation non(B) =⇒ non(A).

Proposition 9

Une implication est toujours équivalente à sa contraposée.

Démonstration : On utilise les règles de la propostion 7 :

(A =⇒ B) ⇐⇒ (Bou(nonA)) ⇐⇒ (non(nonB))ou(nonA) ⇐⇒ ((nonB) =⇒ (nonA))

Définition 10 (réciproque d’une implication)

On appelle réciproque de l’implication (A =⇒ B), l’implication (B =⇒ A).

Nota bene. Une implication n’est en général pas équivalente à sa réciproque. Prendre par exemple l’implication
x = 1 =⇒ x2 = 1. Sa réciproque est fausse.

1.3 Quantificateurs

Définition 11 (variable, pour tout, il existe)

Il arrive souvent qu’un énoncé dépende d’un objet x (ou de plusieurs x, y, . . . ) qui peut varier dans un
ensemble E fixé. Par exemple x2 + x− 1 = 0 où x est un réel. On note alors A(x) cet énoncé, et on appelle
x une variable. On définit alors deux nouveaux énonés (∀x ∈ E)A(x) et (∃x ∈ E)A(x) par :

(∀x ∈ E)A(x) si et seulement si ”pour tout x dans E, A(x) est vraie”.

(∃x ∈ E)A(x) si et seulement si ”il existe un x dans E, tel que A(x) soit vraie”.

Remarque. Les symboles ∀ et ∃ sont de vieilles conventions typographiques. Le premier est un ”A” à l’envers
venant du A de l’anglais ”for All” (pour tout), et le second un ”E” à l’envers, provenant du E de ”there Exists”
(il existe).

Exemple. Avec x2 = x, on peut former les énoncers (∀x ∈ {0, 1})(x2 = x), (∃x ∈ R)(x2 = x).

Nota bene. Si l’énoncé A dépend de plusiseurs variables, on peut avoir plusieurs quanitificateurs :

(∀x ∈ R)(∃y ∈ R)(x+ y = 0)
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Attention. L’ordre des quantificateurs est très important.

Proposition 12 (négation des quatificateurs)

Les équivalences suivantes sont toujours vraies.

non((∀x ∈ E)(A(x))) ⇐⇒ ((∃x ∈ E)(nonA(x)))

non((∃x ∈ E)(A(x))) ⇐⇒ ((∀x ∈ E)(nonA(x)))

Exemples. donner la négation des énoncés suivants : (∀x ∈ R)(x = 1), (∀x ∈ N)(x est soit pair, soit impair),
(∃x ∈ Z)(x = 0), (∀x ∈ R+)(∃z ∈ R+)(x = z2).
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Chapitre 2

Ensembles

Les objets fondamentaux des mathématiques sont les ensembles.

2.1 Définition

Définition 13 (ensemble)

On dit que E est un ensemble si pour tout objet x, on peut répondre par oui ou non à la question ”x est-il
un élément de E ?”. On dit que deux ensembles sont égaux si ils ont les mêmes éléments.

Si x est un élément de E, on le note par x ∈ E et on dit que x appartient à E. Dans le cas contraire, on dit
que x n’appartient pas à E, et on note x /∈ E. Si E est composée des éléments a, b, et c, on note E = {a, b, c}.
Exemples fondamentaux. 1. {0, 1, 2, 3, . . .} est l’ensemble des entiers naturels. On le note N.

2. {0, 1,−1, 2,−2, 3,−3, . . .} est l’ensemble des entiers relatifs. On le note Z (comme ”Zahlen” qui veut dire
”nombres” en allemand).

3. R est l’ensemble des nombres réels.

Le plus souvent, un ensemble F est défini comme l’ensemble des éléments d’un ensemble E connu pour
lesquels un énoncé A(x) est vraie. On a alors :

x ∈ F ⇐⇒ x ∈ E et A(x)

On note F = {x ∈ E : A(x)} pour dire que F est l’ensemble des éléments x de E pour lesquels A(x) est vraie.

Exemples. 1. Si on note 2Z l’ensemble des entiers relatifs pairs, on a :

n ∈ 2Z ⇐⇒ (∃k ∈ Z)(n = 2k)

On note donc 2Z = {n ∈ Z : (∃k ∈ Z) n = 2k}
2. {p/q : (p, q) ∈ N2 et q 6= 0} est l’ensemble des rationnels, noté Q (comme quotient).

3. {a+ ib : (a, b) ∈ R2} est l’ensemble des nombres complexes, noté C.

4. On note R+ l’ensemble {x ∈ R : x ≥ 0}
5. On note R∗ l’ensemble {x ∈ R : x 6= 0}. Plus généralement, si E est ensemble dans C, on note E∗

l’ensemble {x ∈ E : x 6= 0}.

2.2 Parties d’un ensemble

Définition 14 (partie d’un ensemble)

A et E sont deux ensembles. On dit que l’ensemble A est une partie de l’ensemble E, ou un sous-ensemble
de E si tous les éléments de A sont aussi des éléments de E.

On dit aussi que A est inclus dans E. On note alors A ⊂ E. On a donc :

A ⊂ E ⇐⇒ (∀x ∈ A)(x ∈ E)

L’inclusion ⊂ est une relation binaire entre parties de E (on définira plus tard ce qu’est une relation
binaire). Elle a les propriétés suivantes :
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Proposition 15

A, B et C sont trois ensembles

1. A est toujours inclus dans A. (on dit que ⊂ est réflexive)

2. Si A est inclus dans B et B est inclus dans A, alors A est égal à B. (on dit que ⊂ est antisymétrique)

3. Si A est inclus dans B et B est inclus dans C, alors A est inclus dans C. (on dit que ⊂ est transitive)

On note P (E) l’ensemble de toutes les parties de E. On a ainsi :

(A ∈ P (E)) ⇐⇒ (A ⊂ E)

Exemples. Déterminer P (E) dans chacun des cas suivants.

1. E = ∅ (on note aussi E = {}).
2. E = {x}
3. E = {1, 2}
4. E = {1, 2, 3}

2.2.1 Réunion de deux parties

Définition 16 (réunion)

Soient A et B deux parties d’un ensemble E. On définit la réunion de A et B, notée A ∪B par :

x ∈ A ∪B ⇐⇒ (x ∈ A) ou (x ∈ B)

On a donc
A ∪B = {x ∈ E : (x ∈ A) ou (x ∈ B)}

La réunion ∪ est associée au ”ou” logique. C’est une application : P (E) × P (E) → P (E) qui à un couple
(A,B) associe l’ensemble A ∪ B. Plus précisément, c’est une loi de composition interne (lci). Elle a les
propriétés suivantes :

Proposition 17

Pour toutes parties A,B,C d’un ensemble E, on a toujours :

1. (A ∪B) ∪ C = A ∪ (B ∪ C) (on dit que ∪ est associative)

2. A ∪B = B ∪A (on dit que ∪ est commutative)

3. ∅ ∪A = A ∪ ∅ = A (on dit que ∪ a un élément neutre : ∅)

2.2.2 Intersection de deux parties

Définition 18 (intersection)

Soient A et B deux parties d’un ensemble E. On définit leur intersection A ∩B par :

x ∈ A ∩B ⇐⇒ x ∈ A et x ∈ B

On a donc
A ∩B = {x ∈ E : x ∈ A et x ∈ B}

L’intersection ∩ est associée au ”et” logique. C’est une loi de composition interne : P (E) × P (E) →
P (E), (A,B) 7→ A ∩B, qui a les propriétés suivantes :

Proposition 19

Pour tout A,B,C ∈ P (E)3, on a :

1. (A ∩B) ∩ C = A ∩ (B ∩ C) (∩ est associative)

2. (A ∩B = B ∩A) (∩ est commutative)

3. E ∩A = A ∩ E = A (∩ a un élément neutre qui est E)
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Proposition 20 (Lois de Morgan)

Pour toute parties A,B,C de E, on a les égalités :

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (on dit que ∩ est distributive sur ∪)

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (on dit que ∪ est distributive sur ∩)

Démonstration :

2.2.3 Complémentaire d’une partie

Définition 21 (complémentaire)

Soit A une partie de E. On définit le complémentaire de A dans E par {x ∈ E : x /∈ A}.

On note E \ A cet ensemble, ou encore A⊂ si l’ensemble E est implicite et évident. Le complémentaire est
une application P (E)→ P (E), A 7→ E \A qui a les propriétés suivantes :

Proposition 22

Pour toutes parties A et B de E, on a toujours :

1. (A⊂)⊂ = A (on dit que l’application complémentaire est involutive).

2. A ⊂ B ⇐⇒ B⊂ ⊂ A⊂ (elle est ”décroissante”)

3. (A ∩B)⊂ = A⊂ ∪B⊂

4. (A ∪B)⊂ = A⊂ ∩B⊂

5. A ⊂ B⊂ ⇐⇒ A ∩B = ∅
6. A⊂ ⊂ B ⇐⇒ A ∪B = E

Démonstration :

Nota bene. Si A et B sont deux parties d’un ensemble E, on note souvent A \ B pour A ∩ B⊂, et A∆B pour
(A ∪B) \ (A ∩B).

2.2.4 Fonction caractéristique d’une partie

Définition 23 (fonction caractéristique)

Soit E un ensemble et A une partie de E fixée. On définit la fonction caractéristique φA de A par :

φA : E → {0, 1}
x 7→ 1 si x ∈ A

ou 0 si x /∈ A

Puisqu’un ensemble est déterminé uniquement par ses éléments, on a :

Proposition 24

Si A et B sont deux parties de E, on a toujours :

(φA = φB) ⇐⇒ (A = B)

La fonction caractéristique a les propriétés suivantes :

Proposition 25

Soit A et B deux parties de E et si x est un élément de E, on a toujours :

1. (φA(x))2 = φA(x)

2. φA∩B(x) = φA(x) · φB(x)

3. φA⊂(x) = 1− φA(x)

4. φA∪B(x) = φA(x) + φB(x)− φA(x) · φB(x)

5. φA\B(x) = φA(x) · (1− φB(x))

Démonstration :

Exercice 1. Calculer φA∆B(x) en fonction de φA(x) et φB(x).
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2.3 Produit cartésien

Définition 26 (produit cartésien)

Soient E et F deux ensembles. On appelle produit cartésien de E et F l’ensemble de tous les couples
(x, y) formés avec un élément x de E et y de F . On le note E × F . On a donc

E × F = {(x, y) : x ∈ E, y ∈ F}

Nota bene. L’égalité (x, y) = (a, b) est vraie si et seulement si x = a et y = b.

Nota bene. Ne pas confondre le couple (x, y) avec l’ensemble {x, y}. Si x est différent de y, alors (x, y) est
différent de (y, x)., mais on a toujours {x, y} = {y, x}.
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Chapitre 3

Applications

3.1 Définitions

Pour définir une application, il faut se donner trois choses :

1. Un ensemble de départ E,

2. un ensemble d’arrivée F ,

3. une façon d’associer à tout élément x de E un unique élément f(x) de F .

Pour signifier que pour tout x de E, f(x) appartient à F , on note alors :
f : E → F

x 7→ f(x)

Notation. On note F (E,F ), ou FE l’ensemble de toutes les applications de E dans F .

Vocabulaire. Soit x un élément de E et y un élément de F . Si y = f(x) on dit que ”y est l’image de x” ,et que
”x est un antécédent de y”.

Nota bene. Deux applications f et g sont égales si et seulement si elles ont même ensemble de départ E, même
ensemble d’arrivée F , et si tout élément de E a même image par f et par g.

Définition 27 (graphe)

Le graphe de l’application f : E → F est la partie Γf du produit cartésien E × F définie par

Γf = {(x, y) ∈ E × F : f(x) = y}

Exemple. Graphe de R→ R, x 7→ x2

3.2 Image directe, image réciproque

Soient E et F deux ensembles, f : E → F une application, A une partie de E et B une partie de F .

Définition 28 (image directe)

L’image de A par f est l’ensemble des images de tous les éléments de A. On la note f(A). On a donc :

y ∈ f(A) ⇐⇒ (∃A ∈ A)(f(x) = y) ⇐⇒ y a un antécédent dans A

Exemples. 1. Si f : R→ R, x 7→ cos(x), on a f(R) = [−1, 1].

2. Si f : R→ R, x 7→ x2, alors f(R) = [0,+∞[.

Définition 29 (image réciproque)

L’image réciproque de B est l’ensemble de tous les antécédents des éléments de B. On la note f−1(B).
On a donc :

x ∈ f−1(B) ⇐⇒ f(x) ∈ B ⇐⇒ l’image de x est dans B

Exemples. 1. Si f : R→ R, x 7→ cos(x), on a f−1({0}) = {π/2 + kπ : k ∈ Z}.
2. Si f : R→ R, x 7→ x2, alors f−1(]−∞, 0[) = ∅.
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En résumé :

f(A) = {y ∈ F : ∃x ∈ A, f(x) = y} = {f(x) : x ∈ A}

f−1(B) = {x ∈ E : f(x) ∈ B}

Proposition 30

Les inclusions suivantes sont toujours vérifiées :

1. A ⊂ f−1(f(A))

2. f(f−1(B)) ⊂ B

Démonstration :

3.3 Injection, surjection et bijection

Soient E et F deux ensembles et f : E → F une application.

Définition 31 (application injective)

On dit que f est injective si tout élément de F a au plus un antécédent i.e. si,

(∀(x, x) ∈ E2)(f(x) = f(x′) =⇒ x = x′)

Nota bene. En prenant la contraposée, f est injective ssi pour tout x et x′ de E, on a x 6= x′ =⇒ f(x) 6= f(x′).

Exemple. f : R→ R, x 7→ x2 n’est pas injective, mais f : R+ → R, x 7→ x2 l’est.

Définition 32 (application surjective)

On dit que f est surjective si tout élément de F a au plus un antécédent, i.e. si

(∀y ∈ F )(∃x ∈ E)(y = f(x))

Nota bene. Autrement dit, f : E → F est surjective ssi f(E) = F .

Définition 33 (application bijective)

On dit que f est bijective si elle est à la fois injective et surjective, i.e. si tout élément de F a exactement
un antécédent.

Exercice 2. 1. f n’est pas injective ssi

2. f n’est pas surjective ssi

Proposition-Définition 34 (bijection réciproque)

Si f : E → F est bijective, alors il existe une unique application notée f−1 : F → E qui vérifie les deux
propriétés :

(∀x ∈ E) f−1(f(x)) = x

(∀y ∈ F ) f(f−1(y)) = y

f−1 est aussi bijective. On l’appelle la bijection réciproque de f .

Démonstration : Existence, unicité.

Définition 35 (restriction)

Soit f : E → F , et A une partie de E. On appelle restriction de f à A l’application A→ F, x 7→ f(x). On
la note f |A.
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3.4 Cas où f est une application de R dans R
Soit f : R→ R une application. On note Γf sont graphe. On peut facilement voir sur le graphe de f si f est

injective, surjective ou bijective : pour trouver les antécédents d’un élément y de R, on commence par placer
le point M(0, y) sur le graphe, et on trace la droite DM parallèle à l’axe des abscisses (Ox) passant par M .
On regarde ensuite l’intersection Γf ∩DM , qui est constituée de points de la forme (x, y) avec y = f(x).On en
déduit que l’application f est :

- injective ssi toute horizontale coupe Γf en au plus un point.
- surjective ssi toute horizontale coupe Γf en au moins un point.
- bijective ssi toute horizontale coupe Γf en exactement un point.

3.5 Composition des applications

Exemple. Pour quelles valeurs de x peut-on définir le nombre ln(cosx) ?

cosx > 0 ⇐⇒ x ∈]− π

2
,
π

2
[+2kπ (k ∈ Z)

cos : ]− π

2
,
π

2
[→ R+∗ ln : R+∗ → R

Définition 36 (composition)

Plus généralement, si f : E → F et g : F → G sont deux applications, on peut définir la composée g ◦ f de
f et g, en posant g ◦ f(x) = g(f(x)) pour tout x de E.

E
f−→ F

g−→ G

g ◦ f : E → G
x 7→ g(f(x))

Si on connâıt des propriétés de deux fonctions, on peut en déduire des propriétés de leur composée :

Proposition 37

1. La composée de deux injections est injective.

2. La composée de deux surjections est surjective.

3. La composée de deux bijections est bijective.

Démonstration :

Inversement, certaines propriétés de g ◦ f permettent de déduire des propriétés de f et g :

Proposition 38

1. Si g ◦ f est injective, alors f est injective.

2. Si g ◦ f est surjective, alors g est surjective.

Démonstration :

3.6 Applications réciproques

Si E est un ensemble, on note IdE l’application dite identité dans E qui à un x de E associe x. On peut
maintenant reformuler la proposition 34.

Théorème 39

Si f : E → F est une application bijective, alors il existe une unique application notée g : F → E qui vérifie
les deux propriétés :

g ◦ f = IdE

f ◦ g = IdF

On note g = f−1. Cette application est bijective. On l’appelle la bijection réciproque de f .
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3.6.1 Cas des fonctions de R dans R
Proposition 40

A et B sont deux parties de R et f : A→ B est une application bijective. Le graphe de f−1 est le symétrique
du graphe de f par la première bissectrice (ie la droite d’équation y = x).

Démonstration :

Exemple. Construction de
√

à partir de la fonction carrée, et de exp à patir de ln. Construction de arccos et
arcsin.
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Chapitre 4

Relations binaires

4.1 Définitions

E est un ensemble.

Définition 41 (relation binaire)

Une relation binaire sur E (ou entre éléments de E) est une application R de E ×E dans un ensemble à
deux éléments souvent noté {0, 1} ou bien {faux, vrai}.

Si a et b sont deux éléments de E, on note souvent aRb à la place de R(a, b) = 1 pour dire que a est en
relation avec B. Dans le cas contraire, ie si R(a, b) = 0, on note a 6Rb.
Exemples. Si l’on prend pour E l’ensemble Z, les relations x = y, x 6= y, x divise y, x ≤ y, |x| = |y|, x3 = y, x
et y ont la même parité, sont toutes des relations binaires sur Z.

Définition 42 (propriétés des relations binaires)

R est une relation binaire sur E. On dit que R est

1. réflexive si (∀a ∈ E)(aRa)

2. symétrique si (∀a ∈ E)(∀b ∈ E)(aRb =⇒ bRa)

3. antisymétrique si (∀a ∈ E)(∀b ∈ E)(aRb et bRa =⇒ a = b)

4. transitive si (∀a ∈ E)(∀b ∈ E)(∀c ∈ E)(aRb et bRc =⇒ aRc)

Exemples. Etudier les propriétés des relations dans l’exemple précédent.

4.2 Relations d’ordre

E est un ensemble, R une relation binaire sur E.

Définition 43 (relation d’ordre)

On dit que R est une relation d’ordre sur E si elle est réflexive, antisymétrique et transitive.

On dit d’un ensemble muni d’une relation d’ordre que c’est un ensemble ordonné.

Exemples. :

1. (N,≤), (Z,≤), (R,≤) sont des ensembles ordonnés :

2. (N, /) est un ensemble ordonné (on note a/b si a divise b, i.e. s’il existe un entier n tel que a = n.b) :

3. (P (E),⊂) est un ensemble ordonné

4.2.1 Ordre totale, ordre partiel

Définition 44 (ordre total, partiel)

Une relation d’ordre R sur E est totale si elle vérifie

(∀(x, y) ∈ E2)(xRy ou yRx)

On dit dans ce cas que E est un ensemble totalement ordonné. On dit que R est une relation d’ordre
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partielle si elle n’est pas totale, c’est-à-dire si elle vérifie

(∃(x, y) ∈ E2)(non(xRy) et non(yRx))

On dit alors que E est partiellement ordonné.

Exemples.

Nota bene. Une relation d’ordre R est totale si deux éléments sont toujours ordonnés par R. Elle est partielle
s’il existe deux éléments qui ne sont pas comparables.

4.2.2 Partie majorée, minorée

Définition 45 (majorant, minorant)

Soit (E,R) un ensemble ordonné, et A une partie de E. On dit que M est un majorant de A si

(M ∈ E) et (∀a ∈ A)(aRM)

On dit que M est un minorant de A si

(M ∈ E) et (∀a ∈ A)(mRa)

Si A possède un majorant (respectivement un minorant), on dit qu’il est majoré (respectivement minoré).

Exemples. 1. dans (N,≤), la partie A = {3, 7} est minorée par 0, 1, 2 et 3 et majorée par 7, 8, 9, . . . .

2. dans (N, /), la partie A = {3, 7} est minorée par 1 et majorée par 21, 42, 63, . . . .

3. dans (Q,≤), avec la partie A = {E(
√

2·10n)
10n , n ∈ N} .

Nota bene. Attention, un majorant ou un minorant n’est en général pas unique. On dit bien UN majorant, ou
UN minorant.

4.2.3 plus grand élément, plus petit élément

Définition 46 (plus grand élément, plus petit élément)

(E,R) est un ensemble ordonné et A une partie de E. On dit que a est le plus grand élément de A si a
est un majorant de A, ET a ∈ A. On dit que a est le plus petit élément de A si a est un minorant de A,
ET a ∈ A.

On note max(A) le plus grand élément de A, et min(A) sont plus petit élément.

Proposition 47

S’ils existent, max(A) et min(A) sont uniques.

Démonstration :

4.2.4 Borne supérieure/borne inférieure

Définition 48 (borne supérieure, inférieure)

Soit (E,R) un ensemble ordonné et A une partie de E. La borne supérieure de A est le plus petit élément
de l’ensemble des majorants de A (s’il existe). La borne inférieure de A est le plus grand élément de
l’ensemble des minorants de A (s’il existe).

La borne supérieure est donc le ”plus petit des majorants de A”. On le note sup(A). La borne inférieure de
A est le plus grand des minorants de A. On le note inf(A).

Nota bene. s = sup(A) ssi

{
(∀a ∈ A)(aRs) (c’est un majorant)
et (∀M ∈ E)(∀a ∈ A)(aRM =⇒ sRM) (c’est le plus petit)

Nota bene. inf(A) et sup(A) sont tous les deux le max ou le min d’un ensemble : ils sont uniques s’ils existent.

Exemples.
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4.3 Relations d’équivalence

Définition 49 (relation d’équivalence)

Une relation d’équivalence sur E est une relation binaire sur E qui est réflexive, symétrique et
transitive.

Exemples. 1. l’égalité sur R.

2. l’équivalence logique ”⇐⇒ ” sur ”l’ensemble” des énoncés.

3. D ‖ D′ sur l’ensemble des droites du plan.

4. Pour deux entiers relatifs a et b, on dit que a est congru à b modulo n si n divise (b−a). On note alors
a ≡ b[n]. C’est une relation d’équivalence sur Z.

Notation. On note souvent ∼ une relation d’équivalence.

Définition 50 (classe d’équivalence)

Soit E un ensemble, x un élément de E et ∼ une relation d’équivalence sur E. La classe d’équivalence
de x est l’ensemble des éléments de E qui lui sont équivalents. On la note x̄.

x̄ = {y ∈ E : x ∼ y}

Exemples. 1. congruence modulo 2 : 0̄ = {0, 2,−2, 4,−4, . . .} = 2Z et 1̄ = {1,−1, 3,−3, . . .} = 2Z + 1. On a

Z = (2Z)q (2Z + 1)

2. congruence modulo 3 : 0̄ = {0, 3,−3, 6,−6, . . .} = 3Z, 1̄ = 3Z + 1 et 2̄ = 3Z + 2. On a

Z = (3Z)q (3Z + 1)q (3Z + 2)

3. congruence modulo n : pour tout entier k on a k̄ = nZ + k et

Z = (nZ)q (nZ + 1)q · · · q (nZ + n− 1)

Définition 51 (partition)

E est un ensemble et (Ai)i∈I une famille de parties de E. On dit que (Ai)i∈I réalise une partition de A si
⋂
i∈I

Ai = E

et Ai ∩Aj = ∅ pour tout i 6= j

Nota bene. Si (Ai)i∈I réalise une partition de E, chaque x de E appartient à un unique Ai.

Théorème 52

1. Si ∼ est une relation d’équivalence sur E, les classes d’équivalences de ∼ réalisent une partition de E.

2. Réciproquement, toute partition de E permet de définir une relation d’équivalence (compatible avec
cette partition).

Démonstration :

Définition 53 (ensemble quotient)

Soit ∼ une relation d’équivalence sur E. On appelle ensemble quotientl’ensemble des classes d’équivalences
pour ∼. On le note E/ ∼. On a donc

E/ ∼= {x̄ : x ∈ E}

Exemple. Pour la congruence modulo 2, l’ensemble quotient est {0̄, 1̄}. On le note Z/2Z. Pour la congruence
modulo n, on a Z/nZ = {0̄, 1̄, . . . , n− 1}.
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Chapitre 5

Entiers naturels

5.1 Structure et propriétés

On note N l’ensemble 0, 1, 2, . . . des entiers naturels et N∗ pour N \ {0}.

Structure de (N,+)

L’addition + est une loi de composition interne sur N commutative, associative, ayant 0 pour élément
neutre, et pour laquelle chaque élément est simplifiable (ou régulier).

Structure de (N,+,×)

La multiplication × est une loi de compostion interne sur N, commutative, associative, ayant 1 pour élément
neutre, et distributive sur l’addition. 0 est absorbant pour ×. Tout élément non nul est simplifiable pour ×.

Axiomes de N 54

1. Toute partie non vide de N admet un plus petit élément.

2. Toute partie non vide majorée de N adment un plus grand élément.

Théorème 55 (Récurrence)

Soit P (n) un énoncé sur un entier naturel n. Si P (0) est vrai et si pour tout n, P (n) implique P (n + 1),
alors pour tout n, P (n) est vraie.

Vocabulaire. P (0) l’initialisation. L’implication (P (n) =⇒ P (n+ 1)) est l’hérédité.

5.2 Division euclidienne

Théorème 56

Pour tout entier naturel a et tout entier naturel b non nul, il existe un unique couple d’entiers (q, r) tels que

a = bq + r et 0 ≤ r < b

Application (Ecriture d’un nombre en base b).

5.3 Ensembles finis, ensembles dénombrables

Lemme 57

Soit f est une application de {1, . . . , n} dans {1, . . . , p}.
1. Si f est injective, alors n ≤ p.
2. Si f est surjective, alors n ≥ p.
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Proposition-Définition 58

Un ensemble E est fini s’il existe un n tel que E soit en bijection avec {1, . . . , n}. Si E est fini, l’entier n
est unique. On l’appelle le cardinal de E.

On note |E| le cardinal de E. Par convention, le cardinal du vide est 0.

Propriétés 59

Soit E un ensemble fini et A une partie de E.

1. A est fini et |A| ≤ |E|.
2. A = E si et seulement si |A| = |E|.
3. P (E) est fini et |P (E)| = 2|E|.

Applications entre ensembles finis

Proposition 60

Soient E et F deux ensembles finis de cardinal n et p respectivement. FE est fini et son cardinal est pn.

Proposition 61

Soient E et F deux ensembles finis de cardinal n et p respectivement et f une application de E dans F .

1. Si f est injective, alors n ≤ p.
2. Si f est surjective, alors n ≥ p.
3. Si f est bijective, alors n = p.

Proposition 62 (nombre d’injections)

Soient E et F deux ensembles finis de cardinal n et p respectivement. Si p ≥ n, il y a p!/(p− n)! injections
de E dans F .

Proposition 63 (nombre de bijections)

Soient E et F deux ensembles finis de cardinal n et p respectivement. Si p = n, il y a n! bijections de E
dans F .

Coefficients binômiaux

Définition 64 (coefficient binômial)

Pour n ≥ p, on note Cp
n le coefficient binômial n!

p!(n−p)! .

Proposition 65 (propriétés des coefficients binômiaux)

1. Cp
n est le nombre de parties à p éléments dans un ensemble à n éléments.

2. Cp
n = Cn−p

n .

3. Cp
n + Cp+1

n = Cp+1
n+1 (égalité de Pascal).

4. C1
n = Cn−1

n = 1 et C0
n = Cn

n = 1.

Proposition 66 (binôme de Newton)

n est un entier non nul et a, b deux nombres complexes.

(a+ b)n =

n∑
k=0

Ck
na

kbn−k
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Ensembles dénombrables

Définition 67 (ensembles dénombrables)

Un ensemble E est dénombrable s’il existe une bijection de E dans N.

Exemples. N, N∗, 2N, N2, Nn, Z, Zn, Q et Qn sont dénombrables. (cf devoir)
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Chapitre 6

Les entiers relatifs

6.1 Structure et propriétés

On note Z l’ensemble {0, 1,−1, 2,−2, . . .} des entiers relatifs, et Z∗ pour Z \ {0}.

Structure de (Z,+)

L’addition + est une loi de composition interne commutative associative, ayant un élément neutre, et pour
laquelle tout élément a un inverse. On dit que (Z,+) est un groupe commutatif (ou abélien).

Structure de (Z,×)

La multiplication × est une loi de composition interne commutative associative, ayant 1 pour élément neutre,
et distributive sur +. On dit que (Z,+,×) est un anneau. Les seuls éléments inversibles pour × sont 1 et −1.

Axiomes de Z 68

1. Toute partie non vide minorée de Z admet un plus petit élément.

2. Toute partie non vide majorée de Z adment un plus grand élément.

Théorème 69 (division euclidienne)

Pour tout entier relatif a et tout entier naturel b non nul, il existe un unique couple d’entiers relatifs (q, r)
tels que

a = bq + r et 0 ≤ r < b

Application (sous-groupes de (Z,+)). On cherche les parties G de Z qui ont une structure de groupe, c’est-à-dire
telles que :

1. G est inclus dans Z
2. + est une loi de composition interne sur G : pour tout x et y dans G, x+ y reste dans G (on dit aussi que
G est stable par addition).

3. + est associative (découle directement de l’associativité dans Z).

4. 0 appartient à G

5. tout élément de G a un inverse dans G (ie si x est dans G, −x doit aussi être dans G).

Des exemples évidents de sous-groupes de (Z,+) :

1. {0}
2. Z
3. 2Z = {2a : a ∈ Z} : l’ensemble des entiers pairs.

4. nZ = {na : a ∈ Z} : l’ensemble des multiples de n.

Théorème 70

Les sous-groupes de (Z,+) sont les nZ, où n parcourt N.
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6.2 Congruence modulo n

Définition 71

Soit n dans N, et x, y dans entiers relatifs. On dit que x est congru à y modulo n si x− y ∈ nZ.

Notation. On note alors x ≡ y[n].

Remarque. 1. si n = 0, on a x ≡ y[0] si et seulement si x − y ∈ {0}, c’est à dire si x = y. La congruence
modulo 0, c’est l’égalité dans Z.

2. si n = 1, on a x ≡ y[0] si et seulement si x−y ∈ Z, ce qui est toujours vrai. Les cas n = 0 et n = 1 n’ayant
pas d’intérêt particulier, on supposera toujours que n ≥ 2.

Structure de la congruence

La congruence est une relation binaire sur Z qui est réflexive, symmétrique et transitive : c’est donc une
relation d’équivalence. On peut donc parler de classe d’équivalence d’un élément, et d’ensemble quotient. Pour
tout entier relatif x, la classe d’équivalence de x modulo n est par définition :

x = {y ∈ Z : y ≡ x[n]} = {y ∈ Z : y − x ∈ Z} = x+ nZ

On note Z/nZ l’ensemble quotient correspondant à cette relation, c’est-à-dire :

Z/nZ = {x : x ∈ Z} = {0, 1, 2, . . . , n− 1}

C’est un ensemble fini de cardinal n. Chaque classe x a une infinité de représentants (x, x + n, etc.). Mais un
seul de ces représentants est compris entre 0 et n− 1 (c’est une conséquence de la division euclidienne de x par
n).

Structure de Z/nZ
Il est facile d’additionner deux entiers relatifs. On va voir que l’on peut aussi additioner deux classes modulo

n, et donc définir une loi de composition interne sur Z/nZ qui a les mêmes propriétés que l’addition sur Z :
associativité, commutativité, élément neutre (0̄), et tout élément a un inverse.

Proposition 72 (addition dans Z/nZ)

Soient x et y dans Z. On définit +̄ en posant

x̄+̄ȳ = x+ y

(Z/nZ, +̄) est un groupe ablélien.

Nota bene. Par abus de notation et pour éviter les lourdeurs d’écriture, on note souvent x̄+ ȳ au lieu de x̄x+̄ȳ.

De la même manière, on peut multiplier deux classes modulo n :

Proposition 73 (multiplication dans Z/nZ)

Soient x et y dans Z. On définit ×̄ en posant

x̄×̄ȳ = x× y

(Z/nZ, +̄, ×̄) est un anneau commutatif.

Nota bene. On note souvent x̄ȳ au lieu de x̄×̄ȳ.

Exemple. Tables de multiplication dans Z/nZ pour n = 2, 3, 4 et 5.

Diviseurs de zéro, éléments simplifiables

Définition 74 (diviseur de zéro)

Soient a et b dans Z. On dit que (ā, b̄) est un couple de diviseur de zéro si ā 6= 0̄, b̄ 6= 0̄ et āb̄ = 0̄. On
dit que ā est un diviseur de zéro s’il existe un b dans Z tel que (ā, b̄) soit un couple de diviseur de zéro.

Définition 75 (élément simplifiable)

Soient a dans Z. On dit que a est simplifiable si pour tout b et c dans Z, l’égalité ab = ac implique b = c.
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Proposition 76

Dans Z/nZ un élément est un diviseur de zéro si et seulement si il n’est pas simplifiable.

Nota bene. Dans un exercice sur les congruences, on commence par étudier si n est premier. S’il est premier,
tout élément non nul est simplifiable et on peut faire des calculs comme dans Z. Si n n’est pas premier, faire
attention aux diviseurs de zéro. On commence en général par dresser une liste de tous les couples de diviseurs
de zéro, et des éléments inversibles, qui sont exactement les éléments simplifiables :

Proposition 77

Dans Z/nZ, les éléments inversibles sont exactement les éléments simplifiables.

Théorème 78

n est premier si et seulement si tout élément non nul de Z/nZ est inversible.

Vocabulaire. Lorsque n est premier, on dit que Z/nZ est un corps.
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