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PART 1. SOLVING THE LAPLACE EQUATION WITH DIVERGENCE FORM DATUM. The purpose of this part is
to partially prove the following

Theorem. Let ) be a bounded domain in RY, of class C2, and let 1 < p < co. For F' € LP(Q; RN), the
equation

—Au =div Fin 2'(Q) M

has a unique solution u € VVO1 P(€; R). In addition, with some finite constant C independent of F (but
possibly depending on p and (2), we have the estimate [[ully1, < C||F,,.

Preliminaries. a) The following identity may be useful. If w, Q C R" are open sets and ® € C*(w; ),
then

V(uo®) ="tJ®[(Vu) o ®], Vu € C'(4R).

b) We set RY = RV~1 x (0,00), By = {z € RY; |z| < 1},and By = {(2/,0); 2’ € RN 1 |2/| < 1}.
¢) In what follows, C' denotes a constant depending possibly on p and €2, but not on F', u, or the other
scalar functions, matrix-valued functions, or vector fields appearing in the equations. This constant
may change from a line to another.

d) We always suppose that 1 < p < oco. We take for granted the LP-regularity theory for the equation
—Au = f € WFP(Q; R) and the following variant of the crucial lemma of the LP-regularity theory.

Crucial lemma. There exist some &g > 0and C' < oo, possibly dependingon1 < p < coandon N,
but not on B, H, h, or w below, such that, for: () w € W?P(B,;R) satisfying: (i) there exists some
0 < R < 1suchthatw(z) = 0if |z > R; (ii) tr)p, w = 0; (b) H € LP(B;RY); (o) h € LP(B1;R);
(d) B € L*>®(By; My (R)), satisfying the equation

—Aw = div(BVw) +div H + hin 2'(B.)
and the smallness condition || B|| , < €y, we have

lwllyo < ClIH], + ClR],.

Exercise A. If p, q are conjugated exponents, prove that
[u e Wy P (4 R), —Au = 0,0 € W9(Q;R) N W&’q(Q;R)] = / u(—Av) =0,
Q

and derive the uniqueness, in VVO1 P(Q; R), of a solution of (1).
Exercise B. Assume that the following a priori estimate holds.
[F e C(Q;RY),u e Wol’p(Q;]R) solves D] = |[ullyr, < CIF|, + Clull,. 2)
1. Prove that the estimate (2) implies the validity of the following a priori estimate.

[F € C(RY),u e Wy (4 R) solves (1] = ||uflyy10 < C|IF],.
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2. Prove that the estimate (2) (and possibly other ingredients, to be specified) implies the theorem.

Exercise C. Letu € W' (Q;R) and F € L}, (Q;RY) satisfy (1). Let ® : w — Q be a C'-diffeomor-
phism. Set v = u o ®. Find (explicitly) a matrix-valued function A € C(w; My (R)) and a vector field
G € L}, (w; RY) such that

—div(AVv) = divG in ' (w), 3
and carefully justify and give a precise meaning to (3).

Exercise D. Letv € W'P(B,;R), A € C(By; My(R)),and G € LP(B,;R) satisfy 3) withw = B..
Assume, moreover, that A is symmetric. (Is this requirement restrictive?)

1. Let¢ € CY(By;R) and set w = (v. Carefully justify the equality
—div(AVw) = div(¢G) — G - V¢ — 2div(vAV() + v div(AV() in 2'(By). 4
2. Assume furthermore that: (i) for some 0 < R < 1, we have ((x) = 0if |z| > R; (ii) ¢ € C*(By);

(i) v € W?2P(B,); (iv) trg,v = 0. Write A = Iy + B. Under an appropriate smallness
condition on B, prove the a priori estimate

Il < CIGH, + Clloll,, (5)

3. Sketch the strategy for deriving (2) from (5) (and possibly other ingredients).

PART II. A UNIQUENESS RESULT. In what follows, B denotes the unit ballin R . The purpose of this part
is to establish the implication

[ueWol’l(B;R),—Au:O} = u=0. 6

Preliminaries. a) The following result (see, e.g., [1, Proposition 9.18]) may be useful. Let Q@ C R be
an open set and let v € Wol’l(Q; R). Let u be the extension of u with the value 0 outside 2. Then
u € WHL(RYN; R) and, in addition, V4 is the extension of Vu with the value 0 outside 2.

b) We set, forr > 0, B, := {x € RY; |2| < r}, S, := {z € RY; |z| = r}.

ExerciseA.Letu € C(B;R) N W1 (B;R). For 0 < r < 1, prove that

/yu\</ 1Vl @

Apossible approach consists of arguing by smoothing, by carefully justifying the limiting argument.
Exercise B. We now prove (6).

1. Letg € C°(B;R) andletv € H(B;R) solve —Av = g. For 0 < r < 1, prove that

' / ug| < [Vl / a] + ol s, / 1V

< Vol g /B [T+ Ve /S Vul.

(8)

2. Conclude, using an appropriate sequence r; — 1.
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