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Some Sobolev spaces of special interest

W s,p(Ω; S1) = {u ∈W s,p(Ω;R2); |u| = 1}
Typically, Ω = B(0,1) ⊂ Rn or Sn

Example #1

min{Eε(U); U : G→ C, tr U = u : Ω := ∂G→ S1},

with
Eε(U) =

1
2

∫
G

[|∇U|2 + 1/(2ε2)(1− |U|2)2]

and G ⊂ Rn smooth bounded open set
In this case, the “natural” space for u is H1/2(Ω;S1)



Some Sobolev spaces of special interest

Example #2
Let Uε minimize Eε
Assume n ≥ 3
Then Uε ⇀ U as ε→ 0, where U ∈W 1,n/(n−1)(G; S1) (Bethuel,
Orlandi, Smets 2003)
In this case, the “natural” space for U is W 1,n/(n−1)(G;S1)



Some Sobolev spaces of special interest

Example #3
In micromagnetism, magnetization is described by a function
m : Ω→ S2

In different asymptotic regimes (in thin ferromagnetic films),
S1-valued maps arise as limits and describe Néel walls, Bloch
lines, boundary vortices, mesoscopic Landau states...(see the
mémoire HDR Ignat 2011)
In this setting, “natural” function spaces are BV(Ω′; S1),
W 1,1(Ω′; S1), H1/2(Ω′;S1), W 1/p,p(Ω′;S1), 1 < p <∞



“Regular” Sobolev spaces

A space is “regular” if the following holds:
Each map u ∈W s,p(Ω;S1) can be written as u = eıϕ, with
ϕ ∈W s,p(Ω;R), and ϕ is controlled by u

Theorem (Bourgain, Brezis, M. 2000, M., Molnar 2014)

When n = 1, all spaces are regular, except W 1/p,p(Ω; S1),
1 ≤ p <∞
When n = 2, regular spaces are characterized by sp < 1 or
sp ≥ 2
Characterization also known when n ≥ 3



“Regular” Sobolev spaces

In “regular” spaces, problems are “linearized”

Interesting spaces (cf examples) are “irregular”

Two sources of “irregularity”:
Lack of phase functional analytic applications
Lack of control of the phase PDEs applications



Lack of phase

To simplify: n = 2, Ω = S2 (but answer known in general)
We want to describe the space W s,p(S2;S1), with 1 ≤ sp < 2
Again to simplify: we further assume that 0 < s < 1 and
1 < sp < 2 (but answer known in general)
Typical example: Hs(S2; S1), 1/2 < s < 1



Example of u ∈W s,p(S2;S1) (0 < s < 1,1 < sp < 2)

Example #1

v = eıϕ, ϕ ∈W s,p(S2;R)



Example of u ∈W s,p(S2;S1) (0 < s < 1,1 < sp < 2)

Example #2

w = eıψ, ψ ∈W 1,sp



Example of u ∈W s,p(S2;S1) (0 < s < 1,1 < sp < 2)

Example #2 relies on the Gagliardo-Nirenberg inequality

W σ,ρ ∩ L∞ ⊂W θσ,ρ/θ, θ ∈ (0,1)

(true except when σ = ρ = 1)
Example: a bounded function in W 1,2 belongs to W 1/2,4 and to
W 1/3,6

Gagliardo-Nirenberg yields

ψ ∈W 1,sp =⇒ eıψ ∈W 1,sp ∩ L∞ =⇒ eıψ ∈W s,p(S2;S1)



Example of u ∈W s,p(S2;S1) (0 < s < 1,1 < sp < 2)

Example #3

ξ(z) =
z
|z|

(with S2 ≈ C ∪ {∞})

Heuristics
ξ homogeneous of degree 0 =⇒ Dsξ homogeneous of degree
−s =⇒ Dsξ ∈ Lp (since sp < 2=space dimension)



Examples of u ∈W s,p(S2;S1) (0 < s < 1,1 < sp < 2)

Summary

v = eıϕ, ϕ ∈W s,p(S2;R)

w = eıψ, ψ ∈W 1,sp(S2;R)

ξ(z) =
z
|z|

“Theorem”
Assume

space dimension n = 2
0 < s < 1
1 < sp < 2

“Then the three above examples are the only possible ones”
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Singularities of u

If u is “sufficiently nice” (i.e. if u has a finite number of
singularities, and u is not too singular near its singularities),
then one can “hear” the singularities of u:
the distribution defined by

〈T (u), ζ〉 :=
1

2π

∫
(u ∧ du) ∧ dζ

satisfies
T (u) =

∑
a singularity of u

deg (u,a) δa

(Brezis, Coron, Lieb 1986; special case Ball 1977)



Singularities of u

Theorem (All maps have a singular set; Bourgain, Brezis, M.
2004, 2005; Bousquet 2007)

“Sufficiently nice” maps are dense in W s,p(S2;S1)

The map u 7→ T (u) extends by density+continuity to
W s,p(S2;S1)

The result is of the form

T (u) =
∞∑

j=1

(δPj − δNj )



Range of the mapping u 7→ T (u)?

Assume u ∈W 1,q (with 1 < q < 2)

〈T (u), ζ〉 :=
1

2π

∫
(u ∧ du) ∧ dζ

=⇒ T (u) acts on W 1,q′

Assume u ∈W q,1

Then T (u) acts on W 1,q′ ∩ C2−q



Range of the mapping u 7→ T (u)?

Theorem (Bousquet 2007)
The conditions on the previous slides are nsc:
A sum of the form

T =
∞∑

j=1

(δPj − δNj )

can be realized as
T = T (u) for some u ∈W 1,q iff T acts on W 1,q′

T = T (u) for some u ∈W q,1 iff T acts on W 1,q′ ∩ C2−q



Range of the mapping u 7→ T (u)?

Theorem (M.)

For a sum of the form T =
∞∑

j=1

(δPj − δNj ), acting on W 1,q′ is the

same as acting on W 1,q′ ∩ C2−q

More generally,

{T (u) ; u ∈W s,p(S2; S1)}

depends only on the value of the product sp, not on s or p

The proof of the above theorem implies a very strange property
of sums of Dirac masses



Theorem

Let m ∈ N∗, P1, . . . ,Pm,N1, . . . ,Nm ∈ S2 and

T :=
m∑

j=1

(δPj − δNj )

Then (with C independent of m and of the points)

‖T‖
(
.

C
1/2

)∗
≤ C‖T‖3/2

(
.

W
1,3

)∗



Range of the mapping u 7→ T (u)?

The proof of “acts on. . . ⇐⇒ acts on. . .” relies on

Theorem (M.)
Assume that n ≥ 1 and sp ≥ 1
Then every u ∈W s,p(S2; S1) splits as

u = veıϕ, v ∈W sp,1, ϕ ∈W s,p

Special cases due to Bourgain-Brezis 2003, Nguyen 2008



Analysis of W s,p(S2;S1)

Theorem (Splitting according to Examples #1 to #3)
Assume

n = 2
1 < sp < 2
0 < s < 1

Then we may explicitly decompose every u ∈W s,p(S2; S1) as
follows

Compute T (u)

Associate to T (u) a “canonical mapping” ξ s.t. T (ξ) = T (u)

Find explicitly ϕ ∈W s,p, ψ ∈W 1,sp s.t.

u = v w ξ, with v = eıϕ, w = eıψ

This also works the other way around...



Overview of the general case (any n, s, p)

Structure of W s,p(S2;S1) for the other values of s and p  OK

Structure of W s,p(Sn; S1)  OK
Points become (n − 2)-manifolds



An application: trace theory

Problem
Describe

X := trace W s+1/p,p(Sn × (0,1);S1)

In general, this trace is not the full space W s,p(Sn;S1)
Reasons: obvious topological obstructions, and less obvious
analytical obstructions (Bethuel, Demengel 1995)

The structure theory of unimodular maps allows the
characterization of the space X



Lack of control

Occurs only in the spaces W 1/p,p(S1;S1), 1 ≤ p <∞
The presence of S1 as a source space creates topological
obstructions, but lack of control appears even in absence of
topological obstructions



Lack of control: “the” example

Let D be the unit disc in R2 and set

Ma(z) =
z − a
1− az

, z ∈ D, a ∈ D

(the Moebius transform)

Let ua(z) = z Ma(z), z ∈ S1, a ∈ D
Then ua is bounded in W 1/p,p, but “its” phase blows up in
W 1/p,p as |a| → 1

No other blow up mechanism known.
Probably no other possible mechanism.



Recovering phase control

We work in H1/2(S1; S1), with the energy

|u|2H1/2 =
1
2

∫
D
|∇U|2,

with U the harmonic extension of u

No loss control below the energy of a Moebius map:
If u : S1 → S1 and |u|2H1/2 ≤ π − δ, then u = eıϕ and

|ϕ|H1/2 ≤ F (δ).

Reason
The harmonic extension U of u stays far away from 0



Recovering phase control

Theorem (Berlyand, M., Rybalko, Sandier 2014)

Assume that |u|2H1/2 ≤ 2π − δ (i.e., no room for 2 Moebius
transforms Ma) and deg u = 1
Then we may find a = a(u) s.t. u = Maeıϕ, with |ϕ|H1/2 ≤ F (δ)

Idea of proof
There is no place for two “remoted” zeros of the harmonic
extension U of u
From this, control the region where |U| 6≈ 1, then the phase of
U, then (by taking traces) the one of u



From control to weak compactness

Equivalently
The set

X = {u ∈ H1/2(S1;S1); deg u = 1}

is not weakly closed
However:

{u ∈ X ; |u|2H1/2 ≤ 2π − δ}/Moebius group

is weakly closed



Higher degrees analog

Theorem (Berlyand, M., Rybalko, Sandier 2014)
Let d = 2,3, . . .
Then there is some ε > 0 such that

u : S1 → S1, |u|2H1/2 ≤ πd + ε, deg u = d =⇒

u = Ma1 . . .Mad eıϕ, with |ϕ|H1/2 ≤ C.

Remark
Probably ∀ ε < 2π works...

Idea of proof
Induction, relying on the case d = 0 + Wente estimates in order
to obtain almost orthogonal decomposition of the energy +
classification of maps at energy level π d



An application: Ginzburg-Landau with prescribed
degrees

General problem
Given:
Ω ⊂ R2, with boundary Γ1 ∪ . . . ∪ Γk
Integers d1, . . . ,dk ∈ Z
Minimize (or find critical points of) Eε subject to

|u| = 1 and deg u = dj on Γj



An application: GL with prescribed degrees

Big picture (partly conjectural)

In any domain, existence of critical points (Berlyand-Rybalko
2010, Dos Santos 2009, Berlyand-M.-Rybalko-Sandier 2014,
Lamy-M. 2014)
In thin domains, existence of minimizers (Golovaty-Berlyand
2002, Berlyand-M. 2006)
In thick domains, non existence of minimizers
(Berlyand-Golovaty-Rybalko 2008, M. 2010)

Simply connected domain requires different techniques
Similar to no holes (Brezis-Nirenberg 1983)-holes (Bahri-Coron
1988) situation for critical exponent



An application: GL with prescribed degrees

Big picture in simply connected domains (partly conjectural)
No minimizer
But critical points for large ε (via variational methods)
And for small ε (via IFT methods)



An application: GL with prescribed degrees

Theorem (Berlyand, M., Rybalko, Sandier 2014)
Assume Ω simply connected, prescribed degree = 1
Then Eε has critical points for large ε

Probably also for d ≥ 2, but no proof



Sketch of proof
Min-max method: consider

min
F

max{Eε(F (u)); F ∈ C(D; H1),F (a) = Ma for |a| ≈ 1}.

Establish mountain pass geometry (via the description of the
low energy maps of degree 1)
Prove that the energy functional is C1

Next establish behavior of PS sequences. Requires killing the
Moebius group (rescaling) and the use of the Hopf differential
Prove convergence of the energy to the energy of the rescaled
map
Last step leads to compactness of PS sequences

All steps but the last can be performed for arbitrary domains
and degrees (via additional Wente type estimates).
This leads to bubbling analysis like in Brezis-Coron or Struwe,
but not to compactness



Application: How much it takes to wind once

Examine the existence of

mp = min{|u|pW 1/p,p ; u : S1 → S1,deg u = 1}

|u|pW 1/p,p =

∫∫
S1×S1

|u(x)− u(y)|p

|x − y |2
dxdy , 1 < p <∞



Application: How much it takes to wind once

Main difficulty: non compact (energy invariant by the Moebius
group)

Easy cases

p = 1: m1 = 2π, minimizers are W 1,1-maps with non
decreasing phases
p = 2: m2 = 4π2, minimizers are Moebius transforms



Application: How much it takes to wind once

Theorem (M.)
There exists some ε > 0 such that mp is attained when
p ∈ (2− ε,2)

Sketch of proof
For such p,

{u ∈W 1/p,p; |u|pW 1/p,p ≈ mp}/Moebius group

is weakly closed

Do not know what happens when d ≥ 2



GL with prescribed degree for small ε

Theorem (Lamy, M. 2014)
In a “generic” simply connected domain, Eε has critical points
with prescribed degree 1



GL with prescribed degree for small ε

Sketch of the proof
Naive analysis of the behavior of critical points as ε→ 0
Identification of the limit u0 and of its trace g on ∂Ω
Construction of the candidates (à la Pacard-Rivière 2000; see
also del Pino, Kowalczyk, Musso 2006) with uε ≈ u0 and g ≈ g0
Existence of an exact solution (Schauder fixed point theorem)
The two last items require nondegeneracy assumptions
We finally prove that the nondegeneracy assumptions are
stable and generically satisfied


