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Corrigé du partiel

Exercice 1. a) On a An(t) =
2

π

∫ π

0

u(x, t) sin(nx) dx. L’intégrande est C2 dans l’ensemble

des variables et on intègre sur un compact par rapport à la mesure de Lebesgue. Il s’ensuit
que An ∈ C2 et

A′n(t) =
2

π

∫ π

0

ut(x, t) sin(nx) dx, A′′n(t) =
2

π

∫ π

0

utt(x, t) sin(nx) dx.

La deuxième égalité implique

A′′n(t) =
2

π

∫ π

0

utt(x, t) sin(nx) dx =
2

π

∫ π

0

uxx(x, t) sin(nx) dx

=
2

π
ux(x, t) sin(nx)

∣∣∣∣x=π
x=0

− 2n

π

∫ π

0

ux(x, t) cos(nx) dx

=− 2n

π
u(x, t) cos(nx)

∣∣∣∣x=π
x=0

− 2n2

π

∫ π

0

u(x, t) sin(nx) dx = −n2An,

d’où A′′n + n2An = 0 .

b) Par ailleurs, on a An(0) = an(f) et A′n(0) =
2

π

∫ π

0

ut(x, 0) sin(nx) dx = 0.

Il s’ensuit que An est solution de


A′′n + n2An = 0

An(0) = an(f)

A′n(0) = 0

, problème dont l’unique solution est

An(t) = an(f) cos(nt) .
c) Si u, v sont solutions, soit t ≥ 0 et soit w := u(·, t) − v(·, t). Alors w ∈ C([0, π]),
w(0) = w(π) = 0 et an(w) = an(u(·, t)) − an(v(·, t)) = an(f) cos(nt) − an(f) cos(nt) = 0.
On trouve que w = 0, d’où u = v.
d) Étant donnée que, si g(0) = g(π) = 0 et si g est suffisamment régulière, on a g(x) =∑
n≥1

an(g) sin(nx), x ∈ [0, π], il est raisonnable de penser que la solution est donnée par

u(x, t) =
∑
n≥1

an(f) cos(nt) sin(nx) .

f) On a |∂α(an(f) cos(nt) sin(nx))| ≤ n|α|an(f)|. Ainsi, si k ≥ |α|+2, alors |∂α(an(f) cos(nt) sin(nx))| ≤
C

n2
, d’où ∂αu ∈ C.

On obtient que u ∈ C2 si k ≥ 4 .

(On s’inspire des calculs pour le devoir maison.) On a |an(f)| ≤ C

n4
si an(f (4)) = n4an(f).

Pour que cette égalité soit vraie, il suffit d’avoir f ∈ C4([0, π]), f(0) = f(π) = 0 et f ′′(0) = f ′′(π) = 0 .
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Exercice 2. Soit v : R × R∗+ × R, v(x, t, y) :=
1√
4πt

e−(x−y)
2/4tf(y), de sorte que, pour

t > 0, u(x, t) =

∫
R
v(x, t, y) dy.

Soit K un compact de R× R∗+. Soient
a := min{t ; (x, t) ∈ K} > 0, b := max{t ; (x, t) ∈ K}, M := max{|x| ; (x, t) ∈ K}.

Pour (x, t) ∈ K, on a

|v(x, t, y)| ≤ 1√
4πa

e−(x−y)
2/4bey

≤ 1√
4πa

e−y
2/4beyexy/2b

≤ 1√
4πa

e−y
2/4b+y+M |y|/2b := h(y).

La fonction h est intégrable. En effet, on a lim
|y|→∞

h(y)

1/(y2 + 1)
= 0, par croissances comparées,

d’où h(y) ≤ C

y2 + 1
pour C convenable.

Par ailleurs, v est continue dans l’ensemble des variables, d’où u est continue sur R×R∗+.
b) En singeant la réponse de la question a), on peut montrer que, dans R×R∗+, u est C∞

et que toute dérivée ∂α de u est donnée par ∂αu(x, t) =

∫
R
∂αv(x, t, y) dy.

En particulier, ut − uxx =

∫
R
(vt − vxx)(x, t, y) dy.

On vérifie par calcul direct que vt − vxx = 0, d’où ut − uxx = 0.

c) Soit t > 0. Le changement affine z = z(y) :=
x− y√

4t
donne (*) u(x, t) =

∫
R
f(x −

√
4tz)g(z) dz ; ici, g(z) =

1√
π
e−z

2

.

En notant que
∫
R
g = 1, on trouve que (*) reste encore vraie si t = 0. Ainsi, u(x, t) =∫

R
w(x, t, z) dz, x ∈ R, t ≥ 0, où w(x, t, z) :=

1√
π
f(x−

√
4tz)e−z

2

.

Soit K un compact de R× R+ et soient

b := max{t ; (x, t) ∈ K}, M := max{x ; (x, t) ∈ K}.
On a, pour (x, t) ∈ K,

|w(x, t, z)| ≤ 1√
π
eMe

√
4b|z|e−z

2

:= k(z).

Comme dans la question a), on a k(z) ≤ C

z2 + 1
pour C convenable ; k est donc intégrable.

Après avoir noté que w est continue, on trouve que u est continue.

Problème. a) On a ux(x, 0) = a et (ux(x, 0))2 + (uy(x, 0))2 = 1. Donc :
• si |a| > 1, alors le problème n’a pas de solution ;
• si |a| = 1, alors uy(x, 0) = 0 ;
• si |a| < 1, alors il existe une fonction σ : R→ {−1, 1} telle que uy(x, 0) = σ(x)

√
1− a2,

x ∈ R. Comme σ(x) =
uy(x, 0)√

1− a2
, on trouve que σ ∈ C1, d’où σ est constante. Ainsi, dans

ce cas on a deux possibilités : soit uy(x, 0) ≡
√

1− a2, soit uy(x, 0) ≡ −
√

1− a2.
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b) Si u est solution de (P ), alors uy(x, 0) ≡ ε
√

1− a2, avec ε ∈ {−1, 1}. Les caractéristiques
de u sont données par le système

.
x= 2p x(0) = x0
.
y= 2q y(0) = 0
.
z= 2(p2 + q2)

(1)
= 2 z(0) = ax0

.
p= 0 p(0) = a
.
q= 0 q(0) = ε

√
1− a2

.

Pour obtenir ce système, il est convenable de récrire la première équation de (P ) sous la
forme |∇u|2 = 1, ou encore p2 + q2 = 1 ; ceci donne

(1)
=.

En intégrant, on trouve

x(s) = x0 + 2as, y(s) = 2ε
√

1− a2s, z(s) = ax0 + 2s, p(s) = a, q(s) = ε
√

1− a2.

Donc, si u est solution, alors u(x0+2as, 2ε
√

1− a2s) = ax0+2s. On trouve u(x, t) = ax+ ε
√

1− a2t .
c) On doit avoir (ux(x, 0))2 + (uy(x, 0))2 = 1, ou encore (ϕ′(x))2 + (uy(x, 0))2 = 1. Pour
que cette équation ait une solution, il faut avoir |ϕ′(x)| ≤ 1, x ∈ R .
d) Comme dans la question a), sous (H), on doit avoir uy(x, 0) ≡ ε

√
1− ϕ′2(x), avec

ε ∈ {−1, 1}. On trouve que, si u est solution, alors ses caractéristiques sont données par

.
x= 2p x(0) = x0
.
y= 2q y(0) = 0
.
z= 2(p2 + q2) = 2 z(0) = ϕ(x0)
.
p= 0 p(0) = ϕ′(x0)
.
q= 0 q(0) = ε

√
1− ϕ′2(x0)

;

d’où

x(s) = x0+2ϕ′(x0)s, y(s) = 2ε
√

1− ϕ′2(x0)s, z(s) = ϕ(x0)+2s, p(s) = ϕ′(x0), q(s) = ε
√

1− ϕ′2(x0).

Pour ε = 1, on trouve que, si u est solution de (P ) (telle que uy(x, 0 ≡
√

1− ϕ′2(x)), alors
(1) u(Φ(x, t)) = ϕ(x) + 2t. C’est cette équation que nous allons étudier par la suite.

[De même, si ε = −1, alors la solution correspondante vérifie, si elle existe, (2) u(Ψ(x, t)) =

ϕ(x)+2t, où Ψ(x, t) := (x+2ϕ′(x)t,−2
√

1− ϕ′2(x)t). L’analyse de (2) est identique à celle
de (1) est sera omise par la suite. En particulier, nous verrons que, sous (H), (1) donne
bien une solution de (P ). Il en sera de même pour (2).]

e) Préliminaires : On a η′(s) =
1√

1− s2
+

s2
√

1− s23
> 0, d’où η est croissante. (H) implique

que ϕ′ est croissante. Par conséquent, ψ = η ◦ ϕ′ l’est aussi.
Pour montrer que (1) donne une solution de (P ), il suffit de montrer que Φ est un C2-
difféomorphisme. Clairement, Φ ∈ C2. Ainsi, il suffit de montrer :
que Φ est bijective ; que Φ est un difféomorphisme local (ce qui équivaut à Jac Φ 6= 0).

Étape 1. Φ est un difféomorphisme local

On a Jac Φ = 2(1 + 2tϕ′′(x))
√

1− ϕ′2(x) +
4tϕ′2(x)ϕ′′(x)√

1− ϕ′2(x)
> 0.

Étape 2. Φ est injective
Soient (x, t), (y, s) ∈ R×R+ tels que Φ(x, t) = Φ(y, s). [But : montrer que x = y et t = s.]

En regardant la deuxième coordonnée de Φ, on trouve (3) 2s =

√
1− ϕ′2(x)√
1− ϕ′2(y)

· 2t. En
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injectant cette égalité dans la formule de la première coordonnée de Φ, on obtient (4)
x− y = 2t

√
1− ϕ′2(x)(ψ(y)− ψ(x)).

Supposons par l’absurde que x 6= y, Par symétrie, on peut supposer x > y. Alors le membre
de gauche de (4) est > 0, alors que la monotonie de ψ implique que celui de droite est ≤ 0.
Contradiction. Aini, x = y. En revenant à (3), on trouve s = t.
Étape 3. Φ est surjective
On se donne (y, s) ∈ R× R+. [But : trouver (x, t) ∈ R× R+ tel que Φ(x, t) = (y, s).]
On a Φ(x, t) = (y, s) ⇐⇒ t =

s

2
√

1− ϕ′2(x)
et h(x) := x + sψ(x) = y. Ainsi, il suffit de

montrer que h est surjective.
Par monotonie de ψ, on a

x ≤ 0 =⇒ h(x) ≤ x+ sψ(0) =⇒ lim
x→−∞

h(x) = −∞.

De même, on a h(x) ≥ x+ sψ(0) si x ≥ 0 et lim
x→∞

h(x) =∞.
On obtient que h(R) = R, c’est-à-dire h est surjective.
f) Si u est solution de (P ) correspondant à ε = 1, alors (5) u(Φ(x, t)) = ϕ(x) + 2t, x ∈ R,
t ≥ 0. Φ étant un C2-difféomorphisme, on obtient à la fois que (5) détermine uniquement
u et que le u ainsi obtenu est solution de (P ). Analyse identique si ε = −1. Ainsi, sous
(H), (P ) a exactement deux solutions.
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