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Normes, espaces de Banach

Exercice# 1. (L’inégalité de Hölder vue comme une inégalité de convexité) Soit 1 < p < ∞ et

soit q le conjugué de p. On considère l’inégalité∣∣∣∣∣
n∑

j=1

ajbj

∣∣∣∣∣ ≤
(

n∑
j=1

|aj|p
)1/p( n∑

j=1

|bj|q
)1/q

, ∀ a1, . . . , an, b1 . . . , bn ∈ C. (1)

1. Ramener la preuve de (1) au cas particulier aj ∈]0,∞[, ∀ j, bj ∈ R, ∀ j,
∑n

j=1(aj)
p = 1.

2. Dans ce cas particulier, obtenir (1) via l’inégalité de Jensen appliquée à la fonctionΦ(t) =
|t|q, ∀ t ∈ R.

Exercice# 2. (Autour de l’inégalité de Minkowski) Soit (X,T , µ) un espace mesuré. Soit 1 ≤
p < ∞.

A SoitΦ : [0,∞[→ R une fonction convexe croissante telle queΦ(0) = 0.
Pour f : X → Cmesurable, soit

||f || := inf

{
λ > 0 ;

∫
X

Φ(|f |/λ) dµ ≤ 1

}
(avec la convention inf ∅ = ∞).

1. Montrer que || || vérifie l’inégalité triangulaire.
2. Retrouver l’inégalité de Minkowski dans (Cn, || ||p), ℓp etLp(X).

3. S’il existe une constante finieC telle queΦ(2t) ≤ CΦ(t), ∀ t ≥ 0, montrer que

0 < ||f || < ∞ =⇒
∫
X

Φ

(
|f |
||f ||

)
dµ = 1.

4. Si, de plus,Φ est strictement convexe, strictement croissante , caractériser les fonctions
mesurables f, g : X → R telles que

||f + g|| = ||f ||+ ||g|| < ∞.

5. Obtenir le cas d’égalité dans l’inégalité de Minkowski dansLp(X).

B Soit q le conjugué de p.

1. Montrer que

||f ||p = sup

{∫
X

fh dµ ; h ∈ Lq(X), ||h||q ≤ 1

}
, ∀ f ∈ Lp(X).
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2. Interpréter ce résultat en terme de norme de forme linéaire.

3. Retrouver encore une fois l’inégalité de Minkowski.

Exercice# 3. (Espace de Banach de fonctions lipschitziennes)
1. Soit (X, d) un espace métrique non-vide. On fixe un point x0 ∈ X.

Soit

||f ||Lip := sup

{
|f(x)− f(y)|

d(x, y)
; x, y ∈ X, x ̸= y

}
∈ [0,∞], ∀ f : X → R.

Soit

Lip0(X,R) := {f : X → R ; f(x0) = 0 et ||f ||Lip < ∞}.

Montrer que (Lip0(X,R), || ||Lip) est un espace de Banach.
2. Plus généralement, soit (Y,N) un espace vectoriel normé.

Soit

||f ||Lip := sup

{
N(f(x)− f(y))

d(x, y)
; x, y ∈ X, x ̸= y

}
∈ [0,∞], ∀ f : X → Y.

Soit

Lip0(X, Y ) := {f : X → Y ; f(x0) = 0 et ||f ||Lip < ∞}.

Si Y est un espace de Banach,montrer que (Lip0(X, Y ), || ||Lip) est un espace de Banach.
3. SiX etY sont des espaces vectoriels normésmunis des distances induites par les normes

respectives et x0 = 0, montrer queL (X, Y ) est un sous-espace fermé de Lip0(X, Y ).

Exercice# 4. (Un cas de non densité de C1
) Avec les notations de l’exercice précédent, soient

X = [−1, 1] et x0 = 0. Soit

C1
0([−1, 1],R) := {f ∈ C1([−1, 1];R) ; f(0) = 0}.

MontrerqueC1
0([−1, 1],R)n’estpasdensedansLip0([−1, 1],R). Plus spécifiquement,mon-

trer que [−1, 1] ∋ x 7→ f(x) := |x| satisfait ||f − g||Lip ≥ 1, ∀ g ∈ C1
0([−1, 1],R).

Exercice# 5. (Norme à poids) Soit α : [0, 1] → [0, 1]. SoitE := C([0, 1],R). On définit

||f || := sup
x∈[0,1]

α(x) |f(x)|, ∀ f ∈ E, et l’ensembleB := {x ∈ [0, 1] ; α(x) > 0}.

Montrer que || || est une norme si et seulementB = [0, 1].

Exercice# 6. (Espace de Banach de fonctions holomorphes) On travaille avec la mesure de Le-
besgue sur le disque unitéD deC. Pour 1 ≤ p ≤ ∞, soit

Ap := Hol (D) ∩ L p(D),

muni de la norme || ||p.
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1. SoientK un compact deD etR tel que

ρ := max{|z|; z ∈ K} < R < 1.

Montrer que

|f(z)| ≤ 1

[2π(1−R)]1/p(R− ρ)
||f ||p, ∀ z ∈ K, ∀ f ∈ Ap.

2. En déduire queAp est un espace de Banach.

Exercice # 7. (Fonctions qui s’annulent à l’infini) Soit (X, d) un espace métrique σ-compact.
(C’est-à-dire, il existe une suite (Kj) de compacts de X tels que ∪jKj = X. Exemples im-
portants :Rn

ou un ouvert deRn
.) Soit

C0(X) := {f ∈ C(X,C) ; ∀ ε > 0, ∃ j tel que |f(x)| < ε si x ̸∈ Kj},

muni de la norme || ||∞. (Notons que la définition dépend, a priori, du choix de la suite (Kj).)

1. Montrer que

C0(Rn) ⊆ {f ∈ C(Rn,C) ; lim
||x||→∞

f(x) = 0},

avec égalité si la suite (Kj) est croissante et∪jK̊j = Rn
.

2. SiΩ est un ouvert borné deRn
, montrer que

C0(Ω) ⊆ {f ∈ C(Ω,C) ; lim
d(x,∂Ω)→0

f(x) = 0},

avec égalité si la suite (Kj) est croissante et∪jK̊j = Ω.

3. Montrer queC0(X) est un espace de Banach.

Exercice# 8. (Un espace de Banach ne peut avoir une base dénombrable) Le but de cet exercice
est demontrer que, si (E, || ||) est un espace deBanach, alorsE nepeut avoir une base algébrique
dénombrable. (Rappel : un ensemble est dénombrable s’il est en correspondance bijective avec
N∗
.) Preuve par l’absurde : supposons que E a une base algébrique {en}n≥1, c’est-à-dire que

tout élémentxdeE s’écrit exactement d’une façon sous la formex =
∑
n≥1

xkek, avec unnombre

fini de scalaires xk non-nuls.

Enutilisant cettehypothèse,nousallons construireunesuitedeCauchydeE quineconverge
pas; la contradiction obtenue va achever la preuve.

1. PosonsEn := Vect {e1, . . . , en}, ∀n ≥ 1. En utilisant le lemme de Riesz, construire une
suite (fn)n≥1 telle que

(a) fn ∈ En, ∀n ≥ 1.

(b) ||fn|| = 1, ∀n ≥ 1.

(c) ||fn+1 − y|| ≥ 1, ∀n ≥ 1, ∀ y ∈ En.

(d) {f1, . . . , fn} est une base deEn, ∀n ≥ 1.
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(e) {fn}n≥1 est une base deE.

2. On pose xn :=
∑

1≤k≤n

3−kfk, ∀n ≥ 1. Montrer que (xn)n≥1 est une suite de Cauchy.

3. Soientm ≥ 1 et y ∈ Em. Montrer que ||xn − y|| ≥ 1

2 · 3m+1
,∀n ≥ m+ 1.

4. Conclure.

Exercice# 9. (Isométries)
A Dans cette partie, on travaille dansRn

muni de la norme euclidienne et du produit scalaire

standard.

1. Soit f(x) := Ax+ b, oùA est unematrice orthogonale et b ∈ Rn
. Montrer que f est une

isométrie, c’est-à-dire ∥f(x)− f(y)∥ = ∥x− y∥, ∀ x, y ∈ Rn
.

2. On se propose d’établir la réciproque du résultat ci-dessus.

(a) Soit f : Rn → Rn
une isométrie telle que f(0) = 0. Montrer que ⟨f(x), f(y)⟩ =

⟨x, y⟩, ∀ x, y ∈ Rn
.

(b) En déduire que f envoie la base canonique {ei} sur une base orthonormée {fi}.
(c) Montrer que f(x) =

∑
⟨x, ei⟩fi. En déduire que f(x) = Ax, avecA orthogonale.

(d) En déduire la réciproque de 1.

B Dans cette partie, on travaille dans un espace normé E. Soit f : E → E une isométrie

bijective telle que f(0) = 0. On se propose de montrer que f est linéaire (théorème de Mazur-
Ulam).

1. On suppose, de plus, que (*) f((x + y)/2) = (f(x) + f(y))/2, ∀x, y ∈ E. Montrer que
f est linéaire. Ainsi, il suffit de montrer (*).

2. Dans cette partie, nous présentons un schéma itératif permettant de définir, pour x, y ∈
E, le pointmilieu (x+y)/2 enutilisant uniquement la norme.Cette construction est ins-
pirée par le fait que, dans un espace préhilbertien ou, plus généralement dans un espace

uniformément convexe, nous avons l’équivalence

z = (x+ y)/2 ⇐⇒ ||z − x|| = ||z − y|| = ||x− y||/2.

On fixe x, y ∈ E. On définit, par récurrence,

H1 := {z ∈ E ; ||z − x|| = ||z − y|| = ||x− y||/2}

et, pour n ≥ 2,

Hn := {z ∈ Hn−1 ; ||z − t|| ≤ [diam (Hn−1)]/2 pour tout t ∈ Hn−1}.

Montrer que :

(a) diamHn ≤ 21−n||x− y||.
(b) Hn est invariant par l’application z 7→ x+ y − z.

(c) le point (x+ y)/2 est dans tous lesHn.

(d)

⋂
Hn = {(x+ y)/2}.
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3. On définit, de même, des ensemblesKn, mais à partir de f(x) et f(y) au lieu de x et y.
Montrer que f(Hn) = Kn. Conclure.

Exercice# 10. (Projection sur un convexe fermé deLp
) Nous travaillons dans un espacemesuré

(X,T , µ) et avec 1 < p < ∞. Le but de cet exercice est de montrer le résultat suivant.

Théorème. (Riesz) SoitC ⊂ Lp(X) un convexe fermé non-vide. Alors pour toute f ∈ Lp(X) il
existe une et une seule g ∈ C telle que

||f − g||p ≤ ||f − h||p, ∀h ∈ C.

A Dans cette partie, on établit le résultat suivant : si ε > 0, il existe δ > 0 tel que :

[f ∈ Lp(X), ||f ||p = 1, g ∈ Lp(X), ||f + g||pp + ||f − g||pp < 2 + δ] =⇒ ||g||p < ε. (2)

1. Soit λ > 0. Montrer qu’il existeCλ ∈]0, 2] tel que

[t ∈ R, |t| ≥ λ] =⇒ |1 + t|p + |1− t|p − 2 ≥ Cλ|t|p.

(Indication : considérer la fonction t 7→ |1 + t|p + |1− t|p − 2

|t|p
.)

2. En déduire que∫
{x∈X ; |g(x)|≥λ|f(x)|}

(|f + g|p + |f − g|p − 2|f |p) ≥ Cλ

∫
{x∈X ; |g(x)|≥λ|f(x)|}

|g|p.

3. Conclure, en choisissant convenablement λ et δ.

4. Proposer une variante de (2) lorsque l’on ne suppose plus ||f ||p = 1.

B Dans cette partie, on montre le théorème de Riesz.

1. Obtenir la conclusion si f ∈ C.

2. Si f ̸∈ C, soit (fj) ⊂ C telle que ||f − fj||p → d(f, C). Montrer que (fj) est une suite

de Cauchy. On pourra utiliser la question 4 de la partie A et le fait que (fj + fk)/2 ∈ C,
∀ j, k.

3. Conclure.
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