

# SMALL SKEW FIELDS

CÉDRIC MILLIET

ABSTRACT. A division ring of positive characteristic with countably many pure types is a field.

Wedderburn showed in 1905 that finite fields are commutative. As for infinite fields, we know that superstable [1, Cherlin, Shelah] and supersimple [4, Pillay, Scanlon, Wagner] ones are commutative. In their proof, Cherlin and Shelah use the fact that a superstable field is algebraically closed. Wagner showed that a small field is algebraically closed [5], and asked whether a small field should be commutative. We shall answer this question positively in non-zero characteristic.

## 1. PRELIMINARIES

**Definition 1.1.** A theory is *small* if it has countably many  $n$ -types without parameters for all integer  $n$ . A structure is *small* if its theory is so.

We shall denote  $dcl(A)$  the definable closure of a set  $A$ . Note that if  $K$  is a field and  $A$  a subset of  $K$ , then  $dcl(A)$  is a field too. Smallness is clearly preserved under interpretation and addition of finitely many parameters.

Let  $D, D_1, D_2$  be  $A$ -definable sets in some structure  $M$  with  $A \subset M$ . We define *the Cantor-Bendixson rank*  $CB_A(D)$  and *degree*  $dCB_A(D)$  of  $D$  over  $A$ .

**Definition 1.2.** By induction, we define

$CB_A(D) \geq 0$  if  $D$  is not empty  
 $CB_A(D) \geq \alpha + 1$  if there is an infinite family of disjoint  $A$ -definable subsets  $D_i$  of  $D$ , such that  $CB_A(D_i) \geq \alpha$  for all  $i < \omega$ .  
 $CB_A(D) \geq \beta$  for a limit ordinal  $\beta$  if  $CB_A(D) \geq \alpha$  for all  $\alpha < \beta$ .

**Definition 1.3.**  $dCB_A(D)$  is the greatest integer  $d$  such that  $D$  can be divided into  $d$  disjoint  $A$ -definable sets, with same rank over  $A$  as  $D$ .

**Proposition 1.4.** *If  $M$  is small and  $A$  is a finite set,*

- (i) *The rank  $CB_A(M)$  is ordinal.*
- (ii) *The degree  $dCB_A$  is well defined.*
- (iii) *If  $D_1 \subset D_2$ , then  $CB_A(D_1) \leq CB_A(D_2)$ .*
- (iv)  *$CB_A(D_1 \cup D_2) = \max\{CB_A(D_1), CB_A(D_2)\}$ .*
- (v)  *$CB_A$  and  $dCB_A$  are preserved under  $A$ -definable bijections.*

If  $A$  is empty, we shall write  $CB$  and  $dCB$  rather than  $CB_\emptyset$  or  $dCB_\emptyset$ .

---

2000 *Mathematics Subject Classification.* 03C15, 03C50, 03C60, 12E15.

*Key words and phrases.* Smallness, skew fields.

*Remark 1.5.* Let  $H < G$  be  $A$ -definable small groups with  $H \cap dcl(A) < G \cap dcl(A)$ . Then, either  $CB_A(H) < CB_A(G)$ , or  $CB_A(H) = CB_A(G)$  and  $dCB_A(H) < dCB_A(G)$ .

**Corollary 1.6.** *A small integral domain with unity is a field.*

*Proof.* Let  $R$  be this ring. If  $r$  is not invertible, then  $1 \notin rR$  hence  $rR \cap dcl(r) \leq R \cap dcl(r)$ . Apply Remark 1.5, but  $R$  and  $rR$  have same rank and degree over  $r$ .  $\square$

Note that  $R$  need not have a unity (see Corollary 1.10). More generally, if  $\varphi$  is a definable bijection between two definable groups  $A \leq B$  in a small structure, then  $A$  equals  $B$ .

**Proposition 1.7.** (Descending Chain Condition) *Let  $G$  be a small group and  $g$  a finite tuple in  $G$ . Let  $H$  be a subgroup of  $dcl(g)$ . In  $H$ , there is no strictly decreasing infinite chain of subgroups of the form  $G_0 \cap H > G_1 \cap H > G_2 \cap H > \dots$ , where the  $G_i$  are  $H$ -definable subgroups of  $G$ .*

*Proof.* By Remark 5, either the rank or the degree decreases at each step.  $\square$

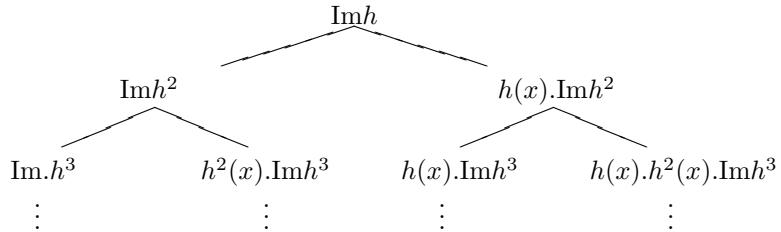
**Corollary 1.8.** *Let  $G$  be a small group,  $g$  a finite tuple,  $H$  subgroup of  $dcl(g)$ , and  $G_i$  a family of  $g$ -definable subgroups of  $G$  indexed by  $I$ . There is a finite subset  $I_0$  of  $I$  such that*

$$\bigcap_{i \in I} G_i \cap H = \bigcap_{i \in I_0} G_i \cap H$$

Another chain condition on images of endomorphisms :

**Proposition 1.9.** *Let  $G$  be a small group and  $h$  a group homomorphism of  $G$ . There exists some integer  $n$  such that  $\text{Im}h^n$  equals  $\text{Im}h^{n+1}$ .*

*Proof.* Suppose that the chain  $(\text{Im}h^n)_{n \geq 1}$  be strictly decreasing. Consider the following tree  $G(x)$



Consider the partial type  $\{x \notin h^{-n}\text{Im}h^{n+1}, n \geq 1\}$ . We call it  $\Phi(x)$ . The sequence  $(h^{-n}\text{Im}h^{n+1})_{n \geq 1}$  is increasing, and each set  $G \setminus h^{-n}\text{Im}h^{n+1}$  is non-empty, so  $\Phi$  is finitely consistent. Let  $b$  be a realization of  $\Phi$  in a saturated model. The graph  $G(b)$  has  $2^\omega$  consistent branches, whence  $S_1(b)$  has cardinal  $2^\omega$ , a contradiction with  $G$  being small.  $\square$

**Corollary 1.10.** *Let  $G$  be a small group and  $h$  a group homomorphism of  $G$ . There exists some integer  $n$  such that  $G$  equals  $\text{Ker}h^n \cdot \text{Im}h^n$ .*

*Proof.* Take  $n$  as in Proposition 1.9, and write  $f$  for  $h^n$ . We have  $\text{Im}f^2 = \text{Im}f$ , so for all  $g \in G$  there exists some element  $g'$  such that  $f(g) = f^2(g')$ . Hence  $f(gf(g')^{-1}) = 1$  and  $gf(g')^{-1} \in \text{Ker}f$ , that is  $g \in \text{Ker}f \cdot \text{Im}f$ .  $\square$

It was shown in [6] that a definable injective homomorphism of a small group is surjective. Note that this follows again from Corollary 1.10.

## 2. SMALL SKEW FIELDS

Recall a result proved in [5] :

**Fact 2.1.** *An infinite small field is algebraically closed.*

From now on, consider an infinite small skew field  $D$ . We begin by analysing elements of finite order.

**Lemma 2.2.** *Let  $a \in D$  an element of order  $n < \omega$ . Then  $a$  is central in  $D$ .*

*Proof.* Either  $D$  has zero characteristic, so  $Z(D)$  is infinite, hence algebraically closed. But  $Z(D)(a)$  is an extension of  $Z(D)$  of degree  $d \leq n$ , whence  $a \in Z(D)$ .

Or  $D$  has positive characteristic. Suppose that  $a$  is not central, then [3, Lemma 3.1.1] there exists  $x$  in  $D$  such that  $xax^{-1} = a^i \neq a$ . If  $x$  has finite order, then all elements in the multiplicative group  $\langle x, a \rangle$  have finite order. Hence  $\langle x, a \rangle$  is commutative [3, Lemma 3.1.3], contradicting  $xax^{-1} \neq a$ . So  $x$  has infinite order. Conjugating  $m$  times by  $x$ , we get  $x^m a x^{-m} = a^{i^m}$ . But  $a$  and  $a^i$  have same order  $n$ , with  $\text{gcd}(n, i) = 1$ . Put  $m = \phi(n)$ . By Fermat's Theorem,  $i^m \equiv 1[n]$ , so  $x^m$  and  $a$  commute. Then  $L = Z(C_D(a, x^m))$  is a definable infinite commutative subfield of  $D$  which contains  $a$ . Let  $L^x$  be  $\{l \in L, x^{-1}lx = l\}$ . This is a proper subfield of  $L$ . Moreover  $1 < [L^x(a) : L^x] \leq n$ . But  $L^x$  is infinite as it contains  $x$ . By Fact 2.1, it is algebraically closed and cannot have a proper extension of finite degree.  $\square$

**Proposition 2.3.** *Every element of  $D$  has a  $n^{\text{th}}$  root for each integer  $n$ .*

*Proof.* Let  $a \in D$ . If  $a$  has infinite order,  $Z(C_D(a))$  is an infinite commutative definable subfield of  $D$ . Hence it is algebraically closed, and  $a$  has an  $n^{\text{th}}$  root in  $Z(C_D(a))$ . Otherwise  $a$  has finite order. According to Lemma 2.2 it is central in  $D$ . Let  $x \in D$  have infinite order. Then  $a \in Z(C_D(a, x))$ , a commutative, infinite, definable, and thus algebraically closed field.  $\square$

*Remark 2.4.* Note that since  $D^\times$  is divisible, it has elements of arbitrary large finite order, which are central by Lemma 2.2. Taking  $D$  omega-saturated, we can suppose  $Z(D)$  infinite.

Let us now show that a small skew field is *connected*, that is to say, has no definable proper subgroup of finite index.

**Proposition 2.5.**  *$D$  is connected.*

*Proof.* Multiplicatively : By Proposition 2.3,  $D^\times$  is divisible so has no subgroup of finite index. Additively : Let  $H$  be a definable subgroup of  $D^+$  of finite index  $n$ . In zero characteristic,  $D^+$  is divisible, so  $n = 1$ . In general, let  $k$  be an infinite finitely generated subfield of  $D$ . Consider a finite intersection  $G = \bigcap_{i \in I} d_i H$  of left

translates of  $H$  by elements in  $k$  such that  $G \cap k$  is minimal ; this exists by the chain condition. By minimality,  $G \cap k = \bigcap_{d \in k} dH \cap k$ , so  $G \cap k$  is a left ideal of  $k$ . Furthermore,  $G$  is a finite intersection of subgroups of finite index in  $D^+$  ; it has therefore finite index in  $D$ . Thus  $G \cap k$  has finite index in  $D \cap k = k$ , and cannot be trivial, so  $G \cap k = k = H \cap k$ . This holds for every infinite finitely generated  $k$ , whence  $H = D$ .  $\square$

Now we look at elements of infinite order.

**Lemma 2.6.**  *$a \in D$  have infinite order. Then  $C_D(a) = C_D(a^n)$  for all  $n > 0$ .*

*Proof.* Clearly  $C_D(a) \leq C_D(a^n)$ . Consider  $L = Z(C_D(a^n))$ . It is algebraically closed by Fact 2.1, but  $L(a)$  is a finite commutative extension of  $L$ , whence  $a \in L$  and  $C_D(a^n) \leq C_D(a)$ .  $\square$

Now suppose that  $D$  is not commutative. We shall look for a commutative centralizer  $C$  and show that the dimension  $[D : C]$  is finite. This will yield a contradiction.

**Lemma 2.7.** *Let  $a \in D$ ,  $t \in D \setminus \text{im}(x \mapsto ax - xa)$  and  $\varphi : x \mapsto t^{-1} \cdot (ax - xa)$ . Then  $D = \text{im}\varphi \oplus \ker\varphi$ . Moreover, if  $k = \text{dcl}(a, t, \bar{x})$ , where  $\bar{x}$  is a finite tuple, then  $k = \text{im}\varphi \cap k \oplus \ker\varphi \cap k$ .*

*Proof.* Let  $K = \ker\varphi = C_D(a)$ . Put  $I = \text{im}\varphi$ ; this is a right  $K$ -vector space, so  $I \cap K = \{0\}$ , since  $1 \in K \cap I$  is impossible by the choice of  $t$ . Consider the morphism

$$\tilde{\varphi} : \begin{array}{ccc} D^+/K & \longrightarrow & D^+/K \\ x & \longmapsto & \varphi(x) \end{array}$$

$\tilde{\varphi}$  is an embedding, and  $D^+/K$  is small ; by Corollary 10,  $\tilde{\varphi}$  is surjective and  $D/K = \tilde{\varphi}(D/K)$ , hence  $D = I \oplus K$ . Now, let  $k = \text{dcl}(a, t, \bar{x})$  where  $\bar{x}$  is a finite tuple of parameters in  $D$ .  $I$  and  $K$  are  $k$ -definable. For all  $\alpha \in k$  there exists a unique couple  $(\alpha_1, \alpha_2) \in I \times K$  such that  $\alpha = \alpha_1 + \alpha_2$ , so  $\alpha_1$  and  $\alpha_2$  belong to  $\text{dcl}(\alpha, a, t) \leq k$ , that is to say  $k = I \cap k \oplus K \cap k$ .  $\square$

**Lemma 2.8.** *For every  $a \notin Z(D)$ , the map  $\varphi_a : x \mapsto ax - xa$  is onto.*

*Proof.* Suppose  $\varphi_a$  not surjective. Let  $t \notin \text{im}\varphi_a$ , and  $k = \text{dcl}(t, a, \bar{x})$  be a non commutative subfield of  $D$  for some finite tuple  $\bar{x}$ . Consider the morphism

$$\varphi : \begin{array}{ccc} D^+ & \longrightarrow & D^+ \\ x & \longmapsto & t^{-1} \cdot (ax - xa) \end{array}$$

Set  $H = \text{im}\varphi$ , and  $K = C_D(a) = \ker\varphi$ . By Lemma 2.7 we get  $k = H \cap k \oplus K \cap k$ . Let  $N = \bigcap_I a_i H$  be a finite intersection of left-translates of  $H$  by elements in  $k$ , such that  $N \cap k$  be minimal. We have

$$N \cap k = \bigcap_{i \in I} a_i H \cap k = \bigcap_{d \in k} dH \cap k,$$

so  $N \cap k$  is a left ideal. Moreover,  $H \cap k$  is a right  $K \cap k$  vector-space of codimension 1. Then  $N \cap k$  has codimension at most  $n = |I|$ . If  $N \cap k = k$ , then  $H \cap k = k$ , whence  $K \cap k = \{0\}$ , a contradiction. So  $N \cap k$  is trivial and,  $k$  is a  $K \cap k$ -vector space of dimension at most  $n$ . By [2, Corollary 2 p.49] we get  $[k : K \cap k] = [Z(k)(a) : Z(k)]$ . But  $Z(k) = Z(C_D(k)) \cap k$  with  $Z(C_D(k))$  algebraically closed. Note that every

element of  $k$  commutes with  $Z(C_D(k))$ , so  $a \in Z(k)$ , which is absurd if we add  $b \notin C_D(a)$  in  $k$ .  $\square$

**Theorem 2.9.** *A small field in non-zero characteristic is commutative.*

*Proof.* Let  $a \in D$  be non-central, and let us show that  $x \mapsto ax - xa$  is not surjective. Otherwise there exists  $x$  such that  $ax - xa = a$ , hence  $axa^{-1} = x + 1$ . We would then have  $a^p x a^{-p} = x + p = x$ , and  $x \in C_D(a^p) \setminus C_D(a)$ , a contradiction with Lemma 2.2.  $\square$

### 3. OPEN PROBLEMS

**3.1. Zero characteristic.** Note that we just use characteristic  $p$  in proof of theorem 19 to show that there exist  $a \notin Z(D)$  such that  $x \mapsto ax - xa$  is not surjective. Thus questions 1 and 2 are equivalent :

**Question 1.** Is a small skew field  $D$  of zero characteristic commutative ?

**Question 2.** Is every  $x \mapsto ax - xa$  surjective onto  $D$  for  $a \notin Z(D)$  ?

**3.2. Weakly small fields.** Weakly small structures have been introduced to give a common generalization of small and minimal structures. Minimal fields are known to be commutative.

**Definition 3.1.** A structure  $M$  is *weakly small* if for all finite set of parameters  $A$  in  $M$ , there are only countably many 1-types over  $A$ .

**Question 3.** Is a weakly small field algebraically closed ?

**Question 4.** Is a weakly small skew field commutative ?

Note that a positive answer to question 3 implies a positive answer to question 4, as all the proves given still hold. In general, one can prove divisibility and connectivity of an infinite weakly small field.

**Proposition 3.2.** *Every element in an infinite weakly small field  $D$  has a  $n^{\text{th}}$  root for all  $n \in \omega$ .*

*Proof.* Let  $a \in D$ . In zero characteristic,  $Z(C_D(a))$  is an infinite definable commutative subfield of  $D$ , hence weakly small. According to [5, Proposition 9], every element in  $Z(C_D(a))$  has a  $n^{\text{th}}$  root. In positive characteristic, we can reason as in the proof of Lemma 12, and find  $y$  with infinite order which commutes with  $a$ . Apply one more time [5, Proposition 9] to  $Z(C_D(a, y))$ .  $\square$

So  $D^\times$  is divisible and the proof of Proposition 2.5 still holds.

**Proposition 3.3.** *An infinite weakly small field is connected.*

## REFERENCES

- [1] Gregory Cherlin and Saharon Shelah, *Superstable fields and groups*, Annals of Mathematical Logic **18**, 1980.
- [2] Paul M. Cohn, Skew fields constructions, Cambridge University Press, 1977.
- [3] Israel N. Herstein, Noncommutative Rings, The Mathematical Association of America, fourth edition, 1996.
- [4] Anand Pillay, Thomas Scanlon and Frank O. Wagner, *Supersimple fields and division rings*, Mathematical Research Letters **5**, 473–483, 1998.
- [5] Frank O. Wagner, *Small fields*, The Journal of Symbolic Logic **63**, 3, 1998.
- [6] Frank O. Wagner, *Small stable groups and genericity*, The Journal of Symbolic Logic **56**, 1991.

*Current address*, Cédric Milliet: Université de Lyon, Université Lyon 1, Institut Camille Jordan UMR 5208 CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

*E-mail address*, Cédric Milliet: [milliet@math.univ-lyon1.fr](mailto:milliet@math.univ-lyon1.fr)