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Corrigé du partiel
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Exercice 1. a) On a A,(t) = —/ u(x,t) sin(nr) do. L'intégrande est C? dans 1'ensemble
T Jo

des variables et on intégre sur un compact par rapport a la mesure de Lebesgue. Il s’ensuit
que A, € C?% et

Al (t) = 2 /07r u(x, t)sin(nz) de, Al(t) = 2 /07r uge(z, t) sin(nz) dz.

T s
La deuxiéme égalité implique

2 s s
Al'(t) :—/ u(x, t) sin(nx) doe = —/ Uz (2, 1) sin(nex) do
T Jo T Jo
T 2n
— — [ wuy(z,t)cos(nz)dx
z=0 T Jo
=7 92
i u(z,t) sin(nx) do = —n*A,,
T Jo

:;ux(x, t) sin(nz)

2
=— —nu(x, t) cos(nz)
m

z=0

d’ou|A” +n?A, =0|

2 s
b) Par ailleurs, on a A,,(0) = a,(f) et A}, (0) = —/ us(z,0) sin(nz) de = 0.
T Jo
A’ +n%A, =0

Il s’ensuit que A,, est solution de ¢ A,,(0) = a,(f) , probléme dont I'unique solution est

AL(0) =0

A (t) = an(f) cos(nt) |.
c) Si u, v sont solutions, soit ¢ > 0 et soit w := u(-,t) — v(-,t). Alors w € C([0,]),
w(0) = w(m) =0 et a,(w) = a,(u(-,t)) — an(v(:,t)) = a,(f) cos(nt) — a,(f) cos(nt) = 0.
On trouve que w = 0, d’olt u = v.

d) Etant donnée que, si g(0) = g(7) = 0 et si g est suffisamment réguliére, on a g(z) =

Zan sin(nz), x € [0,7], il est raisonnable de penser que la solution est donnée par
n>1

Z an(f) cos(nt) sin(nz) |

n>1

£) On a |0%(an(f) cos(nt) sin(nz))| < nl%a,(f)|. Ainsi, si k > |a|+2, alors [0%(a,(f) cos(nt) sin(nz))| <
—, dou 9w € C.
On obtient que ’u cC?sik> 4‘.

C
(On s’inspire des calculs pour le devoir maison.) On a |a,(f)| < - si a,(f®) = nla,(f).
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Exercice 2. Soit v : R x R{ x R, v(z,t,y) := 6_(x_y)2/4tf(y), de sorte que, pour

Vit
t>0, u(x,t)= / v(x, t,y) dy.
Soit K un compaﬂét de R x R%. Soient
a:=min{t; (z,t) € K} >0, b:=max{t; (x,t) € K}, M :=max{|z|; (z,t) € K}.
Pour (z,t) € K, on a
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La fonction h est intégrable. En effet, on a lim )

————— = 0, par croissances comparées,

C
d’ot h(y) < — 1 Pour C' convenable.
Y

Par ailleurs, v est continue dans I'ensemble des variables, d’ot u est continue sur R x R7 .
b) En singeant la réponse de la question a), on peut montrer que, dans R x R* | u est C*°

et que toute dérivée 0“ de u est donnée par 0%u(z,t) = / 0%v(x,t,y) dy.
R

En particulier, u; — uy, = /(Ut — Uza) (2,1, y) dy.

R
On vérifie par calcul direct que vy — v, = 0, d’ott uy — Uy, = 0.

c) Soit ¢ > 0. Le changement affine z = z(y) := $_\/—4_;U donne (*) u(x,t) = /f(a: -
R

1
VAtz)g(z)dz; ici, g(z) = ﬁe_z2.
En notant que /g = 1, on trouve que (*) reste encore vraie si t = 0. Ainsi, u(z,t) =
R
1
/w(x,t,z) dz, z e R, t >0, ot w(x,t,2) .= —f(x — \/4t2’)€_22.
R VT
Soit K un compact de R x R et soient
b:=max{t; (x,t) € K}, M :=max{z; (z,t) € K}.

On a, pour (z,t) € K,

1 2
lw(z,t, 2)| < MVl =2 k(z).
LS

Comme dans la question a), on a k(z) < pour C' convenable ; k est donc intégrable.

2
2441
Apreés avoir noté que w est continue, on trouve que u est continue.

Probléme. a) On a u,(z,0) = a et (uz(z,0))* + (uy(z,0))* = 1. Donc :

e si |a| > 1, alors le probléme n’a pas de solution ;

e si|a| =1, alors uy(x,0) = 0;

e si |a| < 1, alors il existe une fonction o : R — {—1,1} telle que uy(x,0) = o(z)V1 — a2,
uy (2, 0)

V1 —a?
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x € R. Comme o(z) = , on trouve que o € C!, d’olt ¢ est constante. Ainsi, dans



b) Si w est solution de (P), alors u,(z,0) = ev/1 — a?, avece € {—1,1}. Les caractéristiques
de u sont données par le systéme

(&= 2p z(0) = xo
Y= 2q y(0) =0
q 2= 2(p* + ¢%) op 2(0) = axg
p=0 p(0) =a
KC']: 0 q(0) = ev/1 — a2

Pour obtenir ce systéme, il est convenable de récrire la premiére équation de (P) sous la

forme |Vu|? = 1, ou encore p? + ¢*> = 1; ceci donne =.
En intégrant, on trouve

x(s) = xo + 2as, y(s) =2eV1 —a?s, z(s) = axg+2s, p(s) =a, q(s) =eV1—a?

Donc, si u est solution, alors u(zg+2as, 2ev/1 — a?s) = axy+2s. On trouve |u(x,t) = ax + ev/1 — a’t|.
c) On doit avoir (u,(z,0))* + (u,(r,0))* = 1, ou encore (¢'(x))? + (u,(z,0))* = 1. Pour
que cette équation ait une solution, il faut avoir ||¢'(z)] < 1, x € R|.

d) Comme dans la question a), sous (H), on doit avoir u,(z,0) = £y/1 — ¢%(z), avec
e € {—1,1}. On trouve que, si u est solution, alors ses caractéristiques sont données par

(= 2p z(0) = xg
Y= 2q y(0) =0
=20 +q%) =2 2(0) = p(x0) ;
p=0 p(0) = &' (o)
(4= 0 q(0) = e/1 — ©2(z9)
d’ou
z(s) = zo+2¢'(x0)s, y(s) = 2e1/1 — ™ (x0)s, 2(s) = p(x0)+2s, p(s) = ¢ (o), q(s) = e/ 1 — (o).
Pour € = 1, on trouve que, si u est solution de (P) (telle que u,(x,0 = /1 — ¢2(x)), alors

(1) u(®(x,t)) = @(x) + 2t. C'est cette équation que nous allons étudier par la suite.

[De méme, si e = —1, alors la solution correspondante vérifie, si elle existe, (2) u(V(z,t)) =
o(x)+2t, ou V(z,t) = (x+2¢'(2)t, —21/1 — ¢?(x)t). L’analyse de (2) est identique a celle
de (1) est sera omise par la suite. En particulier, nous verrons que, sous (H), (1) donne
bien une solution de (P). Il en sera de méme pour (2).]
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que ¢’ est croissante. Par conséquent, 1) = n o ¢’ I'est aussi.
Pour montrer que (1) donne une solution de (P), il suffit de montrer que ® est un C*-
diffecomorphisme. Clairement, ® € C?. Ainsi, il suffit de montrer :

e) Préliminaires : On a n/(s) 5 > 0, d’ot1 7 est croissante. (H) implique

que ® est bijective ; que ® est un difféomorphisme local (ce qui équivaut a Jac ® # 0).

Etape 1. ® est un diffcomorphisme local

4t 12 /"
On a Jac ® = 2(1 + 2t"(x))/1 — ¢%(z) + At (w)o (@) > 0.
1 —¢?(z)
Etape 2. ® est injective
Soient (z,t), (y,s) € R x R, tels que ®(z,t) = ®(y, s). [But : montrer que z = y et t = s.]
1 — ¢?(z)

~—————-2t. En

En regardant la deuxiéme coordonnée de ®, on trouve (3) 2s =



injectant cette égalité dans la formule de la premiére coordonnée de ®, on obtient (4)
z—y = 20/1—¢?(x)(Y(y) — ¢(x)).
Supposons par 'absurde que = # y, Par symétrie, on peut supposer > y. Alors le membre
de gauche de (4) est > 0, alors que la monotonie de ¢ implique que celui de droite est < 0.
Contradiction. Aini, x = y. En revenant a (3), on trouve s = ¢.
Etape 3. ® est surjective
On se donne (y,s) € R x R,. [But : trouver (z,t) € R x Ry tel que ®(z,t) = (y, s).]
On a ®(z,t) = (y,5) <=t = S " h(z) := z + sy(x) = y. Ainsi, il suffit de
21— o)
montrer que h est surjective.
Par monotonie de 1, on a
r<0= h(z) <z+s¢Y(0) = lim h(zr)= —o0.
T——00

De méme, on a h(xz) > x + s1(0) six > 0 et lim h(z) = oo.
T—00

On obtient que h(R) = R, c’est-a-~dire h est surjective.

f) Si w est solution de (P) correspondant a € = 1, alors (5) u(®(x,t)) = ¢(x) + 2t, z € R,
t > 0. ® étant un C*-diffeomorphisme, on obtient & la fois que (5) détermine uniquement
u et que le u ainsi obtenu est solution de (P). Analyse identique si ¢ = —1. Ainsi, sous
(H), (P) a exactement deux solutions.



