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Contrôle continu# 2
– Éléments de correction –

Exercice# 1. (4p.)SoitH unespacedeHilbert réel, séparable, dedimension infinie etdebasehilbertienne
(en)n≥1. Montrer l’égalité de Parseval

||x||2 =
∑
n≥1

⟨x, en⟩2, ∀x ∈ H.

Solution. Par définition d’une base hilbertienne, la suite (en)n≥1 est orthonormée et, pour tout x ∈ H,
nous avons

x =
∑
n≥1

⟨x, en⟩en = lim
N→∞

∑
1≤n≤N

⟨x, en⟩en. (1)

Par ailleurs, la famille (en)1≤n≤N étant orthonormée, le théorème de Pythagore donne∣∣∣∣∣
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=
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(λn)
2, ∀λ1, . . . , λN ∈ R. (2)

En utilisant (1), la continuité deH ∋ x 7→ ||x||, et (2), nous obtenons

||x||2 =
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= lim
N→∞

∑
1≤n≤N

⟨x, en⟩2

=
∑
n≥1

⟨x, en⟩2.

Exercice# 2. SoitH un espace de Hilbert réel. Soit F une partie non-vide deH. Montrer que :
a) (4 p.) F⊥ est un sous-espace fermé deH.

b) (5 p.) Vect (F )
⊥
= F⊥.

c) (2 p.) (F⊥)⊥ = Vect (F ).

Solution. a) Soient x1, x2 ∈ F⊥ et λ ∈ R. Par linéarité du produit scalaire par rapport à sa première
variable, nous avons

⟨x1 + λx2, y⟩ = ⟨x1, y⟩+ λ⟨x2, y⟩ = 0, ∀ y ∈ F,

d’où x1 + λx2 ∈ F⊥ et F⊥ est un sous-espace vectoriel deH.
Par ailleurs, soient (xn) ⊂ F⊥ et x ∈ H tels que xn → x. En utilisant la continuité du produit

scalaire par rapport à sa première variable, nous avons

⟨x, y⟩ = ⟨lim
n

xn, y⟩ = lim
n
⟨xn, y⟩ = 0, ∀ y ∈ F.

Il s’ensuit que x ∈ F⊥, et donc F⊥ est fermé.
b) Clairement, si ∅ ̸= A ⊂ B ⊂ H, alors B⊥ ⊂ A⊥. En utilisant cette observation avec A = F et
B = Vect (F ), nous obtenons Vect (F )⊥ ⊂ F⊥.



Pour l’inclusion opposée, soit x ∈ F⊥. Montrons dans un premier temps que x ∈ [Vect (F )]⊥. En
effet, si y ∈ Vect (F ), il existe : un entierN , des scalaires λ1, . . . , λN ∈ R et des vecteurs y1, . . . , yN ∈ F
tels que y =

∑
1≤n≤N λnyn. La linéarité du produit scalaire par rapport à sa deuxième variable donne

⟨x, y⟩ = ⟨x,
∑

1≤n≤N

λnyn⟩ =
∑

1≤n≤N

λn⟨x, yn⟩ = 0.

Il s’ensuit que x ∈ Vect (F )⊥.
Montrons maintenant que x ∈ Vect (F )⊥. Si y ∈ Vect (F ), il existe une suite (yn)n≥1 ⊂ Vect (F )

telle que yn → y. La continuité du produit scalaire par rapport à sa deuxième variable et le fait que
x ∈ [Vect (F )]⊥ donnent

⟨x, y⟩ = ⟨x, lim
n

yn⟩ = lim
n
⟨x, yn⟩ = 0,

d’où la conclusion.
c) Nous utilisons le fait que, siG ⊂ H est un sous-espace vectoriel fermé deH, alors (G⊥)⊥ = G. Rap-
pelons également que l’adhérence d’un sous-espace vectoriel de H est encore un sous-espace vectoriel
deH. En appliquant cette égalité àG = Vect (F ) et en utilisant la question b), nous obtenons

(F⊥)⊥ = (Vect (F )⊥)⊥ = Vect (F ).

Exercice# 3. (5 p.) Soit

φ : ℓ2 → R, φ((an)n≥0) =
∑
n≥0

an
n+ 1

, ∀ (an)n≥0 ∈ ℓ2.

Montrer que la série définissant φ((an)n≥0) est convergente, et que φ est une application linéaire et
continue sur ℓ2.

Solution. Dans ce qui suit, nous identifions une suite (an)n≥0 à la fonction f : N → R, f(n) = an, ∀n.
Rappelons que ℓ2 = L 2(N,P(N), µ), où µ est la mesure de comptage sur N. Avec l’identification

ci-dessus, nous avons (an)n≥0 ∈ ℓ2 ⇐⇒ f ∈ L 2(N,P(N), µ), et par ailleurs ||(an)n≥0||ℓ2 = ||f ||2.
Le critère de Riemannmontre que la suite (1/(n+1))n≥0 appartient à ℓ2. Soit g ∈ L 2(N,P(N), µ)

la fonction associée à cette suite. Ainsi, la suite (an/(n+ 1))n≥0 s’identifie à la fonction fg.
L’inégalité de Hölder donne fg ∈ L 1(N,P(N), µ). En se rappelant le lien entre série et intégrale

pour les fonctions deL 1(N,P(N), µ), et la définition du produit scalaire dansL 2, nous obtenons que
φ est bien définie et

φ((an)n≥0) =

∫
N
fg dµ = ⟨f, g⟩. (3)

L’identité (3), la linéarité de l’identification (an)n≥0 7→ f et la linéarité du produit scalaire par rapport
à sa première variable impliquent la linéarité de φ.

Par ailleurs, l’inégalité de Cauchy-Schwarz donne

|φ((an)n≥0)| = |⟨f, g⟩| ≤ ||f ||2||g||2 = ||g||2||(an)n≥0||ℓ2 , (4)

d’où la continuité de φ comme application linéaire sur ℓ2.
(De manière alternative, à partir de la preuve de la validité de (3), on peut invoquer le théorème de

Riesz, qui affirme que toute fonctionnelle de la forme (3) est linéaire et continue.)
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