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Corrigé du devoir maison

Attention! Il y avait une erreur d’énoncé : I’énoncé de la question d) est incorrect. Enoncé
corrigé :

d) Montrer que la formule ci-dessus donne la solution de (P) si g est la restriction & R
d’une fonction h de classe C°(R?)

e impaire en z; et impaire en o ;

e (211,0) et (0, 2ly)-périodique.

a) Une solution est la solution nulle. On cherche les solutions non nulles.
Avec I’abus habituel qui veut que = est une implication & la physicienne, on a
(P” \IJ” \I/” \Iﬂ/ . CI)//
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De (FEs), on a soit ¥1W, = 0 sur dR, soit ® = 0. La deuxiéme possibilité ne convenant pas,

on trouve W1 Wy = 0 sur OR. Si ¥(0) # 0, alors on doit avoir U5 = 0, ce qui ne convient

pas. On doit donc avoir W;(0) = 0. De méme, ¥y (1) = 0, Uy(0) = Wy(ly) = 0.

—UY = c; U dans [0, ;]

U;(0) = W;(l) =0

équation par W, et en intégrant par parties, on trouve

On trouve que V; est solution de . En multipliant cette

/Olj(‘I’})z(%) dzj = ¢; /Olj(‘l’j)g(l“j) dzj,

d’ott ¢; > 0. Si ¢; = 0, on trouve U, constante. La condition ¥;(0) = 0 implique ¥; = 0,

ce qui ne convient pas. Donc ¢; > 0, ce qui donne ¢; = )\f pour un A; > 0.

On trouve V,(x;) = a;sin(\;jz;) + b; cos(A;z;). La condition ¥;(0) = 0 donne b; = 0. La
k’j7T

condition ¥;(l;) = 0 couplée avec a; # 0 (sinon ¥; = 0) donne sin(\;/;) = 0, d’'ou \; = -

pour un k; € N*. ’

Il s’ensuit que V1 Wy = asin(kymzy /1) sin(kemzy/l) pour un a # 0 et k; € N, j =1,2.

—¢" = ((lﬁﬂ'/ll)Q -+ (k?gﬂ'/lg)?)q) dans R+ Ceci
. Ceci

d'(0) =0

donne ®(t) = beos(\/(kim/11)? + (kam/l2)%t), avec b # 0.

Finalement, toutes les solutions recherchées sont de la forme

c coS(pm nt) sin(mmay /1y) sin(nmay/1s)

Le probleme satisfait par ® est alors

avec :
e m,n € N*;

e les fi,,, donnés par la formule (F) g, = /(m7/l1)2 + (n7m/ly)2.

b) Si la séparation des variables marche, alors la solution est une superposition de solutions
a variables séparées trouvées ci-dessus, c’est-a-dire

(1) u(z,t) = Z A, COS(fln o) sin(mmxy /1) sin(nwas /ls),



avec les [t ,, donnés par (F). On devine les a,,, & partir du calcul d’ingénieur suivant

/Rg(x)]l;[lsin(kjﬁxj/lj) dx:/u(x,O)gsin(kjﬂxj/lj)dx

R

2
:/ Z amynsin(mmcl/ll)sin(nm:’Q/ZQ)Hsin(k:jmcj/lj)da:
R

m,neN* j—l
= E amn/ sin(mmay /ly) sin(nras /1) Hsm (kjmz; /1) do
m,neN*
_ kb
= Ok ey

4
On s’attend donc a ce que la solution soit donnée par

g(x), sit=0
u(z,t) = Z A COS(fm pt) sin(mmay /1) sin(nmag/ly),  sit >0
m,neN*

(2) avec

2 2
4
Ponm -= (E) + (n_w) . Umg = — [ g(x)sin(mrz,/ly) sin(nmxy/ly) dx
ll l2 l1l2 R

Réponse aux questions c) et d). Elle s’obtient en combinant les Lemmes 1 & 5 ci-
dessous.

_ 1 m? + n?
Lemme 1. Les séries S7 := E —— €t Sz := E ———— convergent.
m2n
m,neN* m,neN*

Démonstration. La sommation par paquets (=théoréme de Tonnelli pour les séries a termes

positifs) donne
> > 1 e 1 4
51:Z<Zm):€ me =36

m=1 n=1 m=1

2+n2

Pour montrer la convergence de S, il suffit d’obtenir une majoration de la forme — eI
mb +n

2

m
55 Avec s := — > 0, on doit trouver C' tel que C(s* 4 1) > s* + 5. On peut :
m2n n
e soit remarquer que C' = 1 convient (étudier, pour s > 0, la fonction s + s* — s> —s+1);
2

e soit établir Uexistence de C' via le fait que C' convient si et seulement si — +81 <C.1
s
2
suffit alors de remarquer que la fonction s — n est bornée sur R, (elle est continue
s
et sa limite en 400 est 0). O
Lemme 2. Soit g € C%(R) telle que (H) dlg =0 sur OR, k=1,2, j = 0,2,4. Alors
419 mmTT, . NTTo 418 LT T

=——~— [ &si Si dr = A5 g si Si dx.

Gmn l1l27r6m6/R 1951 ll m lg v l1l27T67’LG/ ll m l2

En particulier, on a
(3) |mn| < C(m® +n®)|| DO oo



Démonstration. Les identités s’obtiennent par des intégrations par parties répétées. Un
exemple de telle intégration :

4
o =77 g(x) sin(mmxy /1) sin(nmxs/ls) dx
1l2
4 I

=— ——/Rg(x)ﬁl[cos(mwxl/ll)] sin(nmrxy/ly) dx

l1l2 mm

—
N

o ph
= - / / x)01 cos(mmay /ly) dey sin(nmas/ls) dxg

lllz mm

2)

l2 l1
:l1l2m71'/ / O1g(x) cos(mmzxy /ly) dxy sin(nmae/ls) dxg

®)

—

\_/

Iy mﬂ/@lg ) cos(mmzy [ly) sin(nway/ly) do

Ici, 0 et & repose sur le théoréme de Fubini, valide parce qu’on intégre des fonctions

continues sur le compact R. Par ailleurs, ® suit d’une intégration par parties. Celle-ci ne

fait pas apparaitre de terme de bord car g(0, z2) = g(ly, z2), ¥V x5 € [0, l5].
Pour obtenir (3), on note que la premiére identité donne

418 Ch
ol < |08l Aol R) < Dl
C C) + C:
de méme, || < _§||D6g||Loo. On trouve |ay, | < %HDGgHLm. O
n m°+n

Lemme 3. Si g est comme dans la question c¢) ou comme dans la question d), alors g
vérifie (H). En particulier, les a,,, vérifient (3).

Démonstration. Si g € C§°(R), alors il existe un voisinage ouvert U de OR tel que g = 0
dans U, d’ou toutes les dérivées partielles de g s’annulent dans U, en particulier sur 0R.
Si g est comme dans d), montrons, par exemple, que, sur OR, 6{9 =0,7=0,2,4.

D’une part, on a (par imparité en z5) g(z1,0) = 0, d’ou & g(x1,0) =0, j =0,...,6.
D’autre part, g(z1,l2) = g(x1,lo — 2l) = g(x1, —la) = —g(x1,12), dout g(z1,l5) = 0. On
trouve & g(z1,13) =0, 5 =0,...,6.

Par ailleurs, on a —g(—1,23) = g(x1, 22), dou (=1 ¥ g(—x1,20) = Hg(ay, 22), j =
0,...,6. Pour j pair et ; = 0, on trouve & ¢(0, z;) = 0.

Enfin, I'identité g(z1,72) = —g(2ly — x1,72) donne, en dérivant j fois par rapport a
(7 =0,2,4) et en prenant z1 = Iy, que 3 g(l1,z3) = 0. O
Lemme 4. Soit g une fonction vérifiant (H). Alors g = Z Um.p Sin(mmay /1) sin(nray/ls).
m,neN*
Autrement dit, u vérifie (E3).
) . 1 m? + n? o
Démonstration. On a . De cette inégalité, de (3) et du Lemme 1, on

. mb +nb = mb 4-nb
trouve que la série de I'énoncé est absolument convergente.
Soit (z1,22) € R. La fonction t — g(t,x9) est C' et s’annule en 0 et en ;. Il s’ensuit que

cette fonction est la somme de sa série de Fourier (en sinus). En particulier,

1
mmnx mmnx
g(x1, x2) E —sin 7Tl/ g(t, 3:2)81n—d E —sin 7T1 by (x2).
0

meN* h meN* I

Clalrement (c’est le cas trivial du théoréme de dérivabilité des intégrales : intégration sur
R R T, T Y = 7 A N T O T, D DY = 1 Y Y T a -2



De plus, on a b,,(0) = b,,(ls) =0, car g = 0 sur OR. On trouve

2 l2 l
(4) bm@ﬂ==23—$nm“2/‘mxﬁanﬁfds@3§§jmmﬁm"““;
0

Lo Ly P Iy

W utilise le théoréme de Fubini.

En utilisant le fait qu'une série absolument convergente est commutativement convergente,
on trouve

g(x) = Z Z A SiN(marzy [1y) sin(nmay /1) = Z A SIN(mazy /1y) sin(nrza /).

meN* neN* m,neEN*
0

Lemme 5. Sous I’hypothese (H), on a u € C?(R x R, ) et u vérifie le probleme (P).

Démonstration. 11 suffit de montrer que u € C? et que les dérivées d’ordre < 2 de u se cal-
culent en dérivant terme par terme. Les autres propriétés découlent de celle-ci par calculs
immeédiats.

Montrons, par exemple, que 9?u existe et est continue. (On suppose déja montrée 1'exis-
tence de dyu.)

A m,n fixés, la fonction (¢, 1,29) = O (@m.n COS(thmnt) sin(mra, /1) sin(nray/ly)) =
Cmon(T1, T2, t) étant continue, il suffit de trouver une majoration de la forme |¢p, (2, t)| <
Ay, BVEC Z Ay < 00. Or, on a

m,neN*

mm nm ) K(m? +n?)

2 2
2 _ 2 2 2 2 2
emal < bl = (1) +(57) Jlamal < 2O/ UB 40l < E 0

?

(1)
ici, K := Cn*(1/I3 +1/13), C est la constante de I'inégalité (3) et l'inégalité < découle du
Lemme 2. U

e) On multiplie (E}) par u; et on intégre sur R x [¢,T], avec 0 < ¢ < T. En notant que
les théorémes de Fubini, respectivement de dérivation sous le signe / s’appliquent sans

probléme dans les calculs ci-dessous (intégrales de fonctions de classe C* sur un compact),

on trouve
T T
0 :/ / Uty dt do — / / Ayuuy dr dt
R Je € R
1 T T
== / / (u?), dt dz — / / Ayuug de dt =
2 R Je e R

e trde — L (w2 erde— [ A du d.



Pour calculer la derniére intégrale, on se sert d’une intégration par parties et de la remarque
suivante : comme u(z,t) =0, z € OR, on a w(x,t) =0, z € OR. On trouve :

/ /A wngy d dt = Z/ /8uutdxdt Z/ /13 / O, dz dt
_;/ /Olg_j/ojﬁjuaj(ut)dxdt:—%;/E /R((é?ju)z)tdxdt

1 [T 1 T
:——/ /(|qu|2)tdxdt:——// (|Voul?), dt dx
2 € R 2 RJe
1 1
:-/ |qu|2(x,5)dx——/ Voul(z, T) da
2 R 2 R

En combinant les deux identités, on trouve
/ |Voul*(2,T) dx = / \Vul?(z,€) do + / (ug)?(z, €) dw — /(ut)Q(x,T) dx.
R R R R

En utilisant le fait que v € C" dans R x R, et les conditions initiales Ujg=0 = g Utp—=o = 0,
on trouve, en faisant ¢ — 0 dans l'identité précédente, que

[k e = [ (Vg [ @pe)ds < [ o) dr



