Lecture # 4 Regularity theory

(a) Exercises for the November 17 session

Exercise 1. Let $N \ge 2$ and $u \in C^1(\mathbb{R}^N \setminus \{0\})$ be such that $\partial_1 u \in L^1_{loc}(\mathbb{R}^N)$. Prove that $u \in L^1_{loc}(\mathbb{R}^N)$ and that $\partial_1 u$ is the distributional derivative of u. What if N = 1? **Exercise 2.** Let ω_N be the area of \mathbb{S}^{N-1} . Let E be "the" fundamental solution of $-\Delta$ in \mathbb{R}^N ,

$$E(x) := \begin{cases} -(1/\omega_2) \ln |x|, & \text{if } N = 2\\ (1/[(N-2)\omega_N]) |x|^{2-N}, & \text{if } N \ge 3 \end{cases}.$$

1. Prove that, in the distributions sense,

$$\partial_j E = g_j$$
, where $g_j(x) := -\frac{1}{\omega_N} \frac{x_j}{|x|^N}$.

2. If $1 \leq p \leq \infty$ and $f \in L^p_c(\mathbb{R}^N)$, then, in the distributions sense,

$$\partial_j(f * E) = h_j$$
, where $h_j(x) := \int_{\mathbb{R}^N} f(y) g_j(x - y) dy$

Exercise 3. Let $K \in \mathscr{D}'(\mathbb{R}^N) \cap L^1_{loc}(\mathbb{R}^N \setminus \{0\})$. Let $f \in C^{\infty}_c(\mathbb{R}^N)$ and set $L := \operatorname{supp} f$. Then:

$$(K*f)(x) = \int_{\mathbb{R}^N} f(y)K(x-y)\,dy = \int_L f(y)K(x-y)\,dy, \,\forall x \notin \operatorname{supp} L.$$
(1)

Exercise 4. Let (X, \mathscr{T}, μ) be a measured space. (Warning: μ is not supposed σ -finite.) If $f : X \to \mathbb{R}$ is measurable and $1 \le p < \infty$, then

$$||f||_p^p = p \int_0^\infty t^{p-1} \underbrace{\mu([|f| > t])}_{:=F_f(t)} dt$$

(b) Exercises for the November 24 session

Exercise 1. Let $u \in H_0^1(\Omega)$ be an eigenfunction of $-\Delta$. Prove that $u \in C^{\infty}(\Omega)$.

In what follows, ω is an open set in \mathbb{R}^N .

Exercise 2. Let $\Phi: \omega \to \Omega$ be a bi-Lipschitz C^1 -diffeomorphism. Prove that, with constants $0 < C_{1,p} < C_{2,p} < \infty$ depending only on $1 \le p < \infty$ and on Φ , we have

$$C_1 \| f \circ \Phi \|_{L^p(\omega)} \le \| f \|_{L^p(\Omega)} \le C_2 \| f \circ \Phi \|_{L^p(\omega)}, \forall \text{ measurable function } f : \Omega \to \mathbb{R}.$$

Slightly more difficult questions: (i) prove that the above constants depend only on p and on the Lipschitz constants of Φ and Φ^{-1} ; (ii) prove that the above still holds under the weaker assumption that Φ is a bi-Lipschitz homeomorphism.

Exercise 3. Let $\Phi : \omega \to \Omega$ be a C^1 -diffeomorphism. If $f \in W^{1,1}_{loc}(\Omega)$, prove that $f \circ \Phi \in W^{1,1}_{loc}(\omega)$ and that the chain rule holds, i.e.,

$$\partial_i (f \circ \Phi) = \sum_{j=1}^N [(\partial_j f) \circ \Phi] [\partial_i \Phi_j] \text{ in } \mathscr{D}'(\omega), \ \forall \ 1 \le i \le N.$$

Exercise 4. Let $\Phi : \omega \to \Omega$ be a C^1 -diffeomorphism. Let $u \in W^{1,1}_{loc}(\Omega)$ satisfy $-\Delta u = f \in L^1_{loc}(\Omega)$ in the distributions sense. Set $v := u \circ \Phi \in W^{1,1}_{loc}(\omega)$. Then, in the distributions sense, we have, in ω ,

$$-\operatorname{div}\left(A\nabla v\right) = g \in L^{1}_{loc}(\omega),\tag{2}$$

where

$$A = A(x) := |J\Phi| [(J\Phi)^{-1}] [{}^t [(J\Phi)^{-1}]], g := |J\Phi| f \circ \Phi.$$

Exercise 5. Set $\mathbb{R}^N_+ := \{x \in \mathbb{R}^N; x_N > 0\}$. Let $u \in W^{1,1}(\mathbb{R}^N_+)$. Let $h \in \mathbb{R}^{N-1} \times \{0\}$. Give a meaning to and prove the equality tr $u(\cdot + h) = (\operatorname{tr} u)(\cdot + h)$.

Exercise 6. Let p, q be conjugated exponents, $g \in L^q(\mathbb{R}^N_+)$, $w \in W^{1,p}(\mathbb{R}^N_+)$, $h \in \mathbb{R}^{N-1} \times \{0\}$. Then

$$\left| \int_{\mathbb{R}^{N}_{+}} (g(x+h) - g(x)) \, w(x) \, dx \right| \le |h| \, \|g\|_{q} \, \|\nabla w\|_{p}.$$

Exercise 7. Let $f \in L^1_{loc}(\mathbb{R}^N_+)$. Then

$$\lim_{t \to 0} \frac{f(\cdot + te_j) - f}{t} = \partial_j f \text{ in } \mathscr{D}'(\mathbb{R}^N_+), \, \forall \, 1 \le j \le N - 1$$

Exercise 8. Let $u \in W^{2,1}(\mathbb{R}^N_+)$.

1. Let $\Sigma := \mathbb{R}^{N-1} \times \{0\}$, that we identify with \mathbb{R}^{N-1} . When $\varphi \in C_c^2(\overline{\mathbb{R}^N_+})$, prove the generalized (second) Green formula

$$\int_{\mathbb{R}^N_+} (-\Delta u) \varphi = \int_{\mathbb{R}^{N-1}} [\operatorname{tr}_{|\Sigma} \partial_N u] \varphi - \int_{\mathbb{R}^{N-1}} [\operatorname{tr}_{|\Sigma} u] \partial_N \varphi + \int_{\mathbb{R}^N_+} u (-\Delta \varphi).$$

2. If $F : \mathbb{R}^N_+ \to \mathbb{R}$, set

$$F^*(x) = F^*(x_1, \dots, x_N) := \begin{cases} F(x), & \text{if } x_N > 0\\ -F(x_1, \dots, x_{N-1}, -x_N), & \text{if } x_N < 0 \end{cases}$$

Let $u \in W^{2,1}(\mathbb{R}^N_+)$ satisfy $\operatorname{tr}_{|\Sigma} u = 0$. Prove that $-\Delta(u^*) = (-\Delta u)^*$.

(c) Warnings

A Exercise (Weierstrass' counterexample to Dirichlet's principle) Let $0 < \alpha < 1$ and set

$$v(x,y) := (x^2 - y^2) \left(-\ln(x^2 + y^2) \right)^{\alpha}, \, \forall \, (x,y) \in \mathbb{D} := \{ (x,y) \in \mathbb{R}^2; \, x^2 + y^2 < 1 \}.$$

Prove that:

- (a) $v \notin C^2(\mathbb{D})$.
- (b) The distributional Laplacian $f := \Delta v$ is continuous on \mathbb{D} .
- (c) The equation $\Delta u = f$ has no classical (i.e., C^2) solution near the origin.
- B Useful reference for items B and C: [10]

Exercise Let $\alpha \in \mathbb{R} \setminus \{-1, 1 - N\}$ and set

$$u(x) := x_1 |x|^{\alpha}, \, \forall x \in \mathbb{R}^N \setminus \{0\}, \, \beta := -\frac{\alpha(\alpha + N)}{(\alpha + 1)(\alpha + N - 1)}.$$

Then

$$\sum_{1 \le i \le N} \partial_i \left(\sum_{1 \le j \le N} (\delta_{ij} + \beta \, x_i x_j \, |x|^{-2}) \partial_j u \right) = 0 \text{ in } \mathbb{R}^N \setminus \{0\}.$$

 $\fbox{C} \quad \textbf{Theorem (Serrin) A homogeneous uniformly elliptic equation in divergence form may have locally unbounded <math>W^{1,1}_{loc}(\Omega)$ weak solutions.

More specifically, if $N\geq 2$ and $0<\varepsilon<1$, and we set

$$u(x) := \frac{x_1}{|x|^{N-1+\varepsilon}}, \ x \in \mathbb{R}^N,$$

and

$$A(x) := \mathrm{Id}_N + \frac{b}{|x|^2} (x_i x_j)_{1 \le i, j \le N}, \ x \in \mathbb{R}^N, \ \text{with} \ b := \frac{N-1}{\varepsilon(\varepsilon + N - 2)} - 1,$$

then $u\in W^{1,1}_{loc}(\mathbb{R}^N)\setminus L^\infty_{loc}(\mathbb{R}^N)$, A is uniformly elliptic in \mathbb{R}^N , and

 $\operatorname{div}\left(A\nabla u\right) = 0 \text{ in } \mathscr{D}'(\mathbb{R}^N).$

(d) Singular integrals

General reference: [8, Section 3]

- A **Proposition.** With the above notation, let $K := \partial_k g_j = \partial_k \partial_j E$ (in the distributions sense). Then:
 - (a) $K \in \mathscr{D}'(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N \setminus \{0\})$, and in particular (1) holds.

(b) $K \in \mathscr{S}'$ and, in the distributions sense,

$$\widehat{K}(\xi) = \ell_{j,k}$$
, where $\ell_{j,k}(\xi) := -\frac{\xi_j \xi_k}{|\xi|^2}$.

(c) For some finite C, we have $|\nabla K(x)| \leq C/|x|^{N+1}$, $\forall x \in \mathbb{R}^N \setminus \{0\}$.

Useful reference: [6, Theorem 2.3.4]

B Marcinkiewicz interpolation theorem (special case) Let (X, \mathscr{T}, μ) be a measured space. Let $1 < r < \infty$ and let T be a linear operator on $L^1 \cap L^r(X)$ such that, for every $f \in L^1 \cap L^r(X)$, Tf is a measurable function on X and, for some $K_1, K_r < \infty$, we have

$$\mu([|Tf| > t]) \le K_1 \frac{\|f\|_1}{t}, \,\forall f \in L^1 \cap L^r(X), \,\forall t > 0,$$

$$\mu([|Tf| > t]) \le K_r \frac{\|f\|_r^r}{t^r}, \,\forall f \in L^1 \cap L^r(X), \,\forall t > 0.$$

Then, for every $1 and some <math>C_p < \infty$,

$$||Tf||_{p} \leq C_{p} ||f||_{p}, \forall f \in L^{1} \cap L^{r}(X),$$

and in particular T admits a unique linear continuous extension from $L^p(X)$ into $L^p(X)$. In the special case where μ is a Radon measure in \mathbb{R}^N , the same holds if T is initially defined on $C_c(\mathbb{R}^N)$ or even $C_c^{\infty}(\mathbb{R}^N)$.

- C Calderón-Zygmund decomposition, second form Let $f \in C_c(\mathbb{R}^N)$ and t > 0. Then, with finite constants independent of f and t there exist: a family of disjoint cubes $C_n \subset \mathbb{R}^N$ and functions $g, h_n \in L_c^{\infty}(\mathbb{R}^N)$ (depending on f and t) such that
 - (a) g = f in $\mathbb{R}^{N} \setminus \bigcup_{n} C_{n}$. (b) $|g| \leq Ct$. (c) supp $h_{n} \subset C_{n}, \forall n$. (d) $\int h_{n} = 0, \forall n$. (e) $\int |h_{n}| \leq Ct, \forall n$. (f) $f = g + \sum_{n} h_{n}$ (pointwise). (g) $\sum_{n} |C_{n}| \leq C \frac{\|f\|_{1}}{t}$. (h) $\|g\|_{1} + \sum_{n} \|h_{n}\|_{1} \leq C \|f\|_{1}$.

(i)
$$\left\|\sum_{n}h_{n}\right\|_{2}^{2} = \sum_{n}\|h_{n}\|_{2}^{2} \le \|f\|_{2}^{2}.$$

D Calderón-Zygmund theorem adapted to the Laplace equation Let $K \in \mathscr{S}'(\mathbb{R}^N) \cap C^1(\mathbb{R}^N \setminus \{0\})$ satisfy

- (i) \widehat{K} is a bounded *real* function.
- (ii) $|\nabla K(x)| \leq C/|x|^{N+1}$, $\forall x \in \mathbb{R}^N \setminus \{0\}$, for some finite C.

Let Tf := K * f, $\forall f \in C_c^{\infty}(\mathbb{R}^N)$. Then

 $\|Tf\|_{p} \leq C_{p,N} \|f\|_{p}, \,\forall 1$

In particular, for $1 , T admits a unique linear continuous extension from <math>L^p(\mathbb{R}^N)$ into itself.

Corollary. Let $1 and <math>f \in L^p_c(\mathbb{R}^N)$, and set u := E * f. Then

 $\|\partial_j \partial_k u\|_p \le C_{p,N} \|f\|_p, \,\forall \, 1 \le j, k \le N.$

E A standard "elliptic estimate" Let $1 , <math>K \subset \Omega \subset \mathbb{R}^N$, with K compact and Ω open. If $-\Delta u = f \in L^p(\Omega)$, then $u \in W^{2,p}_{loc}(\Omega)$ and, for some finite $C = C_{p,N,\Omega,K}$,

$$||u||_{W^{2,p}(K)} \le C(||f||_{L^p(\Omega)} + ||u||_{L^1(\Omega)}).$$

(e) L^p regularity theory

Useful references: [4, Chapter 9] for the regularity theory, [8, Section 1.5] for trace theory

A Main regularity theorem (Calderón, Zygmund, Koselev, Greco, Agmon, Douglis, Nirenberg, ...) Let $\Omega \subset \mathbb{R}^N$ be a bounded $C^{1,1}$ -domain. Let $1 and <math>f \in L^p(\Omega)$. Then the problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(3)

has a unique (generalized) solution $u \in W^{2,p}(\Omega)$. In addition, for some finite C independent of f, $||u||_{W^{2,p}(\Omega)} \leq C||f||_p$.

Exercise. The above u is not only a distributional solution, but also a *strong solution*, in the sense that for a.e. $x \in \Omega$ we have

$$-\sum_{j=1}^{N}\partial_{jj}u(x) = f(x)$$

B Toolbox In what follows, $\omega, \Omega \subset \mathbb{R}^N$ are bounded open sets.

For the record.

Rademacher's theorem A Lipschitz function $f : \Omega \to \mathbb{R}$ is differentiable a.e., and its distributional gradient and point gradient coincide.

Useful reference: [3, Section 3.1.2]

Exercise. Let $\Phi : \overline{\omega} \to \overline{\Omega}$ be a $C^{1,1}$ -diffeomorphism and $1 \leq p \leq \infty$. Prove that $f \mapsto \|f \circ \Phi\|_{W^{2,p}(\omega)}$ is equivalent to the usual norm on $W^{2,p}(\Omega)$.

Lemma. Let $A \in \operatorname{Lip}_{loc}(\omega)$, $v \in W^{1,1}_{loc}(\omega)$, $\zeta \in \operatorname{Lip}_{loc}(\omega)$, and $g \in L^1_{loc}(\omega)$. If (2) holds, then

 $-\operatorname{div}\left(A\nabla(\zeta v)\right) = \zeta g - v \operatorname{div}\left(A\nabla\zeta\right) - (A\nabla v) \cdot \nabla\zeta - (A\nabla\zeta) \cdot \nabla v.$

Adapted covering lemma. Let $\Omega \subset \mathbb{R}^N$ be a bounded $C^{1,1}$ -domain. Given a number $\varepsilon > 0$, there exist:

- (i) An integer m,
- (ii) $m \text{ balls } B_j = B_{\rho_j}(0), 1 \le j \le m$,
- (iii) $C^{1,1}$ diffeomorphisms $\Phi_j: B_j \to \mathbb{R}^N$, $1 \le j \le m$,
- (iv) $\psi \in C_c^{\infty}(\Omega)$ and $\zeta_j \in C_c^{\infty}(B_j)$, $1 \le j \le m$,

such that:

(a) $\Omega \subset \bigcup_{j} \Phi_{j}(B_{j})$, (b) $B_{j} \cap (\Phi_{j})^{-1}(\Omega) = B_{j}^{+} := \{x = (x_{1}, \dots, x_{N}) \in B_{j}; x_{N} > 0\}$, (c) $B_{j} \cap (\Phi_{j})^{-1}(\partial\Omega) = B_{j}^{0} := \{x = (x_{1}, \dots, x_{N}) \in B_{j}; x_{N} = 0\}$, (d) $B_{j} \cap (\Phi_{j})^{-1}((\mathbb{R}^{N} \setminus \overline{\Omega})) = B_{j}^{-} := \{x = (x_{1}, \dots, x_{N}) \in B_{j}; x_{N} < 0\}$, (e) $\rho_{j} \leq 1, 1 \leq j \leq m$, (f) Given $u : \Omega \to \mathbb{R}$, if we set $u_{0} := \psi u : \Omega \to \mathbb{R}, v_{j} := u_{|\Phi_{j}(B_{j}^{+})} \circ \Phi_{j} : B_{j}^{+} \to \mathbb{R}$, and $w_{j} := \zeta_{j} v_{j}, 1 \leq j \leq m$, then

$$\|u\|_{W^{2,p}(\Omega)} \sim \|u_0\|_{W^{2,p}(\Omega)} + \sum_{1 \le j \le m} \|w_j\|_{W^{2,p}(B_j^+)}, \, \forall \, 1 \le p \le \infty,$$

(g) If we set

$$A(x) = A_j(x) := |J \Phi_j(x)| \left[(J \Phi_j)^{-1}(x) \right] \left[{}^t \left[(J \Phi_j)^{-1}(x) \right] \right], \ 1 \le j \le m, \ x \in B_j,$$

then $x \mapsto A(x)$ is Lipschitz and A(x) = Id + B(x), where $||B(x)||_{\infty} \le \varepsilon$, $1 \le j \le m, x \in B_j$,

(h) If $u \in W^{1,1}_{loc}(\Omega)$ satisfies, in $\mathscr{D}'(\Omega)$, $-\Delta u = f \in L^1_{loc}(\Omega)$, then u_0 and w_j satisfy

$$\begin{aligned} -\Delta u_0 &= \psi f - 2\nabla \psi \cdot \nabla u - u \,\Delta \psi \text{ in } \mathscr{D}'(\mathbb{R}^N), \\ -\operatorname{div}(A_j \nabla w_j) &= \zeta_j \, (f_{|\Phi_j(B_j^+)} \circ \Phi_j) |J \,\Phi_j| - v_j \,\operatorname{div} \, (A_j \nabla \zeta_j) \\ &- (A_j \nabla v_j) \cdot \nabla \zeta_j - (A_j \nabla \zeta_j) \cdot \nabla v_j \,\operatorname{in} \, \mathscr{D}'(B_j^+), \, 1 \leq j \leq m. \end{aligned}$$

Exercise. Let $u \in W^{1,1}(\Omega)$ and $\varphi \in C^1(\overline{\Omega})$. Prove that $\operatorname{tr}(\varphi u) = \varphi_{|\partial\Omega} \operatorname{tr} u$.

Exercise. Let Ω be a C^1 -domain, and let $\Psi : U \to \mathbb{R}^N$ be a C^1 -diffeomorphism from an open set $U \subset \mathbb{R}^N$ into its image. Set $\Xi := \Psi_{|U} : U \to \Psi(U)$ and $\Phi := \Xi^{-1}$. Set also $\Sigma := \partial \Omega \cap U$ and $\Lambda := \Psi(\Sigma)$. Let $u \in W^{1,1}(U)$ and set $v := u \circ \Phi$. Give a meaning to and prove the equality $\operatorname{tr}_{\Psi(\Sigma)} v = (\operatorname{tr}_{\Sigma}(u)) \circ [(\Psi)_{|\Lambda}^{-1}]$.

- C Theorem (Higher order regularity) Let $k \ge 0$, $\Omega \in C^{k+1,1}$, and $1 . If <math>f \in W^{k,p}(\Omega)$, then the solution u of (3) satisfies $u \in W^{k+2,p}(\Omega)$ and, for some finite C independent of f, $\|u\|_{W^{k+2,p}(\Omega)} \le C \|f\|_{W^{k,p}(\Omega)}$.
- D For the record, we mention some results in lower order regularity theory.

Theorem. Let $\Omega \in C^{1,1}$ and $1 . For <math>F \in L^p(\Omega; \mathbb{R}^N)$, the equation

 $-\Delta u = \operatorname{div} F \operatorname{in} \mathscr{D}'(\Omega)$

has a unique solution $u \in W_0^{1,p}(\Omega)$. In addition, with some finite constant C independent of F, we have the estimate $\|\nabla u\|_p \leq C \|F\|_p$.

Theorem (Stampacchia) Let $\Omega \in C^{1,1}$. For $f \in L^1(\Omega)$, the equation

 $-\Delta u = f \text{ in } \mathscr{D}'(\Omega)$

has a unique solution $u \in W_0^{1,1}(\Omega)$. Moreover, this u satisfies $u \in \bigcap_{1 \le p < N/(N-1)} W_0^{1,p}(\Omega)$ and, with finite constants C_p independent of f,

$$\|\nabla u\|_{p} \le C_{p} \|f\|_{1}, \, \forall \, 1 \le p < \frac{N}{N-1}$$

Useful reference: [9, Section 4.1]

Big picture of the proofs of Theorems A and C

I. Preliminaries

- (a) Localization of the problem.
- (b) The effects of the change of coordinates: equation, traces.
- (c) Equivalence of norms. Reduction to local estimates.
- (d) Choice of adapted neighborhoods of points of $\partial \Omega$.

II. L^2 theory

- (a) Interior estimates.
- (b) Boundary estimates via Nirenberg's quotient method.

III. L^p , p > 2, theory

- (a) Interior estimates via Calderón-Zygmund theory. Induction principle.
- (b) Boundary estimates. Reflection and contraction principles.

IV. L^p , p < 2, theory

- (a) Uniqueness *via* duality.
- (b) A priori estimates via uniqueness.
- (c) Existence via a priori estimates.

V. Higher order regularity by induction

(f) A glimpse of the C^{α} regularity theory

Useful reference: [4, Lemma 4.4, Theorem 6.14, Theorem 6.19]. For the record:

Theorem (C^{α} **regularity)** (Kellogg) Let $0 < \alpha < 1$, $k \ge 0$, $\Omega \in C^{k+2,\alpha}$. If $f \in C^{k,\alpha}(\overline{\Omega})$, then the solution of (3) satisfies $u \in C^{k+2,\alpha}(\overline{\Omega})$. In addition, for some finite C independent of f, $||u||_{C^{k+2,\alpha}(\overline{\Omega})} \le C||f||_{C^{k,\alpha}(\overline{\Omega})}$.

Lemma (Hölder estimates for the Newtonian potential) (Korn) Let $0 < \alpha < 1$. If $f \in C_c^{\alpha}(\mathbb{R}^N)$ and u := E * f, then, for some finite C independent of f,

 $\left| D^2 u \right|_{C^{\alpha}(\mathbb{R}^N)} \le C |f|_{C^{\alpha}(\mathbb{R}^N)}.$

(g) Power growth nonlinearities. Bootstrap

Useful reference: [8, Section 3.3.2]. In what follows, we assume that $N \ge 3$.

Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a measurable function satisfying

$$|f(x,t)| \le C(1+|t|^p), \,\forall x \in \Omega, \,\forall t \in \mathbb{R}.$$

Let u satisfy

$$\begin{split} & u \in H^1_{loc}(\Omega), \ x \mapsto f(x, u(x)) \in L^1_{loc}(\Omega) \\ & -\Delta u = f(x, u(x)) \text{ in } \mathscr{D}'(\Omega). \end{split}$$

A Exercise. Assume that $p < \frac{N+2}{N-2}$. Then $u \in W^{2,r}_{loc}(\Omega)$, $\forall r < \infty$.

B Proposition. The same holds when $p = \frac{N+2}{N-2}$.

Moreover, if $u \in H^1_{loc}(\Omega)$ satisfies

$$-\Delta u = a(x)u + b(x)$$
, with $a \in L^{N/2}_{loc}(\Omega)$, $b \in L^{\infty}_{loc}(\Omega)$,

then $u \in L^r_{loc}(\Omega)$, $\forall r < \infty$.

C **Exercise.** Let $p > \frac{N+2}{N-2}$. Prove that the equation $-\Delta u = |u|^p$ has a locally unbounded solution $u \in H^1 \cap L^p(B_1(0))$, of the form $u(x) = \lambda |x|^{-\alpha}$, for appropriate constants $\lambda, \alpha > 0$.

(h) A glimpse of the De Giorgi regularity theory

Useful references: [4, Sections 8.5–8.9], [5, Chapter 4]. For the record:

A Theorem (local boundedness; Stampacchia, Ladyzhenskaya, Uraltseva, Trudinger,...) Let A = A(x) be uniformly elliptic in $\Omega := B_1(0)$. Let $u \in H^1(\Omega)$ satisfy $-\operatorname{div}(A\nabla u) = f \in L^p(\Omega)$, where $p > \frac{N}{2}$. Then $u \in L^{\infty}_{loc}(\Omega)$ and, with a finite constant depending only on 0 < R < 1 and p,

$$||u||_{L^{\infty}(B_{R}(0))} \leq C(||f||_{L^{q}(\Omega)} + ||u||_{L^{1}(\Omega)}).$$

B Theorem (local C^{α} regularity; **De Giorgi**, Nash, Ladyzhenskaya, Uraltseva, Moser,...) There exists some $0 < \alpha < 1$ depending only on p and the ellipticity constants of A such that the above u belongs to $C^{\alpha}_{loc}(\Omega)$ and satisfies, with a finite constant C depending only on R and p

$$|u(x) - u(y)| \le C(||f||_{L^q(\Omega)} + ||u||_{L^1(\Omega)}), \,\forall x, y \in B_R(0).$$

(i) Wente estimates. Compensation phenomena

Useful references: [1], [2], [7, Section 10.3]

A **Theorem** (Wente) Let $\Omega \in C^{1,1}$ be a bounded domain in \mathbb{R}^2 , and let $F \in H^1(\Omega; \mathbb{R}^2)$. Then the problem

$$\begin{cases} -\Delta u = \det \left(JF \right) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has a (unique) weak solution $u \in H_0^1(\Omega)$. In addition, we have $u \in C(\overline{\Omega})$ and, for some finite constant independent of F, we have the *Wente estimates*

$$\|u\|_{\infty} + \|\nabla u\|_2 \le C \|\nabla F\|_2.$$

B For the record:

Theorem (Fefferman, Stein, Coifman, Lions, Meyer, Semmes) If $F \in W_c^{1,N}(\mathbb{R}^N; \mathbb{R}^N)$, and we set $u := E * [\det (JF)]$, then $D^2 u \in L^1(\mathbb{R}^N)$ and, with a finite constant independent of F and of its support,

$$\left\|D^2 u\right\|_1 \le C \|\nabla F\|_N$$

References

[1] Haïm Brezis and Jean-Michel Coron. Multiple solutions of *H*-systems and Rellich's conjecture. *Comm. Pure Appl. Math.*, 37(2):149–187, 1984.

- [2] Ronald Coifman, Pierre-Louis Lions, Yves Meyer, and Stephen Semmes. Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9), 72(3):247–286, 1993.
- [3] Lawrence C. Evans and Ronald F. Gariepy. *Measure theory and fine properties of functions*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [4] David Gilbarg and Neil S. Trudinger. *Elliptic partial differential equations of second order*, volume 224 of *Grundlehren der mathematischen Wissenschaften* [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
- [5] Qing Han and Fanghua Lin. *Elliptic partial differential equations*, volume 1 of *Courant Lecture Notes in Mathematics*. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
- [6] Lars Hörmander. The analysis of linear partial differential operators. I, volume 256 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier analysis.
- [7] Petru Mironescu. Fine properties of functions: an introduction. http://math.univ-lyon1. fr/~mironescu/resources/introduction_fine_properties_functions_2005. pdf, 2005.
- [8] Petru Mironescu. Sobolev spaces. Elliptic equations (Partial lecture notes). http: //math.univ-lyon1.fr/~mironescu/resources/sobolev_spaces_elliptic_ equations_2010.pdf, 2010.
- [9] Augusto C. Ponce. *Elliptic PDEs, measures and capacities,* volume 23 of *EMS Tracts in Mathematics*. European Mathematical Society (EMS), Zürich, 2016. From the Poisson equations to nonlinear Thomas-Fermi problems.
- [10] James Serrin. Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18:385–387, 1964.