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Chapitre 1

Introduction : un peu de logique

Avant d’apprendre la poésie, il faut connaitre la grammaire et 'orthographe de la langue. De la méme
maniere, on peut voir la logique comme une grammaire des mathématiques. Les phrases en sont les énoncés, et
peuvent étre connectées entre elles, ou quantifiées pour former d’autres phrases.

1.1 Enoncés, équivalence logique

Définition 1 (énoncé)
Un énoncé est une phrase dont on peut dire si elle est vraie ou fausse sans ambiguité (dans un contexte
donné).
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Ezemple. 710 < 1007, 71 = 2”7, 710 est un entier pair”, 7100 < 10” sont tous des énoncés. ”2° = z” aussi. Mais

"14+24+3+---+n” n’est pas un énoncé.
Définition 2 (émplication)
A et B sont deux énoncés. On dit que A implique B si B est vrai dés que A est vrai. On note A — B.

Ezemple. (x =1) = (22 =1).
Définition 3 (équivalence logique)

Deux énoncés A et B sont équivalents si A implique B et B implique A. On note alors A <= B et on
dit que ”A est équivalent 4 B”, on encore que ”A est vrai si et seulement si B I'est”.

Ezemple. Si a et b sont deux nombres réels, on a les équivalences suivantes :
(> =1%) <= (> —0*=0) <= (a—Db)(a+b)=0 < (a=boua=—b)

Nota bene. Les symboles = et <= relient deux énoncés, et seulement deux énoncés. Ne pas écrire
n’importe quoi. La suite de symboles 722 = 4” ne veut rien dire.

Nota bene. A, B et C sont des énoncés. L’énoncé A implique toujours A. Si A implique B et B implique C,
alors A implique C. En particulier, si A et B sont équivalents, et si B et C sont équivalents, alors A et C' sont
équivalents.

1.2 Opérations sur les énoncés

Dans la suite, A et B sont des énoncés.
Définition 4 (négation)

La négation de A est un énoncé qui est vraie si et seulement si A est faux. On le note non(A).

Nota bene. On nonnon(non(A)) est toujours équivalenet a A.

Définition 5 (conjonction)
La conjonction de A et B est I'énoncé AetB est vrai si et seulement si A est vrai et B est vrai. On la note
AetB.



Définition 6 (disjonction)
La disjonction de A et B est I'énoncé noté AouB qui est vrai si et seulement si A est vrai ou B est vral.
On la note AouB

On résume souvent par des "tables de vérités” qui indiquent la valeur (vrai ou faux) que peut prendre
I’énoncé en fonction des valeurs de A et B. Le 1 est associé a ”vrai” et le 0 & "faux”.

A | non(A) | non(non(A)) Aet B 5 A - AouB . A :
(1) (1) (1) B 0]0]0 B 0[0]1
1101 1111

Proposition 7

A, B et C sont trois énoncés. Les équivalences suivantes sont toujours vraies.
1. non(AetB) <= non(A)ounon(B)

non(AouB) <= non(A)etnon(B)

Aet(Bet(C) < (AetB)etC (associativité du "et” logique)

Aou(BouC) <= (AouB)ouC' (associativité du "ou” logique)

Aet(BouC) < (AetB)ou(AetC) (distributivité de "et” sur "ou”

Aou(BetC) <= (AouB)et(AouC) (distributivité de "ou” sur ”et”)
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Démonstration: 4 ou 8 cas a vérifier. |

Définition 8 (contraposée d’une implication)

On appelle contraposée de I'impliquation A = B limpliquation non(B) = non(A).

Proposition 9

| Une implication est toujours équivalente a sa contraposée.

Démonstration: On utilise les régles de la propostion 7 :

(A = B) <= (Bou(nonA)) <= (non(nonB))ou(nonA) <= ((nonB) = (nonA))

Définition 10 (réciproque d’une implication)
On appelle réciproque de I'implication (A = B), Iimplication (B = A).

Nota bene. Une implication n’est en général pas équivalente a sa réciproque. Prendre par exemple 'implication
=1 = 22 = 1. Sa réciproque est fausse.

1.3 Quantificateurs

Définition 11 (variable, pour tout, il existe)

Il arrive souvent qu’un énoncé dépende d’un objet x (ou de plusieurs z,y,...) qui peut varier dans un
ensemble E fixé. Par exemple 2 +x — 1 =0 ot x est un réel. On note alors A(x) cet énoncé, et on appelle
x une variable. On définit alors deux nouveaux énonés (Vx € E)A(x) et (Ix € E)A(x) par :

(Vz € E)A(z) si et seulement si "pour tout x dans E, A(z) est vraie”.

(3z € E)A(z) si et seulement si ”il existe un x dans E, tel que A(z) soit vraie”.

Remarque. Les symboles V et 3 sont de vieilles conventions typographiques. Le premier est un "A” a I’envers
venant du A de l'anglais ”for All” (pour tout), et le second un ”E” & l’envers, provenant du E de ”there Exists”
(il existe).

Exemple. Avec 22 = x, on peut former les énoncers (Vz € {0,1})(z? = z), (Jz € R)(2? = ).

Nota bene. Sil’énoncé A dépend de plusiseurs variables, on peut avoir plusieurs quanitificateurs :

VzeR)(Fy eR)(z+y=0)



Attention. L’ordre des quantificateurs est trés important.

Proposition 12 (négation des quatificateurs)

Les équivalences suivantes sont toujours vraies.
non((Vzx € E)(A(x))) < ((Iz € E)(nonA(z)))
non((Jr € E)(A(x))) < ((Vx € E)(nonA(z)))

Ezemples. donner la négation des énoncés suivants : (Vz € R)(x = 1), (Vo € N)(x est soit pair, soit impair),
(Fz € Z)(z = 0), (Vo € RT)(Fz € RT)(z = 22).



Chapitre 2

Ensembles

Les objets fondamentaux des mathématiques sont les ensembles.

2.1 Définition

Définition 13 (ensemble)

On dit que FE est un ensemble si pour tout objet x, on peut répondre par oui ou non a la question "z est-il
un élément de E ?”. On dit que deux ensembles sont égaux si ils ont les mémes éléments.

Si x est un élément de E, on le note par z € E et on dit que z appartient a E. Dans le cas contraire, on dit
que x n’appartient pas & F, et on note ¢ E. Si E est composée des éléments a, b, et ¢, on note E = {a, b, c}.

Ezemples fondamentauz. 1. {0,1,2,3,...} est U'ensemble des entiers naturels. On le note N.

2. {0,1,-1,2,—2,3,-3,...} est ensemble des entiers relatifs. On le note Z (comme ”Zahlen” qui veut dire
“nombres” en allemand).

3. R est I’ensemble des nombres réels.
Le plus souvent, un ensemble F est défini comme ’ensemble des éléments d’un ensemble E connu pour
lesquels un énoncé A(z) est vraie. On a alors :

r€F < x € EetAlx)

Onnote F = {x € E : A(z)} pour dire que F est ’ensemble des éléments = de F pour lesquels A(x) est vraie.

Ezxemples. 1. Si on note 2Z I’ensemble des entiers relatifs pairs, on a :
n €27 <= (3k € Z)(n = 2k)

On note donc 2Z ={n € Z : (3k € Z) n = 2k}

{p/q: (p,q) € N? et g # 0} est 'ensemble des rationnels, noté Q (comme quotient).
{a+ib: (a,b) € R?} est I'ensemble des nombres complexes, noté C.

On note RT I'ensemble {z € R: 2z > 0}

On note R* Tensemble {z € R : = # 0}. Plus généralement, si FE est ensemble dans C, on note E*
Iensemble {x € E : z # 0}.

gUk N

2.2 Parties d’un ensemble

Définition 14 (partie d’un ensemble)

A et E sont deux ensembles. On dit que I'ensemble A est une partie de I’ensemble E, ou un sous-ensemble
de F si tous les éléments de A sont aussi des éléments de E.

On dit aussi que A est inclus dans E. On note alors A C E. On a donc :

ACE < (Vze A)(z€E)

L’inclusion C est une relation binaire entre parties de E (on définira plus tard ce qu’est une relation
binaire). Elle a les propriétés suivantes :



Proposition 15

A, B et C sont trois ensembles

1. A est toujours inclus dans A. (on dit que C est réflexive)

2. Si A est inclus dans B et B est inclus dans A, alors A est égal & B. (on dit que C est antisymétrique)

3. Si A est inclus dans B et B est inclus dans C, alors A est inclus dans C. (on dit que C est transitive)

On note P(FE) I'ensemble de toutes les parties de E. On a ainsi :

(Ae P(E)) < (ACE)

Ezemples. Déterminer P(FE) dans chacun des cas suivants.

1.

2
3.
4

E =0 (on note aussi E = {}).

. E={x}
E=1{1,2)
. E=1{1,2,3}

2.2.1 Réunion de deux parties

Définition 16 (réunion)

Soient A et B deux parties d’un ensemble E. On définit la réunion de A et B, notée AU B par :

r€AUB < (x € A) ou (x € B)

On a donc

La réunion U est associée au "ou” logique. C’est une application : P(F) x P(E) — P(FE) qui & un couple
(A, B) associe I'ensemble A U B. Plus précisément, c’est une loi de composition interne (lci). Elle a les

AUB={z€FE : (x€ A) ou (z € B)}

propriétés suivantes :

Proposition 17

Pour toutes parties A, B,C' d’un ensemble E, on a toujours :

1. (AUB)UC =AU (BUC) (on dit que U est associative)
2. AUB = BUA (on dit que U est commutative)
3. 0UA=AUD= A (on dit que U a un élément neutre : ()

2.2.2 Intersection de deux parties

Définition 18 (intersection)

Soient A et B deux parties d’un ensemble E. On définit leur intersection A N B par :

r€ANB < vxcAetxeB

On a donc

L’intersection N est associée au ”et” logique. C’est une loi de composition interne :

ANB={x€FE : € Aetz e B}

P(E),(A,B) — AN B, qui a les propriétés suivantes :

Proposition 19
Pour tout A, B,C € P(E)3, on a :

1. (ANB)NC = AN (BNC) (N est associative)
2. (ANnB=BnNA) (N est commutative)
3. ENA=ANE=A (N a un élément neutre qui est E)

P(E) x P(E) —



Proposition 20 (Lois de Morgan)
Pour toute parties A, B,C de FE, on a les égalités :
1. An(BUC)=(ANB)U(ANC) (on dit que N est distributive sur U)
2. AU(BNC)=(AUB)N(AUC) (on dit que U est distributive sur N)

Démonstration :

2.2.3 Complémentaire d’une partie

Définition 21 (complémentaire)

Soit A une partie de E. On définit le complémentaire de A dans E par {zr € E : z ¢ A}.

On note E \ A cet ensemble, ou encore A< si ensemble E est implicite et évident. Le complémentaire est
une application P(E) — P(FE),A— E\ A qui a les propriétés suivantes :
Proposition 22
Pour toutes parties A et B de E, on a toujours :
1. (A<)S = A (on dit que I'application complémentaire est involutive).
A C B < BC“ C A® (elle est "décroissante”)
(AN B)- = A< U B¢
(AUB)S = AN BC-
ACBS < AnB=10
A“CB < AUB=F

S vk N
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Démonstration :

Nota bene. Si A et B sont deux parties d'un ensemble E, on note souvent A \ B pour AN B<, et AAB pour
(AU B)\ (AN B).

2.2.4 Fonction caractéristique d’une partie

Définition 23 (fonction caractéristique)

Soit E un ensemble et A une partie de E fixée. On définit la fonction caractéristique ¢4 de A par :

¢A:E — {071}
r — lsizeA
oulsizé¢A

Puisqu’un ensemble est déterminé uniquement par ses éléments, on a :
Proposition 24

Si A et B sont deux parties de E, on a toujours :

(pa = ¢B) < (A=DB)

La fonction caractéristique a les propriétés suivantes :

Proposition 25

Soit A et B deux parties de E et si x© est un élément de E, on a toujours :
(¢a(2))? = ¢a(z)
- panp(T) = da() - p(7)

. pac(z)=1—¢a(x)

. pauB(2) = da(z) + ¢B(2) — da(2) - dB(2)
- 9a\B(2) = ¢a(z) - (1 - ¢p(z))

~

[ B U )

Démonstration :

Ezercice 1. Calculer ¢panp(z) en fonction de ¢4(z) et pp(x).



2.3 Produit cartésien

Définition 26 (produit cartésien)

Soient E et F deux ensembles. On appelle produit cartésien de E et F' I'ensemble de tous les couples
(x,y) formés avec un élément x de E et y de F. On le note E x F. On a donc

ExF={(zx,y) : x€E, ye F}

Nota bene. L’égalité (z,y) = (a,b) est vraie si et seulement si z = a et y = b.

Nota bene. Ne pas confondre le couple (z,y) avec 'ensemble {z,y}. Si x est différent de y, alors (z,y) est
différent de (y, z)., mais on a toujours {z,y} = {y,x}.



Chapitre 3

Applications

3.1 Définitions

Pour définir une application, il faut se donner trois choses :

1. Un ensemble de départ F,

2. un ensemble d’arrivée F,

3. une fagon d’associer & tout élément x de E un unique élément f(x) de F'.

f:FE F
x

Pour signifier que pour tout = de E, f(z) appartient & F', on note alors : : ()
Notation. On note F(E, F), ou F¥ I'ensemble de toutes les applications de E dans F.

Vocabulaire. Soit x un élément de F et y un élément de F. Si y = f(z) on dit que "y est ’image de 2”7 ,et que
"z est un antécédent de y”.

Nota bene. Deux applications f et g sont égales si et seulement si elles ont méme ensemble de départ E, méme
ensemble d’arrivée F, et si tout élément de F a méme image par f et par g.

Définition 27 (graphe)
Le graphe de I’application f : E — F est la partie I'y du produit cartésien E x F' définie par

I'y={(z,y) e EXF : f(zx)=y}
Exemple. Graphe de R — R,z + 22

3.2 Image directe, image réciproque

Soient E et F' deux ensembles, f : ' — I une application, A une partie de E et B une partie de F'.

Définition 28 (image directe)

L’image de A par f est I'ensemble des images de tous les éléments de A. On la note f(A). On a donc :

y€ f(A) < (A€ A)(f(x) =y) < y a un antécédent dans A

Ezemples. 1. Si f:R — R,z + cos(x), on a f(R) =[-1,1].
2. Si f:R— R,z 22 alors f(R) = [0, +o0].
Définition 29 (image réciproque)

L’image réciproque de B est 'ensemble de tous les antécédents des éléments de B. On la note f~1(B).

On a donc :
r€ fTYB) <= f(z) € B <= I'image de = est dans B

Exemples. 1. Si f: R — R,z +> cos(z), ona f~1({0}) ={m/2+ kr : ke€Z}.
2. Si f:R— Rz~ 2% alors f~1(] — 00,0[) = 0.



En résumé :

JA)={yeF : el f@)=y}={fa) : A}

/(B ={rc B : f(x)cBY]

Proposition 30
Les inclusions suivantes sont toujours vérifiées :
1 AC f(f(A))
2. f(f7X(B)c B

Démonstration :

3.3 Injection, surjection et bijection

Soient E et F' deux ensembles et f : E — F une application.
Définition 31 (application injective)

On dit que f est injective si tout élément de F' a au plus un antécédent i.e. si,

(V(z,2) € E*)(f(2) = f(a') = x=2')

Nota bene. En prenant la contraposée, f est injective ssi pour tout = et ' de E, ona x # ¢’ = f(z) # f(a').
Ezemple. f:R — R,z — 22 n’est pas injective, mais f : RT — R,z — 2 lest.
Définition 32 (application surjective)

On dit que f est surjective si tout élément de F' a au plus un antécédent, i.e. si

(Vy € F)(3r € E)(y = f(x))

Nota bene. Autrement dit, f : E — F est surjective ssi f(E) = F.
Définition 33 (application bijective)

On dit que f est bijective si elle est a la fois injective et surjective, i.e. si tout élément de F' a exactement
un antécédent.

Ezercice 2. 1. f n’est pas injective ssi
2. f n’est pas surjective ssi
Proposition-Définition 34 (bijection réciprogque)

Si f : E — F est bijective, alors il existe une unique application notée f~' : F — E qui vérifie les deux
propriétés :

(Vz € B) [ (f@) =«
(VyeF) f(f ') =y

f~1 est aussi bijective. On I’appelle la bijection réciproque de f.

Démonstration : Existence, unicité. |

Définition 35 (restriction)

Soit f: E — F, et A une partie de E. On appelle restriction de f & A Iapplication A — F,x — f(x). On
la note f|a.



3.4 Cas ou f est une application de R dans R

Soit f : R — R une application. On note I'; sont graphe. On peut facilement voir sur le graphe de f si f est
injective, surjective ou bijective : pour trouver les antécédents d’un élément y de R, on commence par placer
le point M(0,y) sur le graphe, et on trace la droite D), parallele & laxe des abscisses (Ox) passant par M.
On regarde ensuite 'intersection I'y N Dy, qui est constituée de points de la forme (z,y) avec y = f(z).On en
déduit que I'application f est :

- injective ssi toute horizontale coupe I'y en au plus un point.

- surjective ssi toute horizontale coupe I'y en au moins un point.

- bijective ssi toute horizontale coupe I'y en exactement un point.

3.5 Composition des applications

Ezemple. Pour quelles valeurs de « peut-on définir le nombre in(cosz)?

cost >0 < z€|— g,g[—i-?/m (k € Z)
cos:]—g,g[—ﬂR“ In:R™ =R

Définition 36 (composition)
Plus généralement, si f : E — F et g : F — G sont deux applications, on peut définir la composée go f de
f et g, en posant go f(x) = g(f(x)) pour tout z de E.

eLr %G
gof:E — G
r = g(f(x))

Si on connait des propriétés de deux fonctions, on peut en déduire des propriétés de leur composée :
Proposition 37

1. La composée de deux injections est injective.
2. La composée de deux surjections est surjective.

3. La composée de deux bijections est bijective.

Démonstration :

Inversement, certaines propriétés de g o f permettent de déduire des propriétés de f et g :
Proposition 38

1. Si go f est injective, alors f est injective.

2. Si go f est surjective, alors g est surjective.

Démonstration :

3.6 Applications réciproques
Si E est un ensemble, on note Idg 'application dite identité dans F qui & un x de F associe x. On peut
maintenant reformuler la proposition 34.

Théoréme 39

Si f : B — F est une application bijective, alors il existe une unique application notée g : F' — E qui vérifie
les deux propriétés :
go f=Idg

fog=Idp
On note g = f~1. Cette application est bijective. On I'appelle la bijection réciproque de f.

10



3.6.1 Cas des fonctions de R dans R

Proposition 40

A et B sont deux parties de R et f : A — B est une application bijective. Le graphe de f~! est le symétrique
du graphe de f par la premiére bissectrice (ie la droite d’équation y = x).

Démonstration :

Ezemple. Construction de va a partir de la fonction carrée, et de exp a patir de In. Construction de arccos et
arcsin.
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Chapitre 4

Relations binaires

4.1 Définitions

FE est un ensemble.

Définition 41 (relation binaire)

Une relation binaire sur E (ou entre éléments de F) est une application R de E x E dans un ensemble a
deux éléments souvent noté {0, 1} ou bien {fauz, vrai}.

Si a et b sont deux éléments de F, on note souvent aRb & la place de R(a,b) = 1 pour dire que a est en
relation avec B. Dans le cas contraire, ie si R(a,b) =0, on note a Rb.

Exemples. Si on prend pour E Pensemble Z, les relations z = y, # # y, = divise y, z < y, |z| = |y|, 23 =y, =
et y ont la méme parité, sont toutes des relations binaires sur Z.
Définition 42 (propriétés des relations binaires)
R est une relation binaire sur E. On dit que R est
1. réflexive si (Va € E)(aRa)
2. symétrique si (Va € E)(Vb € E)(aRb = bRa)
3. antisymétrique si (Va € E)(Vb € E)(aRb et bRa = a =1)
4. transitive si (Va € E)(Vb € E)(Vc € E)(aRb et bRc = aRc)

Ezemples. Etudier les propriétés des relations dans ’exemple précédent.

4.2 Relations d’ordre

FE est un ensemble, R une relation binaire sur E.

Définition 43 (relation d’ordre)
On dit que R est une relation d’ordre sur F si elle est réflexive, antisymétrique et transitive.
On dit d’un ensemble muni d’une relation d’ordre que c’est un ensemble ordonné.

Ezemples. :
1. (N, <), (Z,<), (R, <) sont des ensembles ordonnés :
2. (N, /) est un ensemble ordonné (on note a/b si a divise b, i.e. 8’il existe un entier n tel que a = n.b) :
3.

(P(E),C) est un ensemble ordonné

4.2.1 Ordre totale, ordre partiel
Définition 44 (ordre total, partiel)

Une relation d’ordre R sur E est totale si elle vérifie
(V(z,y) € E*)(zRy ou yRz)

On dit dans ce cas que E est un ensemble totalement ordonné. On dit que R est une relation d’ordre
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partielle si elle n’est pas totale, c’est-a-dire si elle vérifie
(3(z,y) € E*)(non(xRy) et non(yRx))

On dit alors que E est partiellement ordonné.

Ezxemples.

Nota bene. Une relation d’ordre R est totale si deux éléments sont toujours ordonnés par R. Elle est partielle
s’il existe deux éléments qui ne sont pas comparables.

4.2.2 Partie majorée, minorée

Définition 45 (majorant, minorant)

Soit (E, R) un ensemble ordonné, et A une partie de E. On dit que M est un majorant de A si
(M € E) et (Va € A)(aRM)
On dit que M est un minorant de A si

(M € E) et (Vae A)(mRa)

Si A possede un majorant (respectivement un minorant), on dit qu’il est majoré (respectivement minoré).
Ezemples. 1. dans (N, <), la partie A = {3, 7} est minorée par 0,1,2 et 3 et majorée par 7,8,9,....
2. dans (N, /), la partie A = {3,7} est minorée par 1 et majorée par 21,42,63,....

3. dans (Q, <), avec la partie A = {w7 n €N} .

Nota bene. Attention, un majorant ou un minorant n’est en général pas unique. On dit bien UN majorant, ou
UN minorant.

4.2.3 plus grand élément, plus petit élément

Définition 46 (plus grand élément, plus petit élément)

(E, R) est un ensemble ordonné et A une partie de E. On dit que a est le plus grand élément de A sia
est un majorant de A, ET a € A. On dit que a est le plus petit élément de A si a est un minorant de A,
ETac A.

On note maz(A) le plus grand élément de A, et min(A) sont plus petit élément.

Proposition 47
S’ils existent, max(A) et min(A) sont uniques. .J

Démonstration :

4.2.4 Borne supérieure/borne inférieure

Définition 48 (borne supérieure, inférieure)

Soit (E, R) un ensemble ordonné et A une partie de E. La borne supérieure de A est le plus petit élément
de l'ensemble des majorants de A (s’il existe). La borne inférieure de A est le plus grand élément de
Pensemble des minorants de A (s’il existe).

La borne supérieure est donc le ”plus petit des majorants de A”. On le note sup(A). La borne inférieure de
A est le plus grand des minorants de A. On le note inf(A).

(Va € A)(aRs) (c’est un majorant)
et (VM € E)(Va € A)(aRM = sRM) (c’est le plus petit)

Nota bene. inf(A) et sup(A) sont tous les deux le max ou le min d’un ensemble : ils sont uniques s'ils existent.

Nota bene. s = sup(A) ssi {

Ezxemples.
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4.3 Relations d’équivalence

Définition 49 (relation d’équivalence)

Une relation d’équivalence sur E est une relation binaire sur E qui est réflexive, symétrique et
transitive.

Ezxemples. 1. I’égalité sur R.

b2

2. ’équivalence logique 7 <= " sur ”"I’ensemble” des énoncés.

3. D || D’ sur 'ensemble des droites du plan.

4. Pour deux entiers relatifs a et b, on dit que a est congru & b modulo n si n divise (b —a). On note alors
a = b[n]. C’est une relation d’équivalence sur Z.

Notation. On note souvent ~ une relation d’équivalence.

Définition 50 (classe d’équivalence)

Soit E' un ensemble, x un élément de E et ~ une relation d’équivalence sur E. La classe d’équivalence
de z est I'ensemble des éléments de E qui lui sont équivalents. On la note T.

T={yeFE:z~y}

Exemples. 1. congruence modulo 2 : 0 = {0,2,-2,4,—4,...} =2Z et 1 ={1,-1,3,-3,...} =2Z + 1. On a
Z=02Z)1T(2Z+1)
2. congruence modulo 3 : 0 = {0,3,-3,6,—6,...} =3Z,1=3Z+1et2=3Z+2.0Ona
Z=3Z)11(3Z+1)11(3Z + 2)
3. congruence modulo n : pour tout entier k£ on a k = nZ + k et
Z=mnZ)UnZ+1)IO--- I (nZ+n-1)

Définition 51 (partition)
E est un ensemble et (A;);c; une famille de parties de E. On dit que (A;);cr réalise une partition de A si

(Ai=E

i€l
et A; N A; =0 pour tout i # j

Nota bene. Si (4;);er réalise une partition de E, chaque x de E appartient & un unique A;.
Théoréme 52

1. Si ~ est une relation d’équivalence sur E, les classes d’équivalences de ~ réalisent une partition de E.

2. Réciproquement, toute partition de E permet de définir une relation d’équivalence (compatible avec
cette partition).

Démonstration :

Définition 53 (ensemble quotient)

Soit ~ une relation d’équivalence sur E. On appelle ensemble quotientl’ensemble des classes d’équivalences
pour ~. On le note E/ ~. On a donc
E/~={Z:z € FE}

Ezemple. Pour la congruence modulo 2, 'ensemble quotient est {0,1}. On le note Z/2Z. Pour la congruence
modulo n, on a Z/nZ = {0,1,...,n —1}.
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Chapitre 5

Entiers naturels

5.1 Structure et propriétés

On note N l'ensemble 0,1,2,... des entiers naturels et N* pour N\ {0}.

Structure de (N, +)

[’addition + est une loi de composition interne sur N commutative, associative, ayant 0 pour élément
neutre, et pour laquelle chaque élément est simplifiable (ou régulier).

Structure de (N, +, x)

La multiplication x est une loi de compostion interne sur N, commutative, associative, ayant 1 pour élément
neutre, et distributive sur ’addition. 0 est absorbant pour x. Tout élément non nul est simplifiable pour x.

Axiomes de N 54

1. Toute partie non vide de N admet un plus petit élément.

2. Toute partie non vide majorée de N adment un plus grand élément.

Théoréme 55 (Récurrence)

Soit P(n) un énoncé sur un entier naturel n. Si P(0) est vrai et si pour tout n, P(n) implique P(n + 1),
alors pour tout n, P(n) est vraie.

Vocabulaire. P(0) Pinitialisation. L’implication (P(n) = P(n + 1)) est I’hérédité.

5.2 Division euclidienne

Théoréme 56

Pour tout entier naturel a et tout entier naturel b non nul, il existe un unique couple d’entiers (q,r) tels que

a=bg+r et 0<r<b

Application (Ecriture d’un nombre en base b).

5.3 Ensembles finis, ensembles dénombrables

Lemme 57
Soit f est une application de {1,...,n} dans {1,...,p}.
1. Si f est injective, alors n < p.

2. Si f est surjective, alors n > p.
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Proposition-Définition 58

Un ensemble E est fini s’il existe un n tel que E soit en bijection avec {1,...,n}. Si E est fini, I'entier n
est unique. On 'appelle le cardinal de F.

On note |E| le cardinal de E. Par convention, le cardinal du vide est 0.
Propriétés 59
Soit E un ensemble fini et A une partie de E.
1. A est fini et |A| < |E|.
2. A = F si et seulement si |A| = |E|.
3. P(E) est fini et |P(F)| = 27!

Applications entre ensembles finis

Proposition 60

Soient E et F' deux ensembles finis de cardinal n et p respectivement. F'¥ est fini et son cardinal est p™.

Proposition 61

Soient E et F' deux ensembles finis de cardinal n et p respectivement et f une application de E dans F'.
1. Si f est injective, alors n < p.
2. Si f est surjective, alors n > p.

3. Si f est bijective, alors n = p.

Proposition 62 (nombre d’injections)

Soient E et F' deux ensembles finis de cardinal n et p respectivement. Si p > n, il y a p!/(p — n)! injections
de E dans F.

Proposition 63 (nombre de bijections)

Soient E et F' deux ensembles finis de cardinal n et p respectivement. Si p = n, il y a n! bijections de E
dans F'.

Coeflicients binomiaux

Définition 64 (coefficient binémial)
!

Pour n > p, on note C? le coefficient binémial —*—;.
n pl(n—p)!

Proposition 65 (propriétés des coefficients binémiaux)

1. C? est le nombre de parties a p éléments dans un ensemble a n éléments.
2. CP =C)7P.

3. CF + Cr+l = CP11 (égalité de Pascal).

4. Cl=Cnl=1etCY=C"=1.

Proposition 66 (binéme de Newton)

n est un entier non nul et a,b deux nombres complexes.

(a+b)" =Y Ckakpr=*

k=0

16



Ensembles dénombrables

Définition 67 (ensembles dénombrables)
Un ensemble E est dénombrable s’il existe une bijection de E dans N.

Exemples. N, N*, 2N, N2, N" Z, Z", Q et Q" sont dénombrables. (cf devoir)
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Chapitre 6

Les entiers relatifs

6.1 Structure et propriétés

On note Z I'ensemble {0,1,—1,2,—2,...} des entiers relatifs, et Z* pour Z \ {0}.

Structure de (Z,+)

L’addition 4 est une loi de composition interne commutative associative, ayant un élément neutre, et pour
laquelle tout élément a un inverse. On dit que (Z,+) est un groupe commutatif (ou abélien).

Structure de (Z, x)

La multiplication x est une loi de composition interne commutative associative, ayant 1 pour élément neutre,
et distributive sur +. On dit que (Z, +, x) est un anneau. Les seuls éléments inversibles pour x sont 1 et —1.

Axiomes de Z 68

1. Toute partie non vide minorée de Z admet un plus petit élément.

2. Toute partie non vide majorée de Z adment un plus grand élément.

Théoreme 69 (division euclidienne)

Pour tout entier relatif a et tout entier naturel b non nul, il existe un unique couple d’entiers relatifs (q,r)
tels que
a=bg+r et 0<r<b

Application (sous-groupes de (Z,+)). On cherche les parties G de Z qui ont une structure de groupe, c’est-a-dire
telles que :

1. GG est inclus dans Z

2. + est une loi de composition interne sur G : pour tout x et y dans G, x + y reste dans G (on dit aussi que
G est stable par addition).

3. + est associative (découle directement de 'associativité dans Z).

4. 0 appartient & G

5. tout élément de G a un inverse dans G (ie si x est dans G, —z doit aussi étre dans G).
Des exemples évidents de sous-groupes de (Z,+) :

1. {0}

2. Z

3. 2Z ={2a:a € Z} : Pensemble des entiers pairs.

4. nZ = {na : a € Z} : I'ensemble des multiples de n.

Théoréme 70

Les sous-groupes de (Z,+) sont les nZ, ot n parcourt N.
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6.2 Congruence modulo n

Définition 71
Soit n dans N, et x,y dans entiers relatifs. On dit que  est congru a y modulo n si x —y € nZ.

Notation. On note alors x = y[n].

Remarque. 1. sin =0, on a x = y[0] si et seulement si x —y € {0}, c’est a dire si = y. La congruence
modulo 0, c’est 1’égalité dans Z.

2. sin=1,o0n ax = y[0] si et seulement si x —y € Z, ce qui est toujours vrai. Les cas n = 0 et n = 1 n’ayant
pas d’intérét particulier, on supposera toujours que n > 2.

Structure de la congruence

La congruence est une relation binaire sur Z qui est réflexive, symmeétrique et transitive : c’est donc une
relation d’équivalence. On peut donc parler de classe d’équivalence d’un élément, et d’ensemble quotient. Pour
tout entier relatif x, la classe d’équivalence de z modulo n est par définition :

T={yeZ:y=zhn|}={yeZ:y—z€Z}=x+nZ
On note Z/nZ 'ensemble quotient correspondant & cette relation, c’est-a-dire :
Z/inZ ={z:2€Z}=1{0,1,2,...,n—1}

C’est un ensemble fini de cardinal n. Chaque classe T a une infinité de représentants (x, x 4+ n, etc.). Mais un
seul de ces représentants est compris entre 0 et n — 1 (c’est une conséquence de la division euclidienne de x par

Structure de Z/nZ

11 est facile d’additionner deux entiers relatifs. On va voir que ’on peut aussi additioner deux classes modulo
n, et donc définir une loi de composition interne sur Z/nZ qui a les mémes propriétés que 'addition sur Z :

associativité, commutativité, élément neutre (0), et tout élément a un inverse.

Proposition 72 (addition dans Z/nZ)
Soient x et y dans Z. On définit + en posant

Kl
—+1
|

Il
S
+
Nad

(Z/nZ,+) est un groupe ablélien.

Nota bene. Par abus de notation et pour éviter les lourdeurs d’écriture, on note souvent Z +  au lieu de Tz+j.
De la méme maniere, on peut multiplier deux classes modulo n :
Proposition 73 (multiplication dans Z/nZ)

Soient x et y dans Z. On définit X en posant

I
X1
<
|
8
X
N

(Z/nZ,+, x) est un anneau commutatif.

Nota bene. On note souvent g au lieu de ZX§.

Ezemple. Tables de multiplication dans Z/nZ pour n =2, 3, 4 et 5.

Diviseurs de zéro, éléments simplifiables

Définition 74 (diviseur de zéro)

Soient a et b dans Z. On dit que (a,b) est un couple de diviseur de zéro si @ # 0, b # 0 et ab = 0. On
dit que a est un diviseur de zéro s'il existe un b dans Z tel que (a, b) soit un couple de diviseur de zéro.

Définition 75 (élément simplifiable)
I—Sm'-ent a dans Z. On dit que a est simplifiable si pour tout b et ¢ dans 7Z, I’égalité ab = ac implique b = c.
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Proposition 76

Dans Z/nZ un élément est un diviseur de zéro si et seulement si il n’est pas simplifiable.

Nota bene. Dans un exercice sur les congruences, on commence par étudier si n est premier. S’il est premier,
tout élément non nul est simplifiable et on peut faire des calculs comme dans Z. Si n n’est pas premier, faire
attention aux diviseurs de zéro. On commence en général par dresser une liste de tous les couples de diviseurs
de zéro, et des éléments inversibles, qui sont exactement les éléments simplifiables :

Proposition 77

Dans Z/nZ, les éléments inversibles sont exactement les éléments simplifiables.

Théoréme 78

n est premier si et seulement si tout élément non nul de Z/nZ est inversible.

Vocabulaire. Lorsque n est premier, on dit que Z/nZ est un corps.
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