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Feuille de TD # 1
NORMES, ESPACES DE BANACH

Exercice # 1. (Linégalité de Holder vue comme une inégalité de convexité) Soit 1 < p < oo et
soit ¢ le conjugué de p. On consideére I'inégalité
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Ramener la preuve de (1) au cas particulier a; €]0, 00,V j, b; € R,V j, Z?:l (a;)? = 1.

Dans ce cas particulier, obtenir (1) via I'inégalité de Jensen appliquée a la fonction ®(¢) =
[t]7,Vt € R.

Exercice # 2. (Autour de I'inégalité de Minkowski) Soit (X, .7, i) un espace mesuré. Soit 1 <
p < Q.
Soit @ : [0, co[— R une fonction convexe croissante telle que ¢(0) = 0.

Pour f : X — C mesurable, soit

17l = mf{A =05 [ a1 dus 1}

(avec la convention inf () = o0).

1.
2.
3.

5.

Montrer que || || vérifie 'inégalité triangulaire.
Retrouver l'inégalité de Minkowski dans (C", || [,), ¢ et LP(X).

S'il existe une constante finie C telle que ®(2¢) < C'®(t), V¢ > 0, montrer que

0< ||f] < oo —> /){@(H) dp=1.

Si, de plus, ® est strictement convexe, strictement croissante , caractériser les fonctions
mesurables f, g : X — Rtelles que

IF + gl = 111+ llgl| < oc.

Obtenir le cas d’égalité dans 'inégalité de Minkowski dans L?(X).

Soit ¢ le conjugué de p.

1.

Montrer que

171, = sup { [ s ne 1), < 1}, v f e IM(X).
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2. Interpréter ce résultat en terme de norme de forme linéaire.

3. Retrouver encore une fois I'inégalité de Minkowski.

Exercice # 3. (Espace de Banach de fonctions lipschitziennes)
1. Soit (X, d) un espace métrique non-vide. On fixe un point zy € X.
Soit
flx) = fly
Il =sup {LOZIO oy e x o 2] e pocl vr s x o R

Soit
Lipy(X,R) :={f: X = R; f(zg) =0et HfHLip < 00}.

Montrer que (Lipy (X, R), || [|;,) est un espace de Banach.

2. Plus généralement, soit (Y, V) un espace vectoriel normé.
Soit

||.fHLip::Sup{ d(z y;f ;x,yGX,x#y}e[O,oo],Vf:X%Y.
Soit
Lipg(X,Y) :={f: X =Y f(z) = Oet||fll;, < oo}

S1Y est un espace de Banach, montrer que (Lipy (X, Y), || [|;,) est un espace de Banach.

3. Si X etY sontdesespacesvectoriels normés munis des distances induites par les normes
respectives et o = 0, montrer que .Z (X, Y') est un sous-espace fermé de Lip, (X, Y).

Exercice # 4. (Un cas de non densité de C') Avec les notations de l'exercice précédent, soient
X =[—1,1] etxzy = 0. Soit

C(}([_lv 1]’R) = {f S C’l([—l, 1];R) ) f(O) = 0}'

Montrer que Cj ([—1, 1], R) nest pas dense dans Lip, ([—1, 1], R). Plus spécifiquement, mon-
trer que [—1,1] >z = f(2) := |z] satisfait || f — g[l;;, > 1, Vg € Co([~1,1],R).

Exercice # 5. (Norme a poids) Soit « : [0, 1] — [0, 1]. Soit £ := C(]0, 1], R). On définit
| f]l :== sup a(x)|f(x)|, Vf € E, etl'ensemble B := {x € [0,1]; a(x) > 0}.

z€0,1]

Montrer que | || est une norme si et seulement B = [0, 1].

Exercice # 6. (Espace de Banach de fonctions holomorphes) On travaille avec la mesure de Le-
besgue sur le disque unité D de C. Pour 1 < p < o0, soit

o, = Hol (D) N Z*(D),

muni de la norme || [ .



1. Soient K un compactde D et R tel que
p:=max{|z]; z€ K} <R < 1.

Montrer que

1

TEI < Brr—RmE =)

Ifl,, V2 € K,V f €

2. Endéduire que %7, est un espace de Banach.

Exercice # 7. (Fonctions qui s’annulent a l'infini) Soit (X, d) un espace métrique o-compact.
(C’est-a-dire, il existe une suite (/) de compacts de X tels que U, ; = X. Exemples im-
portants : R™ ou un ouvert de R™.) Soit

Co(X):={feC(X,C); Ve >0, Fjtelque|f(z)| <esiz & K,},

muni de la norme || ||__. (Notons que la définition dépend, a priori, du choix de la suite (/;).)

1. Montrer que

Co(R") C{f e C(R",C); H lHim f(z) =0},
T|—0o0
avec égalité si la suite (K) est croissante et U; K; = R™.
2. Si€)estun ouvert borné de R", montrer que

Co() € {f € C(Q,C); lim f(z)=0},

d(z,0Q)—0

avec égalité sila suite (K;) est croissante et U; K; = (2.

3. Montrer que Cp(X) est un espace de Banach.

Exercice # 8. (Un espace de Banach ne peut avoir une base dénombrable) Le but de cet exercice
estde montrer que, si (£, || ||) estun espace de Banach, alors F ne peut avoir une base algébrique
dénombrable. (Rappel : un ensemble est dénombrable s'il est en correspondance bijective avec
N*.) Preuve par 'absurde : supposons que F a une base algébrique {e, },>1, C’est-a-dire que

tout élément = de F s’écrit exactement d’'une fagon sous la forme z = g Ter, avec un nombre
n>1
fini de scalaires x;, non-nuls.

Enutilisant cette hypothése, nous allons construire une suite de Cauchy de F qui ne converge
pas;la contradiction obtenue va achever la preuve.

1. Posons E,, := Vect{ey,...,e,}, ¥Vn > 1. Enutilisant le lemme de Riesz, construire une
suite (f,,)n>1 telle que
@ fn€E,Vn>1.
® |ful =1,Vn > 1.
© [[foss —yl >1,Vn>1,Vy € E,.
(d) {fi,..., fn}estunebasede E,,,Vn > 1.



(e {fn}n>1estunebasede E.

2. Onpose x, = Z 37" f, Vn > 1. Montrer que (z,),>1 est une suite de Cauchy.
1<k<n

3. Soientm > lety € E,,. Montrer que |z, Vn>m+1.

—vlz 5
4. Conclure.

Exercice # 9. (Isométries)
Dans cette partie, on travaille dans R” muni de la norme euclidienne et du produit scalaire
standard.

1. Soit f(x) := Az + b, ol A est une matrice orthogonale et b € R". Montrer que f est une
isométrie, cest-a-dire || f(x) — f(y)|| = ||z — y|,V =,y € R".

2. On se propose d’établir la réciproque du résultat ci-dessus.

(@) Soit f : R" — R" une isométrie telle que f(0) = 0. Montrer que (f(x), f(y)) =
(x,y),V z,y € R™.

(b) En déduire que f envoie la base canonique {¢;} sur une base orthonormée { f;}.
(c) Montrer que f(z) = Z(x, e;) fi- En déduire que f(x) = Ax, avec A orthogonale.
(d) En déduire la réciproque de 1.

Dans cette partie, on travaille dans un espace normé E. Soit f : £ — E une isométrie
bijective telle que f(0) = 0. On se propose de montrer que f est linéaire (théoréme de Mazur-
Ulam).

1. On suppose, de plus, que () f((z +v)/2) = (f(x) + f(y))/2,Vz,y € E. Montrer que
f estlinéaire. Ainsi, il suffit de montrer (*).

2. Dans cette partie, nous présentons un schéma itératif permettant de définir, pour z,y €
E,le point milieu (x+y)/2 en utilisant uniquement la norme. Cette construction est ins-
pirée par le fait que, dans un espace préhilbertien ou, plus généralement dans un espace
uniformément convexe, nous avons 'équivalence

2=@+y)/2 = |z =z =]z =yl = lz—yl/2.
On fixe x,y € E. On définit, par récurrence,
Hy={ze E;|z—a| =z -yl = [z —v]/2}
et, pourn > 2,
H,:={z€ H,_1;||z —t| <[diam (H,_1)]/2 pourtoutt € H, 1}.

Montrer que :
@ diam H, < 27|z — 9.
(b) H, estinvariant par l'applicationz — z +y — z.
(c) le point (z + y)/2 est dans tous les H,,.

@ (VHo={(z+y)/2}.



3. On définit, de méme, des ensembles K, mais a partir de f(x) et f(y) aulieude z et y.
Montrer que f(H,) = K,,. Conclure.

Exercice # 10. (Projection sur un convexe fermé de L?) Nous travaillons dans un espace mesuré
(X, 7, ) etavec 1 < p < oo. Le but de cet exercice est de montrer le résultat suivant.

Théoréme. (Riesz) Soit C' C LP(X) un convexe fermé non-vide. Alors pour toute f € LP(X)il
existe une et une seule g € C'telle que

1f = gll, < If =2, VheC.
Dans cette partie, on établit le résultat suivant : sie > 0, il existe § > 0 tel que :
€ LX), = Lo € POOL T + gl + 17 — gl <240 = Jgl, <& @
1. Soit A > 0. Montrer quil existe C €]0, 2] tel que
teR, [t > A = 1+t 4+ |1 -t —2>C,|tP.

|1 +¢P+ |1 —t]P—2
2P

(Indication : considérer la fonction ¢ —

2. Endéduire que

(f +9P+ 1 —gP —2IfP) 2 s [ o]

/{IGX Plg(@)|ZALf ()]} {zeX;[g(2)|2Alf(2)[}

3. Conclure, en choisissant convenablement \ et d.

4. Proposer une variante de (2) lorsque 'on ne suppose plus || f||,, = 1.

Dans cette partie, on montre le théoreme de Riesz.
1. Obtenir la conclusionsi f € C.
2. Sif ¢ C,soit(f;) C Ctellequel|f — f;]|, — d(f,C). Montrer que (f;) est une suite

de Cauchy. On pourra utiliser la question 4 de la partie | A |etle fait que (f; + fi)/2 € C,
Vi, k.

3. Conclure.



