Contrôle terminal Le 26 mai 2023 – durée 90 minutes

Exercice # 1. Montrer que $\ell^2 \subset \ell^3$ et que $||x||_3 \leq ||x||_2$, $\forall x \in \ell^2$.

Exercice # **2.** Soit (X, \mathcal{T}, μ) un espace probabilisé. (Donc $\mu(X) = 1$.) Montrer que, pour toute fonction mesurable $f: X \to \mathbb{R}$, nous avons $\|f\|_1 \le \|f\|_2$.

Exercice # 3. Soit $H = L^2(\Omega, \mathcal{T}, \mu)$ (les fonctions sont supposées à valeurs dans \mathbb{R}). On considère l'ensemble $C = \{ f \in H : f \geq 0 \text{ p. p.} \}$.

- a) Montrer que C est un convexe fermé.
- b) Montrer que, si $f \in H$, alors $P_C(f) = f\chi_{\{f \geq 0\}}$, où $\{f \geq 0\} = \{x \in X : f(x) \geq 0\}$.

Exercice # 4. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique, impaire et telle que $f(x) = \pi - x \sin [0, \pi]$. En utilisant la série de Fourier de f, calculer $\sum_{n \ge 1} \frac{\sin n}{n}$.

Exercice # **5.** Nous travaillons dans $]0,\infty[$ et dans $]0,\infty[^2$, chacun muni de sa tribu borélienne et de la mesure de Lebesgue. Soient $f,g:]0,\infty[\to [0,\infty[$ deux fonctions boréliennes et positives.

Nous admettons les identités suivantes :

$$\int_0^\infty \frac{\sqrt{x}}{(x+y)\sqrt{y}} \, dy = \int_0^\infty \frac{\sqrt{y}}{(x+y)\sqrt{x}} \, dx = \pi, \, \forall \, x > 0. \tag{1}$$

En utilisant : (i) l'identité

$$\frac{f(x)g(y)}{x+y} = \frac{f(x)\sqrt[4]{x}}{\sqrt{x+y}\sqrt[4]{y}} \times \frac{g(y)\sqrt[4]{y}}{\sqrt{x+y}\sqrt[4]{x}}, \ \forall \ x,y>0 \ ;$$

(ii) l'inégalité de Cauchy-Schwarz sur $]0,\infty[^2;$ (iii) le théorème de Tonelli; (iv) l'identité (1), montrer l'inégalité de Hilbert-Schur

$$\int_{[0,\infty]^2} \frac{f(x)g(y)}{x+y} \, dx dy \le \pi \|f\|_2 \|g\|_2. \tag{2}$$

Bonus. Soient $1 < p, q < \infty$ deux exposants conjugués. En utilisant les identités

$$\int_0^\infty \frac{x^{1/q}}{(x+y)y^{1/q}} \, dy = \int_0^\infty \frac{y^{1/p}}{(x+y)x^{1/p}} \, dx = \frac{\pi}{\sin(\pi/p)}, \forall x > 0,$$

$$\frac{f(x)g(y)}{x+y} = \frac{f(x)x^{1/(pq)}}{(x+y)^{1/p}y^{1/(pq)}} \times \frac{g(y)y^{1/(pq)}}{(x+y)^{1/q}x^{1/(pq)}}, \forall x, y > 0,$$

l'inégalité de Hölder avec exposants p et q et le théorème de Tonelli, établir l'inégalité de Hardy-Riesz

$$\int_{]0,\infty[^2} \frac{f(x)g(y)}{x+y} \, dx dy \le \frac{\pi}{\sin(\pi/p)} \|f\|_p \|g\|_q. \tag{3}$$