Final exam
DECEMBER 13, 2023-3 HOURS

Part I. Solving the Laplace equation with divergence form datum. The purpose of this part is to partially prove the following
Theorem. Let Ω be a bounded domain in \mathbb{R}^{N}, of class C^{2}, and let $1<p<\infty$. For $F \in L^{p}\left(\Omega ; \mathbb{R}^{N}\right)$, the equation

$$
\begin{equation*}
-\Delta u=\operatorname{div} F \operatorname{in} \mathscr{D}^{\prime}(\Omega) \tag{1}
\end{equation*}
$$

has a unique solution $u \in W_{0}^{1, p}(\Omega ; \mathbb{R})$. In addition, with some finite constant C independent of F (but possibly depending on p and Ω), we have the estimate $\|u\|_{W^{1, p}} \leq C\|F\|_{p}$.

Preliminaries. a) The following identity may be useful. If $\omega, \Omega \subset \mathbb{R}^{N}$ are open sets and $\Phi \in C^{1}(\omega ; \Omega)$, then

$$
\nabla(u \circ \Phi)={ }^{t} J \Phi[(\nabla u) \circ \Phi], \forall u \in C^{1}(\Omega ; \mathbb{R})
$$

b) We set $\mathbb{R}_{+}^{N}=\mathbb{R}^{N-1} \times(0, \infty)$, $B_{+}=\left\{x \in \mathbb{R}_{+}^{N} ;|x|<1\right\}$, and $B_{0}=\left\{\left(x^{\prime}, 0\right) ; x^{\prime} \in \mathbb{R}^{N-1},\left|x^{\prime}\right| \leq 1\right\}$.
c) In what follows, C denotes a constant depending possibly on p and Ω, but not on F, u, or the other scalar functions, matrix-valued functions, or vector fields appearing in the equations. This constant may change from a line to another.
d) We always suppose that $1<p<\infty$. We take for granted the L^{p}-regularity theory for the equation $-\Delta u=f \in W^{k, p}(\Omega ; \mathbb{R})$ and the following variant of the crucial lemma of the L^{p}-regularity theory.

Crucial lemma. There exist some $\varepsilon_{0}>0$ and $C<\infty$, possibly depending on $1<p<\infty$ and on N, but not on B, H, h, or w below, such that, for: (a) $w \in W^{2, p}\left(B_{+} ; \mathbb{R}\right)$ satisfying: (i) there exists some $0<R<1$ such that $w(x)=0$ if $|x|>R$; (ii) $\operatorname{tr}_{\mid B_{0}} w=0$; (b) $H \in L^{p}\left(B_{+} ; \mathbb{R}^{N}\right)$; (c) $h \in L^{p}\left(B_{+} ; \mathbb{R}\right)$; (d) $B \in L^{\infty}\left(B_{+} ; M_{N}(\mathbb{R})\right)$, satisfying the equation

$$
-\Delta w=\operatorname{div}(B \nabla w)+\operatorname{div} H+h \text { in } \mathscr{D}^{\prime}\left(B_{+}\right)
$$

and the smallness condition $\|B\|_{\infty} \leq \varepsilon_{0}$, we have

$$
\|w\|_{W^{1, p}} \leq C\|H\|_{p}+C\|h\|_{p} .
$$

Exercise A. If p, q are conjugated exponents, prove that

$$
\left[u \in W_{0}^{1, p}(\Omega ; \mathbb{R}),-\Delta u=0, v \in W^{2, q}(\Omega ; \mathbb{R}) \cap W_{0}^{1, q}(\Omega ; \mathbb{R})\right] \Longrightarrow \int_{\Omega} u(-\Delta v)=0
$$

and derive the uniqueness, in $W_{0}^{1, p}(\Omega ; \mathbb{R})$, of a solution of (1).
Exercise B. Assume that the following a priori estimate holds.

$$
\begin{equation*}
\left[F \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), u \in W_{0}^{1, p}(\Omega ; \mathbb{R}) \text { solves }(1)\right] \Longrightarrow\|u\|_{W^{1, p}} \leq C\|F\|_{p}+C\|u\|_{p} \tag{2}
\end{equation*}
$$

1. Prove that the estimate (2) implies the validity of the following a priori estimate.

$$
\left[F \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), u \in W_{0}^{1, p}(\Omega ; \mathbb{R}) \text { solves }(1)\right] \Longrightarrow\|u\|_{W^{1, p}} \leq C\|F\|_{p}
$$

2. Prove that the estimate (2) (and possibly other ingredients, to be specified) implies the theorem.

Exercise C. Let $u \in W_{l o c}^{1,1}(\Omega ; \mathbb{R})$ and $F \in L_{l o c}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ satisfy (1). Let $\Phi: \omega \rightarrow \Omega$ be a C^{1}-diffeomorphism. Set $v=u \circ \Phi$. Find (explicitly) a matrix-valued function $A \in C\left(\omega ; M_{N}(\mathbb{R})\right)$ and a vector field $G \in L_{l o c}^{1}\left(\omega ; \mathbb{R}^{N}\right)$ such that
$-\operatorname{div}(A \nabla v)=\operatorname{div} G$ in $\mathscr{D}^{\prime}(\omega)$,
and carefully justify and give a precise meaning to (3).
Exercise D. Let $v \in W^{1, p}\left(B_{+} ; \mathbb{R}\right), A \in C\left(B_{+} ; M_{N}(\mathbb{R})\right)$, and $G \in L^{p}\left(B_{+} ; \mathbb{R}\right)$ satisfy (3) with $\omega=B_{+}$. Assume, moreover, that A is symmetric. (Is this requirement restrictive?)

1. Let $\zeta \in C^{1}\left(B_{+} ; \mathbb{R}\right)$ and set $w=\zeta v$. Carefully justify the equality

$$
\begin{equation*}
-\operatorname{div}(A \nabla w)=\operatorname{div}(\zeta G)-G \cdot \nabla \zeta-2 \operatorname{div}(v A \nabla \zeta)+v \operatorname{div}(A \nabla \zeta) \text { in } \mathscr{D}^{\prime}\left(B_{+}\right) \tag{4}
\end{equation*}
$$

2. Assume furthermore that: (i) for some $0<R<1$, we have $\zeta(x)=0$ if $|x| \geq R$; (ii) $\zeta \in C^{2}\left(\overline{B_{+}}\right)$; (iii) $v \in W^{2, p}\left(B_{+}\right)$; (iv) $\operatorname{tr}_{\mid B_{0}} v=0$. Write $A=\mathrm{I}_{N}+B$. Under an appropriate smallness condition on B, prove the a priori estimate

$$
\begin{equation*}
\|w\|_{W^{1, p}} \leq C\|G\|_{p}+C\|v\|_{p} . \tag{5}
\end{equation*}
$$

3. Sketch the strategy for deriving (2) from (5) (and possibly other ingredients).

Part II. A uniqueness result. In what follows, B denotes the unit ball in \mathbb{R}^{N}. The purpose of this part is to establish the implication

$$
\begin{equation*}
\left[u \in W_{0}^{1,1}(B ; \mathbb{R}),-\Delta u=0\right] \Longrightarrow u=0 \tag{6}
\end{equation*}
$$

Preliminaries. a) The following result (see, e.g., [1, Proposition 9.18]) may be useful. Let $\Omega \subset \mathbb{R}^{N}$ be an open set and let $u \in W_{0}^{1,1}(\Omega ; \mathbb{R})$. Let \widetilde{u} be the extension of u with the value 0 outside Ω. Then $\widetilde{u} \in W^{1,1}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ and, in addition, $\nabla \widetilde{u}$ is the extension of ∇u with the value 0 outside Ω.
b) We set, for $r>0, B_{r}:=\left\{x \in \mathbb{R}^{N} ;|x|<r\right\}, S_{r}:=\left\{x \in \mathbb{R}^{N} ;|x|=r\right\}$.

Exercise A. Let $u \in C(B ; \mathbb{R}) \cap W_{0}^{1,1}(B ; \mathbb{R})$. For $0<r<1$, prove that

$$
\begin{equation*}
\int_{S_{r}}|u| \leq \int_{B \backslash B_{r}}|\nabla u| \tag{7}
\end{equation*}
$$

A possible approach consists of arguing by smoothing, by carefully justifying the limiting argument.
Exercise B. We now prove (6).

1. Let $g \in C_{c}^{\infty}(B ; \mathbb{R})$ and let $v \in H_{0}^{1}(B ; \mathbb{R})$ solve $-\Delta v=g$. For $0<r<1$, prove that

$$
\begin{align*}
\left|\int_{B_{r}} u g\right| & \leq\|\nabla v\|_{L^{\infty}(B)} \int_{S_{r}}|u|+\|v\|_{L^{\infty}\left(S_{r}\right)} \int_{S_{r}}|\nabla u| \\
& \leq\|\nabla v\|_{L^{\infty}(B)} \int_{B \backslash B_{r}}|\nabla u|+(1-r)\|\nabla v\|_{L^{\infty}(B)} \int_{S_{r}}|\nabla u| . \tag{8}
\end{align*}
$$

2. Conclude, using an appropriate sequence $r_{j} \rightarrow 1$.

References

[1] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

