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Corrigé du devoir maison

Attention ! Il y avait une erreur d’énoncé : l’énoncé de la question d) est incorrect. Énoncé
corrigé :

d) Montrer que la formule ci-dessus donne la solution de (P) si g est la restriction à R
d’une fonction h de classe C6(R2)
• impaire en x1 et impaire en x2 ;
• (2l1, 0) et (0, 2l2)-périodique.

a) Une solution est la solution nulle. On cherche les solutions non nulles.
Avec l’abus habituel qui veut que =⇒ est une implication à la physicienne, on a

utt −∆xu = 0 =⇒ Φ′′

Φ
=

Ψ′′1
Ψ1

+
Ψ′′2
Ψ2

=⇒
Ψ′′j
Ψj

= −cj, j = 1, 2 et
Φ′′

Φ
= −c1 − c2.

De (E2), on a soit Ψ1Ψ2 = 0 sur ∂R, soit Φ ≡ 0. La deuxième possibilité ne convenant pas,
on trouve Ψ1Ψ2 = 0 sur ∂R. Si Ψ1(0) 6= 0, alors on doit avoir Ψ2 ≡ 0, ce qui ne convient
pas. On doit donc avoir Ψ1(0) = 0. De même, Ψ1(l1) = 0, Ψ2(0) = Ψ2(l2) = 0.

On trouve que Ψj est solution de

{
−Ψ′′j = cjΨj dans [0, lj]

Ψj(0) = Ψj(lj) = 0
. En multipliant cette

équation par Ψj et en intégrant par parties, on trouve∫ lj

0

(Ψ′j)
2(xj) dxj = cj

∫ lj

0

(Ψj)
2(xj) dxj,

d’où cj ≥ 0. Si cj = 0, on trouve Ψj constante. La condition Ψj(0) = 0 implique Ψj ≡ 0,
ce qui ne convient pas. Donc cj > 0, ce qui donne cj = λ2j pour un λj > 0.
On trouve Ψj(xj) = aj sin(λjxj) + bj cos(λjxj). La condition Ψj(0) = 0 donne bj = 0. La

condition Ψj(lj) = 0 couplée avec aj 6= 0 (sinon Ψj ≡ 0) donne sin(λjlj) = 0, d’où λj =
kjπ

lj
pour un kj ∈ N∗.
Il s’ensuit que Ψ1Ψ2 = a sin(k1πx1/l1) sin(k2πx2/l2) pour un a 6= 0 et kj ∈ N∗, j = 1, 2.

Le problème satisfait par Φ est alors

{
−Φ′′ = ((k1π/l1)

2 + (k2π/l2)
2)Φ dans R+

Φ′(0) = 0
. Ceci

donne Φ(t) = b cos(
√

(k1π/l1)2 + (k2π/l2)2t), avec b 6= 0.
Finalement, toutes les solutions recherchées sont de la forme

c cos(µm,nt) sin(mπx1/l1) sin(nπx2/l2)
avec :
• m,n ∈ N∗ ;
• les µm,n donnés par la formule (F) µm,n :=

√
(mπ/l1)2 + (nπ/l2)2.

b) Si la séparation des variables marche, alors la solution est une superposition de solutions
à variables séparées trouvées ci-dessus, c’est-à-dire

(1) u(x, t) =
∑

m,n∈N∗
am,n cos(µm,nt) sin(mπx1/l1) sin(nπx2/l2),
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avec les µm,n donnés par (F). On devine les am,n à partir du calcul d’ingénieur suivant∫
R

g(x)
2∏

j=1

sin(kjπxj/lj) dx =

∫
R

u(x, 0)
2∏

j=1

sin(kjπxj/lj) dx

=

∫
R

∑
m,n∈N∗

am,n sin(mπx1/l1) sin(nπx2/l2)
2∏

j=1

sin(kjπxj/lj) dx

=
∑

m,n∈N∗
am,n

∫
R

sin(mπx1/l1) sin(nπx2/l2)
2∏

j=1

sin(kjπxj/lj) dx

=
l1l2
4
ak1,k2 .

On s’attend donc à ce que la solution soit donnée par

(2)

u(x, t) =

g(x), si t = 0∑
m,n∈N∗

am,n cos(µm,nt) sin(mπx1/l1) sin(nπx2/l2), si t > 0

avec

µm,n :=

√(
mπ

l1

)2

+

(
nπ

l2

)2

, am,n :=
4

l1l2

∫
R

g(x) sin(mπx1/l1) sin(nπx2/l2) dx

Réponse aux questions c) et d). Elle s’obtient en combinant les Lemmes 1 à 5 ci-
dessous.

Lemme 1. Les séries S1 :=
∑

m,n∈N∗

1

m2n2
et S2 :=

∑
m,n∈N∗

m2 + n2

m6 + n6
convergent.

Démonstration. La sommation par paquets (=théorème de Tonnelli pour les séries à termes
positifs) donne

S1 =
∞∑

m=1

( ∞∑
n=1

1

m2n2

)
=
π2

6

∞∑
m=1

1

m2
=
π4

36
<∞.

Pour montrer la convergence de S2, il suffit d’obtenir une majoration de la forme
m2 + n2

m6 + n6
≤

C

m2n2
. Avec s :=

m2

n2
> 0, on doit trouver C tel que C(s3 + 1) ≥ s2 + s. On peut :

• soit remarquer que C = 1 convient (étudier, pour s > 0, la fonction s 7→ s3− s2− s+ 1) ;

• soit établir l’existence de C via le fait que C convient si et seulement si
s+ s2

s3 + 1
≤ C. Il

suffit alors de remarquer que la fonction s 7→ s+ s2

s3 + 1
est bornée sur R+ (elle est continue

et sa limite en +∞ est 0). �

Lemme 2. Soit g ∈ C6(R) telle que (H) ∂jkg = 0 sur ∂R, k = 1, 2, j = 0, 2, 4. Alors

am,n = − 4l61
l1l2π6m6

∫
R

∂61g sin
mπx1
l1

sin
nπx2
l2

dx = − 4l62
l1l2π6n6

∫
R

∂62g sin
mπx1
l1

sin
nπx2
l2

dx.

En particulier, on a

(3) |am,n| ≤ C(m6 + n6)‖D6g‖L∞ .
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Démonstration. Les identités s’obtiennent par des intégrations par parties répétées. Un
exemple de telle intégration :

am,n =
4

l1l2

∫
R

g(x) sin(mπx1/l1) sin(nπx2/l2) dx

=− 4

l1l2

l1
mπ

∫
R

g(x)∂1[cos(mπx1/l1)] sin(nπx2/l2) dx

(1)
= − 4

l1l2

l1
mπ

∫ l2

0

∫ l1

0

g(x)∂1 cos(mπx1/l1) dx1 sin(nπx2/l2) dx2

(2)
=

4

l1l2

l1
mπ

∫ l2

0

∫ l1

0

∂1g(x) cos(mπx1/l1) dx1 sin(nπx2/l2) dx2

(3)
=

4

l1l2

l1
mπ

∫
R

∂1g(x) cos(mπx1/l1) sin(nπx2/l2) dx.

Ici,
(1)
= et

(3)
= repose sur le théorème de Fubini, valide parce qu’on intègre des fonctions

continues sur le compact R. Par ailleurs,
(2)
= suit d’une intégration par parties. Celle-ci ne

fait pas apparaître de terme de bord car g(0, x2) = g(l1, x2), ∀ x2 ∈ [0, l2].
Pour obtenir (3), on note que la première identité donne

|am,n| ≤
4l61

l1l2π6m6
‖∂61g‖L∞λ2(R) ≤ C1

m6
‖D6g‖L∞ ;

de même, |am,n| ≤
C2

n6
‖D6g‖L∞ . On trouve |am,n| ≤

C1 + C2

m6 + n6
‖D6g‖L∞ . �

Lemme 3. Si g est comme dans la question c) ou comme dans la question d), alors g
vérifie (H). En particulier, les am,n vérifient (3).

Démonstration. Si g ∈ C∞0 (R), alors il existe un voisinage ouvert U de ∂R tel que g ≡ 0
dans U , d’où toutes les dérivées partielles de g s’annulent dans U , en particulier sur ∂R.
Si g est comme dans d), montrons, par exemple, que, sur ∂R, ∂j1g = 0, j = 0, 2, 4.
D’une part, on a (par imparité en x2) g(x1, 0) ≡ 0, d’où ∂j1g(x1, 0) = 0, j = 0, . . . , 6.
D’autre part, g(x1, l2) = g(x1, l2 − 2l2) = g(x1,−l2) = −g(x1, l2), d’où g(x1, l2) ≡ 0. On
trouve ∂j1g(x1, l2) = 0, j = 0, . . . , 6.
Par ailleurs, on a −g(−x1, x2) ≡ g(x1, x2), d’où (−1)j+1∂j1g(−x1, x2) ≡ ∂j1g(x1, x2), j =
0, . . . , 6. Pour j pair et x1 = 0, on trouve ∂j1g(0, x2) ≡ 0.
Enfin, l’identité g(x1, x2) ≡ −g(2l1 − x1, x2) donne, en dérivant j fois par rapport à x1
(j = 0, 2, 4) et en prenant x1 = l1, que ∂j1g(l1, x2) = 0. �

Lemme 4. Soit g une fonction vérifiant (H). Alors g =
∑

m,n∈N∗
am,n sin(mπx1/l1) sin(nπx2/l2).

Autrement dit, u vérifie (E3).

Démonstration. On a
1

m6 + n6
≤ m2 + n2

m6 + n6
. De cette inégalité, de (3) et du Lemme 1, on

trouve que la série de l’énoncé est absolument convergente.
Soit (x1, x2) ∈ R. La fonction t 7→ g(t, x2) est C1 et s’annule en 0 et en l1. Il s’ensuit que
cette fonction est la somme de sa série de Fourier (en sinus). En particulier,

g(x1, x2) =
∑
m∈N∗

2

l1
sin

mπx1
l1

∫ l1

0

g(t, x2) sin
mπt

l1
dt :=

∑
m∈N∗

2

l1
sin

mπx1
l1

bm(x2).

Clairement (c’est le cas trivial du théorème de dérivabilité des intégrales : intégration sur
un compact d’une fonction de classe Ck), les fonctions bm sont de classe C1 (en fait C6).
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De plus, on a bm(0) = bm(l2) = 0, car g = 0 sur ∂R. On trouve

(4) bm(x2) =
∑
n∈N∗

2

l2
sin

nπx2
l2

∫ l2

0

bm(s) sin
nπs

l2
ds

(1)
=
l1
2

∑
n∈N∗

am,n sin
nπx2
l2

;

(1)
= utilise le théorème de Fubini.
En utilisant le fait qu’une série absolument convergente est commutativement convergente,
on trouve

g(x) =
∑
m∈N∗

∑
n∈N∗

am,n sin(mπx1/l1) sin(nπx2/l2) =
∑

m,n∈N∗
am,n sin(mπx1/l1) sin(nπx2/l2).

�

Lemme 5. Sous l’hypothèse (H), on a u ∈ C2(R× R+) et u vérifie le problème (P).

Démonstration. Il suffit de montrer que u ∈ C2 et que les dérivées d’ordre ≤ 2 de u se cal-
culent en dérivant terme par terme. Les autres propriétés découlent de celle-ci par calculs
immédiats.
Montrons, par exemple, que ∂2t u existe et est continue. (On suppose déjà montrée l’exis-
tence de ∂tu.)
À m,n fixés, la fonction (t, x1, x2) 7→ ∂2t (am,n cos(µm,nt) sin(mπx1/l1) sin(nπx2/l2)) :=
cm,n(x1, x2, t) étant continue, il suffit de trouver une majoration de la forme |cm,n(x, t)| ≤
dm,n, avec

∑
m,n∈N∗

dm,n <∞. Or, on a

|cm,n| ≤ |am,n|µ2
m,n =

((
mπ

l1

)2

+

(
nπ

l2

)2)
|am,n| ≤ π2(1/l21+1/l22)(m

2+n2)|am,n|
(1)

≤ K(m2 + n2)

m6 + n6
;

ici, K := Cπ2(1/l21 + 1/l22), C est la constante de l’inégalité (3) et l’inégalité
(1)

≤ découle du
Lemme 2. �

e) On multiplie (E1) par ut et on intègre sur R × [ε, T ], avec 0 < ε < T . En notant que

les théorèmes de Fubini, respectivement de dérivation sous le signe
∫

s’appliquent sans

problème dans les calculs ci-dessous (intégrales de fonctions de classe Ck sur un compact),
on trouve

0 =

∫
R

∫ T

ε

uttut dt dx−
∫ T

ε

∫
R

∆xuut dx dt

=
1

2

∫
R

∫ T

ε

(u2t )t dt dx−
∫ T

ε

∫
R

∆xuut dx dt =

=
1

2

∫
R

(ut)
2(x, T ) dx− 1

2

∫
R

(ut)
2(x, ε) dx−

∫ T

ε

∫
R

∆xuut dx dt.
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Pour calculer la dernière intégrale, on se sert d’une intégration par parties et de la remarque
suivante : comme u(x, t) ≡ 0, x ∈ ∂R, on a ut(x, t) = 0, x ∈ ∂R. On trouve :∫ T

ε

∫
R

∆xuut dx dt =
2∑

j=1

∫ T

ε

∫
R

∂2juut dx dt =
2∑

j=1

∫ T

ε

∫ l3−j

0

∫ lj

0

∂2juut dx dt

=−
2∑

j=1

∫ T

ε

∫ l3−j

0

∫ lj

0

∂ju∂j(ut) dx dt = −1

2

2∑
j=1

∫ T

ε

∫
R

((∂ju)2)t dx dt

=− 1

2

∫ T

ε

∫
R

(|∇xu|2)t dx dt = −1

2

∫
R

∫ T

ε

(|∇xu|2)t dt dx

=
1

2

∫
R

|∇xu|2(x, ε) dx−
1

2

∫
R

|∇xu|2(x, T ) dx.

En combinant les deux identités, on trouve∫
R

|∇xu|2(x, T ) dx =

∫
R

|∇xu|2(x, ε) dx+

∫
R

(ut)
2(x, ε) dx−

∫
R

(ut)
2(x, T ) dx.

En utilisant le fait que u ∈ C1 dans R×R+ et les conditions initiales u|t=0 = g, ut|t=0 = 0,
on trouve, en faisant ε→ 0 dans l’identité précédente, que∫

R

|∇xu|2(x, T ) dx =

∫
R

|∇g|2(x) dx−
∫
R

(ut)
2(x, T ) dx ≤

∫
R

|∇g|2(x) dx.
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