FINAL EXAM DECEMBER 13, 2023 – 3 HOURS

Part I. Solving the Laplace equation with divergence form datum. The purpose of this part is to partially prove the following

Theorem. Let Ω be a bounded domain in \mathbb{R}^N , of class C^2 , and let $1 . For <math>F \in L^p(\Omega; \mathbb{R}^N)$, the equation

$$-\Delta u = \operatorname{div} F \text{ in } \mathscr{D}'(\Omega) \tag{1}$$

has a unique solution $u \in W_0^{1,p}(\Omega;\mathbb{R})$. In addition, with some finite constant C independent of F (but possibly depending on p and Ω), we have the estimate $\|u\|_{W^{1,p}} \leq C\|F\|_p$.

Preliminaries. a) The following identity may be useful. If $\omega, \Omega \subset \mathbb{R}^N$ are open sets and $\Phi \in C^1(\omega; \Omega)$, then

$$\nabla(u \circ \Phi) = {}^{t}J\Phi[(\nabla u) \circ \Phi], \ \forall \ u \in C^{1}(\Omega; \mathbb{R}).$$

- b) We set $\mathbb{R}_+^N = \mathbb{R}^{N-1} \times (0, \infty)$, $B_+ = \{x \in \mathbb{R}_+^N; |x| < 1\}$, and $B_0 = \{(x', 0); x' \in \mathbb{R}^{N-1}, |x'| \le 1\}$.
- c) In what follows, C denotes a constant depending possibly on p and Ω , but not on F, u, or the other scalar functions, matrix-valued functions, or vector fields appearing in the equations. This constant may change from a line to another.
- d) We always suppose that $1 . We take for granted the <math>L^p$ -regularity theory for the equation $-\Delta u = f \in W^{k,p}(\Omega;\mathbb{R})$ and the following variant of the crucial lemma of the L^p -regularity theory.

Crucial lemma. There exist some $\varepsilon_0>0$ and $C<\infty$, possibly depending on $1< p<\infty$ and on N, but not on B, H, h, or w below, such that, for: (a) $w\in W^{2,p}(B_+;\mathbb{R})$ satisfying: (i) there exists some 0< R<1 such that w(x)=0 if |x|>R; (ii) $\operatorname{tr}_{|B_0}w=0$; (b) $H\in L^p(B_+;\mathbb{R}^N)$; (c) $h\in L^p(B_+;\mathbb{R})$; (d) $B\in L^\infty(B_+;M_N(\mathbb{R}))$, satisfying the equation

$$-\Delta w = \operatorname{div}(B\nabla w) + \operatorname{div} H + h \text{ in } \mathscr{D}'(B_+)$$

and the smallness condition $||B||_{\infty} \leq \varepsilon_0$, we have

$$\|w\|_{W^{1,p}} \le C \|H\|_p + C \|h\|_p.$$

Exercise A. If p, q are conjugated exponents, prove that

$$[u \in W_0^{1,p}(\Omega; \mathbb{R}), -\Delta u = 0, v \in W^{2,q}(\Omega; \mathbb{R}) \cap W_0^{1,q}(\Omega; \mathbb{R})] \implies \int_{\Omega} u(-\Delta v) = 0,$$

and derive the uniqueness, in $W_0^{1,p}(\Omega;\mathbb{R})$, of a solution of (1).

Exercise B. Assume that the following *a priori* estimate holds.

$$[F \in C_c^{\infty}(\Omega; \mathbb{R}^N), u \in W_0^{1,p}(\Omega; \mathbb{R}) \text{ solves (1)}] \implies \|u\|_{W^{1,p}} \le C \|F\|_p + C \|u\|_p. \tag{2}$$

1. Prove that the estimate (2) implies the validity of the following *a priori* estimate.

$$[F \in C_c^{\infty}(\Omega; \mathbb{R}^N), u \in W_0^{1,p}(\Omega; \mathbb{R}) \text{ solves (1)}] \implies \|u\|_{W^{1,p}} \le C \|F\|_p.$$

2. Prove that the estimate (2) (and possibly other ingredients, to be specified) implies the theorem.

Exercise C. Let $u \in W^{1,1}_{loc}(\Omega;\mathbb{R})$ and $F \in L^1_{loc}(\Omega;\mathbb{R}^N)$ satisfy (1). Let $\Phi: \omega \to \Omega$ be a C^1 -diffeomorphism. Set $v = u \circ \Phi$. Find (explicitly) a matrix-valued function $A \in C(\omega; M_N(\mathbb{R}))$ and a vector field $G \in L^1_{loc}(\omega;\mathbb{R}^N)$ such that

$$-\operatorname{div}(A\nabla v) = \operatorname{div} G \text{ in } \mathscr{D}'(\omega), \tag{3}$$

and carefully justify and give a precise meaning to (3).

Exercise D. Let $v \in W^{1,p}(B_+; \mathbb{R})$, $A \in C(B_+; M_N(\mathbb{R}))$, and $G \in L^p(B_+; \mathbb{R})$ satisfy (3) with $\omega = B_+$. Assume, moreover, that A is symmetric. (Is this requirement restrictive?)

1. Let $\zeta \in C^1(B_+; \mathbb{R})$ and set $w = \zeta v$. Carefully justify the equality

$$-\operatorname{div}(A\nabla w) = \operatorname{div}(\zeta G) - G \cdot \nabla \zeta - 2\operatorname{div}(vA\nabla \zeta) + v\operatorname{div}(A\nabla \zeta)\operatorname{in} \mathscr{D}'(B_+). \tag{4}$$

2. Assume furthermore that: (i) for some 0 < R < 1, we have $\zeta(x) = 0$ if $|x| \ge R$; (ii) $\zeta \in C^2(\overline{B_+})$; (iii) $v \in W^{2,p}(B_+)$; (iv) $\operatorname{tr}_{|B_0} v = 0$. Write $A = \operatorname{I}_N + B$. Under an appropriate smallness condition on B, prove the *a priori* estimate

$$||w||_{W^{1,p}} \le C||G||_p + C||v||_p. \tag{5}$$

3. Sketch the strategy for deriving (2) from (5) (and possibly other ingredients).

Part II. A uniqueness result. In what follows, B denotes the unit ball in \mathbb{R}^N . The purpose of this part is to establish the implication

$$[u \in W_0^{1,1}(B; \mathbb{R}), -\Delta u = 0] \implies u = 0.$$
 (6)

Preliminaries. a) The following result (see, e.g., [1, Proposition 9.18]) may be useful. Let $\Omega \subset \mathbb{R}^N$ be an open set and let $u \in W_0^{1,1}(\Omega;\mathbb{R})$. Let \widetilde{u} be the extension of u with the value 0 outside Ω . Then $\widetilde{u} \in W^{1,1}(\mathbb{R}^N;\mathbb{R})$ and, in addition, $\nabla \widetilde{u}$ is the extension of ∇u with the value 0 outside Ω .

b) We set, for
$$r > 0$$
, $B_r := \{x \in \mathbb{R}^N; |x| < r\}$, $S_r := \{x \in \mathbb{R}^N; |x| = r\}$.

Exercise A. Let $u \in C(B; \mathbb{R}) \cap W_0^{1,1}(B; \mathbb{R})$. For 0 < r < 1, prove that

$$\int_{S} |u| \le \int_{R \setminus R} |\nabla u|. \tag{7}$$

A possible approach consists of arguing by smoothing, by carefully justifying the limiting argument.

Exercise B. We now prove (6).

1. Let $g \in C_c^{\infty}(B; \mathbb{R})$ and let $v \in H_0^1(B; \mathbb{R})$ solve $-\Delta v = g$. For 0 < r < 1, prove that

$$\left| \int_{B_r} ug \right| \le \|\nabla v\|_{L^{\infty}(B)} \int_{S_r} |u| + \|v\|_{L^{\infty}(S_r)} \int_{S_r} |\nabla u|$$

$$\le \|\nabla v\|_{L^{\infty}(B)} \int_{B \setminus B_r} |\nabla u| + (1 - r) \|\nabla v\|_{L^{\infty}(B)} \int_{S_r} |\nabla u|.$$
(8)

2. Conclude, using an appropriate sequence $r_i
ightarrow 1$.

References

[1] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.