Lecture \# I
THE DIRECT METHOD: A FEW EXAMPLES

In what follows, $\Omega \subset \mathbb{R}^{N}$ is a bounded open set. Additional smoothness, if needed, is explicitly assumed.

(a) Functional analytical preliminaries

A [4, Corollary 3.9] Let E be a Banach space. Let $\varphi: E \rightarrow(-\infty, \infty]$ be convex and lower semicontinuous. Then φ is weakly lower semicontinuous.

B [4, Corollary 3.23] Let E be a reflexive Banach space. Let $A \subset E$ be a closed convex set. Let φ : $A \rightarrow(-\infty, \infty]$ be convex and lower semicontinuous. Assume that:
(a) Either A is bounded.
(b) Or $\lim _{x \in A,\|x\| \rightarrow \infty} \varphi(x)=\infty$.

Then φ achieves its minimum on A.
C [4, Theorem 3.18] Let E be a reflexive Banach space. Let $\left(x_{n}\right) \subset E$ be a bounded sequence. Then $\left(x_{n}\right)$ contains a weakly convergent subsequence.

D Fundamental exercise. Let $1<p<\infty$. Let $\varphi: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ be convex, lower semicontinuous, and coercive, i.e., $\lim _{\|u\| \rightarrow \infty} \varphi(u)=\infty$. Then φ achieves its (global) minimum.

E Fundamental exercise. Let $1<p<\infty$. Prove that a bounded sequence $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega)$ contains a subsequence ($u_{n_{j}}$) such that:
(a) $u_{n_{j}} \rightarrow u$ a.e., for some $u \in W_{0}^{1, p}(\Omega)$.
(b) $\nabla u_{n_{j}} \rightharpoonup \nabla u$ in $L^{p}(\Omega)$.

Same for $W^{1, p}(\Omega)$ if Ω is assumed Lipschitz.
Can one replace, in item (b), weak convergence with strong convergence?

(b) Basic examples

In items $\mathrm{A}, \overline{\mathrm{B}}, \mathrm{C}, a \in C(\bar{\Omega}), a \geq 0$, and $f \in C(\bar{\Omega})$.
A The problem

$$
\begin{cases}-\Delta u+a(x) u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique weak solution $u \in H_{0}^{1}(\Omega)$.
(B Same for the problem

$$
\left\{\begin{array}{ll}
-\Delta u+a(x)|u|^{q-1} \operatorname{sgn} u=f & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}, \text { with } 1<q<\infty .\right.
$$

In this case, give a meaning to the notion of solution, and specify a space in which this solution is unique.

Useful results:
Exercise. Let $1<q<\infty$. Then

$$
L^{q}(X, \mathscr{T}, \mu) \ni u \mapsto G(u):=|u|^{q-1} \operatorname{sgn} u \in L^{q /(q-1)}(X, \mathscr{T}, \mu)
$$

is continuous.
Lemma. Let $1<q<\infty$. Then

$$
\begin{aligned}
& L^{q}(X, \mathscr{T}, \mu) \ni u \mapsto F(u):=\int_{X}|u|^{q} d \mu \text { is } C^{1} \text {, and } \\
& F^{\prime}(u)(\varphi)=q \int_{\Omega}|u|^{q-1}(\operatorname{sgn} u) \varphi, \forall u, \varphi \in L^{q}(X, \mathscr{T}, \mu) .
\end{aligned}
$$

C The problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x)|u|^{q-1} \operatorname{sgn} u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $1<p, q<\infty$, has a unique distributional solution in the space $u \in W_{0}^{1, p}(\Omega) \cap$ $L^{q}(\Omega)$.

Useful result:

Exercise. Let $1<p<\infty$. Then

$$
\begin{aligned}
& L^{p}\left(X, \mathscr{T}, \mu ; \mathbb{R}^{d}\right) \ni f \mapsto F(f):=\int_{X}|f|^{p} d \mu \text { is } C^{1} \text {, and } \\
& F^{\prime}(f)(g)=p \int_{\Omega}|f|^{p-2} f \cdot g, \forall f, g \in L^{p}\left(X, \mathscr{T}, \mu ; \mathbb{R}^{d}\right) .
\end{aligned}
$$

D Definition. A Carathéodory function is a function $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{d}$ such that
(i) $x \mapsto f(x, u, \xi)$ is (Lebesgue) measurable, $\forall(u, \xi) \in \mathbb{R}^{m} \times \mathbb{R}^{d}$.
(ii) $(u, \xi) \mapsto f(x, u, \xi)$ is continuous, for a.e. $x \in \Omega$.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let $1 \leq p, q \leq \infty$. Let f be a Carathéodory function such that:
a) $f(x, u, \xi) \geq a(x) \cdot u+b(x) \cdot \xi, \forall u, \xi$, for a.e. x, for some $a \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{m}\right), b \in$ $L^{p^{\prime}}\left(\Omega ; \mathbb{R}^{d}\right)$.
b) $\xi \mapsto f(x, u, \xi)$ is convex for a.e. $x \in \Omega$ and every $u \in \Omega$.

Set

$$
L^{q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{p}\left(\Omega ; \mathbb{R}^{d}\right) \ni(u, \xi) \mapsto L(u, \xi):=\int_{\Omega} f(x, u(x), \xi(x)) d x \in \mathbb{R} \cup\{\infty\}
$$

Then

$$
\left[u_{j} \rightarrow u \operatorname{in} L^{q}\left(\Omega ; \mathbb{R}^{m}\right), \xi_{j} \rightharpoonup \xi \operatorname{in} L^{p}\left(\Omega ; \mathbb{R}^{d}\right)\right] \Longrightarrow \liminf L\left(u_{j}, \xi_{j}\right) \geq L(u, \xi)
$$

(When $p=\infty$, we may replace \rightharpoonup by $\stackrel{*}{\text {. }}$.)
Useful results:
Exercise. If f is a Carathéodory function and $(u, \xi): \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{d}$ is measurable, prove that $\Omega \ni x \mapsto f(x, u(x), \xi(x))$ is measurable. (Hint: start with the case where u and ξ are step functions.)

Exercise. If f is a non-negative Carathéodory function, $u: \Omega \rightarrow \mathbb{R}^{d}$ is measurable, $1 \leq p<\infty$, and $\xi_{j} \rightharpoonup \xi$ in $L^{p}(\Omega)$, then

$$
\int_{\Omega} f(x, u(x), \xi(x)) d x \leq \liminf \int_{\Omega} f\left(x, u(x), \xi_{j}(x)\right) d x
$$

Exercise.

1. Let f be a Carathéodory function. Prove that, for each $\varepsilon, M>0$, there exist: some $\delta=\delta(\varepsilon, M)>0$ and some compact set $K=K(\varepsilon, M) \subset \Omega$ such that:
i. $|\Omega \backslash K|<\varepsilon$.
ii. $\left[x \in K, u, v \in \mathbb{R}^{m}, \xi, \eta \in \mathbb{R}^{d},|u| \leq M,|\xi| \leq M,|u-v| \leq \delta,|\xi-\eta| \leq \delta\right] \Rightarrow$ $|f(x, u, \xi)-f(x, v, \eta)| \leq \varepsilon$.
(Hint: prove first the statement for some Lebesgue measurable (instead of compact) set.)
2. Prove the Scorza-Dragoni theorem: f is a Carathéodory function if and only if for each $\varepsilon>0$ there exists some compact set $L_{\varepsilon} \subset \Omega$ such that:
i. $\left|\Omega \backslash L_{\varepsilon}\right|<\varepsilon$.
ii. f is continuous on $L_{\varepsilon} \times \mathbb{R}^{m} \times \mathbb{R}^{d}$.
(Hint: Consider u, ξ with rational coordinates and use Vitali's theorem to find a large set $L \subset \Omega$ such that $L \ni x \mapsto f(x, u, \xi)$ is continuous.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].

(c) Notions of convexity

A Definition. A continuous function $f: \mathbb{R}^{N m} \rightarrow \mathbb{R}$ is quasi-convex if

$$
\begin{align*}
|U| f(\xi) \leq \int_{U} f(\xi+D \varphi(x)) d x, & \forall U \subset \mathbb{R}^{N} \text { bounded open set, } \tag{1}\\
& \forall \xi \in \mathbb{R}^{N m}, \forall \varphi \in C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right) .
\end{align*}
$$

Exercise. Prove that a convex function is quasi-convex.
Exercise. Prove that the f is quasi-convex iff (1) is satisfied for one non empty U.
Exercise. Assume that U is bounded and convex.

1. Prove that $W^{1, \infty}(U)=\operatorname{Lip}(U)$.
2. Prove that (1) still holds when $\varphi \in W_{c}^{1, \infty}\left(U, \mathbb{R}^{m}\right)$.
3. Prove that, with $\left(\varphi_{j}\right) \subset W^{1, \infty}\left(U ; \mathbb{R}^{m}\right)$, we have $\varphi_{j} \stackrel{*}{\rightharpoonup} 0$ iff $\left(\varphi_{j}\right)$ has uniformly bounded Lipschitz constants and $\varphi_{j} \rightarrow 0$ uniformly on U.

Lemma. (Morrey) If f is quasi-convex and $Q \subset \mathbb{R}^{N}$ is a cube, then

$$
\begin{array}{r}
{\left[\left(\varphi_{j}\right) \subset W^{1, \infty}\left(Q ; \mathbb{R}^{m}\right), \varphi_{j} \stackrel{*}{\stackrel{ }{2}} 0\right] \Longrightarrow \liminf \int_{Q} f\left(\xi+D \varphi_{j}(x)\right) d x \geq|Q| f(\xi),} \\
\forall \xi \in \mathbb{R}^{N m} .
\end{array}
$$

Useful reference: [11, Lemma 2.2].
Exercise. Prove a version of Morrey's lemma with Q replaced with a finite volume open set.

B Theorem. (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on $\Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ such that:
a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
b) $0 \leq f(x, u, \xi) \leq a(x)+b(u, \xi)$, with $a \in L^{1}(\Omega), b \in L_{l o c}^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}^{N m}\right)$.

If $\left(u_{j}\right) \subset W^{1, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ and $u_{j} \stackrel{*}{\rightharpoonup} u$, then

$$
\liminf \int_{\Omega} f\left(x, u_{j}(x), D u_{j}(x)\right) d x \geq \int_{\Omega} f(x, u(x), D u(x)) d x .
$$

Useful result:
Exercise. (Easy version of Lebesgue's differentiation theorem) Let $Q:=(0,1)^{N}$ and let $g \in L^{1}(Q)$. Let $\ell \geq 1$ be an integer and

$$
g_{\ell}(x):=f_{C} g(y) d y \text { if } x \text { belongs to the dyadic cube } C \text { of size } 2^{-\ell .}
$$

Then, up to a subsequence $\ell_{n} \rightarrow \infty, g_{\ell} \rightarrow g$ a.e.
Useful references: [1, Theorem II.1], [13, Corollary, p. 13].
Theorem. (Acerbi-Fusco, [1, Theorem II.4]) Let $1 \leq p<\infty$. Let f be a Carathéodory function on $\Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ such that:
a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
b) $0 \leq f(x, u, \xi) \leq a(x)+C\left(|u|^{p}+|\xi|^{p}\right.$, with $a \in L^{1}(\Omega)$ and C finite.

If $\left(u_{j}\right) \subset W^{1, p}\left(\Omega ; \mathbb{R}^{m}\right)$ and $u_{j} \rightharpoonup u$, then

$$
\liminf \int_{\Omega} f\left(x, u_{j}, D u_{j}(x)\right) d x \geq \int_{\Omega} f(x, u, D u(x)) d x
$$

C Theorem. (Morrey) Let $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ be continuous. If, for every open set $U \subset \Omega$,

$$
\begin{aligned}
& {\left[u_{j} \stackrel{*}{\rightharpoonup} u \text { in } W^{1, \infty}(U)\right] \Longrightarrow} \\
& \liminf \int_{U} f\left(x, u_{j}(x), D u_{j}(x)\right) d x \geq \int_{U} f(x, u(x), D u(x)) d x,
\end{aligned}
$$

then, for each $x \in \Omega$ and $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
Useful result:
Lemma. Let $Q:=(0,1)^{N}$ and let $\zeta \in C_{c}^{\infty}\left(Q ; \mathbb{R}^{m}\right)$, extended as a smooth 1-periodic function to \mathbb{R}^{m}. Let $U \subset \Omega$ be relatively compact. Let $u_{0} \in C\left(\Omega ; \mathbb{R}^{m}\right)$, $\xi_{0} \in C\left(\Omega ; \mathbb{R}^{N m}\right)$.
Set $\zeta_{j}(x):=2^{-j} \zeta\left(2^{j} x\right), \forall j \geq 1, \forall x \in \mathbb{R}^{N}$. Then

$$
\lim \int_{U} f\left(x, u_{0}(x), \xi_{0}(x)+D \zeta_{j}(x)\right) d x=\int_{U} \int_{Q} f\left(x, u_{0}(x), \xi_{0}(x)+D \zeta(y)\right) d y d x
$$

and

$$
\begin{aligned}
& \lim \quad \int_{U} f\left(x, u_{0}(x)+\zeta_{j}(x), \xi_{0}(x)+D \zeta_{j}(x)\right) d x \\
& \quad=\int_{U} \int_{Q} f\left(x, u_{0}(x), \xi_{0}(x)+D \zeta(y)\right) d y d x
\end{aligned}
$$

Theorem. (Acerbi-Fusco, [1, Theorem II.2]) Let $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ be a Carathéodory function such that $0 \leq f(x, u, \xi) \leq a(x)+b(u, \xi), \forall x \in \Omega, \forall(u, \xi) \in \mathbb{R}^{m} \times \mathbb{R}^{N m}$, where $a \in L^{1}(\Omega)$ and $b \in L_{l o c}^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}^{N m}\right)$. If, for every open set $U \subset \Omega$,

$$
\begin{aligned}
& {\left[u_{j} \stackrel{*}{\rightharpoonup} u \text { in } W^{1, \infty}(U)\right] \Longrightarrow} \\
& \liminf \int_{U} f\left(x, u_{j}(x), D u_{j}(x)\right) d x \geq \int_{U} f(x, u(x), D u(x)) d x,
\end{aligned}
$$

then, for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.

D Proposition. Assume that $N=1$ and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuous. Then f is quasiconvex if and only if f is convex.
Theorem. [6, Theorem 3.1, Section 3.3.1] Assume that $m=1$ (i.e., we work with scalar functions u) and let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$. Then f is quasi-convex if and only if f is convex.

E We identify $\mathbb{R}^{N m}$ with $M_{m, N}(\mathbb{R})$. Let $A \in M_{m, N}(\mathbb{R})$. Given $1 \leq \ell \leq K:=\min (m, N)$, and $I=\left\{i_{1}<i_{2}<\ldots<i_{\ell}\right\} \subset\{1, \ldots, m\}, J=\left\{j_{1}<j_{2}<\ldots<j_{\ell}\right\} \subset\{1, \ldots, N\}$, let $A_{I, J}$ denote the minor of order ℓ of A formed with the rows i_{1}, \ldots, i_{ℓ}, respectively the columns j_{1}, \ldots, j_{ℓ}. Let M be the number of all possible minors. We order the minors as A^{1}, \ldots, A^{M}.

Definition. (Morrey, Ball) A function $f: \mathbb{R}^{N m} \rightarrow \mathbb{R}$ is polyconvex if there exists some convex function $g: \mathbb{R}^{M} \rightarrow \mathbb{R}$ such that $f(A)=g\left(A^{1}, \ldots, A^{M}\right)$.
Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.
A useful result:

Lemma.

1. If $\Omega \subset \mathbb{R}^{k}$ is open bounded and $u, v \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{k}\right)$ are such that $u=v$ near $\partial \Omega$, then

$$
\int_{\Omega} \operatorname{det}(\nabla u)(x) d x=\int_{\Omega} \operatorname{det}(\nabla v)(x) d x \text {. }
$$

2. Let $U \subset \mathbb{R}^{N}$ be open bounded. If I, J are as above, $A \in M_{m, N}(\mathbb{R})$ and $\zeta \in C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right)$, then

$$
\int_{U}(A+D \varphi(x))_{I, J} d x=|U| A_{I, J} .
$$

Useful references: [2, Section 4], [6, Section 4.1].

(d) Passing to the weak limits in nonlinear quantities

A Theorem (Reshetnyak) If $u^{j}, u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$ and $u^{j} \rightharpoonup u$ in $W^{1, N}$, then

$$
\operatorname{det}\left(\nabla u^{j}\right) \rightarrow \operatorname{det}(\nabla u) \text { in } \mathscr{D}^{\prime}(\Omega) .
$$

Useful reference: [12].
B Definition. (Ball) Let $u=\left(u_{1}, \ldots, u_{N}\right) \in W^{1, N^{2} /(N+1)}\left(\Omega, \mathbb{R}^{N}\right)$. Then

$$
\operatorname{Det}(\nabla u):=* d\left(u_{1} d u_{2} \wedge \cdots \wedge d u_{N}\right) \in \mathscr{D}^{\prime}(\Omega) .
$$

Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.
Exercise. If $u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$, prove that $\operatorname{Det}(\nabla u)=\operatorname{det}(\nabla u)$.
Equivalently, prove that, if $u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$, then

$$
\int_{\Omega} \operatorname{det}(\nabla u) \varphi=-\int_{\Omega} \operatorname{det}\left(\varphi, u_{2}, \ldots, u_{N}\right) u_{1}, \forall \varphi \in C_{c}^{\infty}(\Omega, \mathbb{R}) .
$$

C Theorem. (Reshetnyak, Ball, Brezis-Nguyen) Let $N^{2} /(N+1)<p \leq N$. Let $u^{j}, u \in$ $W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ be such that $u^{j} \rightharpoonup u$ in $W^{1, p}$. Then

$$
\operatorname{Det}\left(\nabla u^{j}\right) \rightarrow \operatorname{Det}(\nabla u) \text { in } \mathscr{D}^{\prime}(\Omega) .
$$

Useful result:
Lemma. Let $p \geq N-1$ and let $q \geq 1$ satisfy $(N-1) / p+1 / q=1$. If $u, v \in C^{\infty}\left(\bar{\Omega}, \mathbb{R}^{N}\right)$, then

$$
\begin{array}{r}
\left|\int_{\Omega}[\operatorname{det}(\nabla v)-\operatorname{det}(\nabla u)] \varphi\right| \leq C_{N, \Omega}\|v-u\|_{q}\left(\|\nabla u\|_{p}+\|\nabla v\|_{p}\right)^{N-1}\|\nabla \varphi\|_{\infty} \\
\forall \varphi \in C_{c}^{\infty}(\Omega, \mathbb{R}) .
\end{array}
$$

Useful reference: [5, Theorem 1].
Exercise. When $N=2$, establish the above theorem by proving the following stronger statement: if $p>4 / 3$ and $u^{j}=\left(u_{1}^{j}, u_{2}^{j}\right) \rightharpoonup u=\left(u_{1}, u_{2}\right)$ in $W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$, then $u_{1}^{j} \nabla u_{2}^{j} \rightarrow$ $u_{1} \nabla u_{2}$ in $\mathscr{D}^{\prime}(\Omega)$.
D Theorem. (Edelsen, Ericksen, Ball) Let $f: \mathbb{R}^{N m} \rightarrow \mathbb{R}$ be a continuous function such that, for some $1 \leq p<\infty$,

$$
\left[u^{j} \rightharpoonup u \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{m}\right)\right] \Longrightarrow\left[f\left(D u^{j}\right) \rightarrow f(D u) \text { in } \mathscr{D}^{\prime}(\Omega)\right]
$$

Then f is an affine function of the minors of $D u$. Similarly when $p=\infty$, for the $\stackrel{*}{\rightharpoonup}$ convergence.
Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].

E Gap (or Lavrentiev) phenomen

Theorem. (Maniá) Let

$$
F(x):=\int_{0}^{1}\left(x^{3}(t)-t\right)^{2} x^{\prime 6}(t) d t, \forall x \in W^{1,1}((0,1)) \text { with } x(0)=0 \text { and } x(1)=1
$$

Then we have the following Lavrentiev phenomenon

$$
\inf \left\{F(x) ; x \in C^{1}([0,1])\right\}>\inf \left\{F(x) ; x \in W^{1,1}((0,1))\right\}
$$

Useful reference: [8].

(e) Concentration-compactness

Useful general reference: [14, Section I.4].
A Exercise. Let $F_{m}:[0, \infty) \rightarrow[0,1], m \geq 0$, be non decreasing functions. Prove that, up to a subsequence, F_{m} converges simply.
First concentration-compactness lemma (Lions) Let (μ_{m}) be a sequence of Borel probability measures on \mathbb{R}^{N}. Then, up to a subsequence, one of the following holds:
(a) (Compactness) There exists a sequence $\left(x_{m}\right) \subset \mathbb{R}^{N}$ such that, for every $\varepsilon>0$, there exists some $R=R(\varepsilon)$ satisfying $\mu_{m}\left(B_{R}\left(x_{m}\right)\right)>1-\varepsilon, \forall m$.
(b) (Vanishing) For every $R>0, \sup _{x \in \mathbb{R}^{N}} \mu_{m}\left(B_{R}(x)\right) \rightarrow 0$ as $m \rightarrow \infty$.
(c) (Dichotomy) There exists some $0<\lambda<1$ and sequences $\left(x_{m}\right) \subset \mathbb{R}^{N}, R_{m} \rightarrow \infty$ such that

$$
\begin{aligned}
& \mu_{m}\left(B_{R_{m}}\left(x_{m}\right)\right) \rightarrow \lambda, \mu_{m}\left(\mathbb{R}^{N} \backslash \bar{B}_{2 R_{m}}\left(x_{m}\right)\right) \rightarrow 1-\lambda, \\
& \mu_{m}\left(\bar{B}_{2 R_{m}}\left(x_{m}\right) \backslash B_{R_{m}}\left(x_{m}\right)\right) \rightarrow 0 .
\end{aligned}
$$

Moreover, in the above we may replace $2 R_{m}$ with any $\rho_{m}>R_{m}$.
(B) Brezis-Lieb lemma Let (X, \mathscr{T}, μ) be a measured space and $0<p<\infty$. Let $f_{j}, f: X \rightarrow$ \mathbb{C} be measurable functions such that:
(i) $f_{j} \rightarrow f$ a.e.
(ii) For some finite $C, \int_{X}\left|f_{j}\right|^{p} \leq C, \forall j$.

Then

$$
\left.\int_{X}| | f_{j}\right|^{p}-|f|^{p}-\left|f_{j}-f\right|^{p} \mid \rightarrow 0
$$

In particular, if $p \geq 1, X=\mathbb{R}^{N}$ with the Lebesgue measure, and we set

$$
\mu_{j}:=\left(\left|f_{j}\right|^{p}-|f|^{p}-\left|f_{j}-f\right|^{p}\right) d x
$$

then $\mu_{j} \stackrel{*}{\sim} 0$ in the sense of measures.
Useful references: [7, Theorem 1.9], [10, Exercice de synthèse \#10].
C Theorem (Lions) Let $a=a(x) \in C\left(\mathbb{R}^{N},(0, \infty)\right)$ be such that

$$
\lim _{|x| \rightarrow \infty} a(x)=a_{\infty}>0
$$

Let $1<p<\frac{N+2}{N-2}$ and set

$$
\begin{aligned}
& I:=\inf \left\{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+a u^{2}\right) ; u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|u|^{p+1}=1\right\}, \\
& I_{\infty}:=\inf \left\{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+a_{\infty} u^{2}\right) ; u \in H^{1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|u|^{p+1}=1\right\} .
\end{aligned}
$$

If $I<I_{\infty}$, then the inf in I is attained. Up to a multiplicative constant, a minimizer is a non trivial solution $u \in H^{1}\left(\mathbb{R}^{N}\right)$ of

$$
-\Delta u+a u=|u|^{p-1} u \text { in } \mathbb{R}^{N} .
$$

D Exercise. Let μ be a finite diffuse Borel measure in \mathbb{R}^{N}. Prove that

$$
\lim _{r \rightarrow 0} \sup _{x \in \mathbb{R}^{N}} \mu\left(B_{r}(x)\right)=0
$$

Exercise. Let ω, λ be finite Borel measures in \mathbb{R}^{N} and $1 \leq p<q<\infty$. Assume that, for some $0<S<\infty$, we have

$$
\begin{equation*}
S\left(\int_{\mathbb{R}^{N}}|f|^{q} d \omega\right)^{p / q} \leq \int_{\mathbb{R}^{N}}|f|^{p} d \lambda, \forall \text { Borel function } f: \mathbb{R}^{N} \rightarrow \mathbb{R} \tag{2}
\end{equation*}
$$

Prove that:
(a) ω is a purely atomic measure, i.e., there exist $\alpha_{j}>0, x_{j} \in \mathbb{R}^{N}$ such that $\omega=$ $\sum_{j} \alpha_{j} \delta_{x_{j}}$.
(b) $\sum_{j}\left(\alpha_{j}\right)^{p / q}<\infty$.
(c) $\lambda \geq S \sum_{j}\left(\alpha_{j}\right)^{p / q} \delta_{x_{j}}$.
(d) (2) holds if and only if it holds for $f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$.

Hint. Step 1. Assume first that λ is diffuse. Using the previous exercise, prove that, for every cube $C \subset \mathbb{R}^{N}, \omega(C)=0$, and thus $\omega=0$.
Step 2. Apply Step 1 to ω_{0} and λ_{0}, where ω_{0}, respectively λ_{0}, is the diffuse part of ω, respectively λ.
Exercise. Let $1 \leq p<\infty$ and $k \geq 1$ be such that $k p<N$. Let $\frac{1}{q}:=\frac{1}{p}-\frac{k}{N}$.
Set

$$
\dot{W}^{k, p}:=\left\{u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right) ; D^{k} u \in L^{p}, u \in L^{q}\right\} .
$$

Prove that, if we endow $\dot{W}^{k, p}$ with the norm $u \mapsto\left\|D^{k} u\right\|_{p}$, then $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $\dot{W}^{k, p}$. In particular, prove that we have the Sobolev inequality

$$
\begin{equation*}
S\|u\|_{q}^{p} \leq\left\|D^{k} u\right\|_{p}^{p}, \forall u \in \dot{W}^{k, p} \tag{3}
\end{equation*}
$$

for some (optimal Sobolev constant) $0<S<\infty$.
Useful reference for $k=1$: [9, Lemma 14]. Hint for $k \geq 2$: prove the following result:
Exercise. Let k, p, and q be as above. For $R>0$, set $A_{R}:=\left\{x \in \mathbb{R}^{N} ; R \leq|x| \leq 2 R\right\}$. If $v \in C^{\infty}\left(A_{R}\right)$, then for every $\varepsilon>0$ there exists some finite $C(\varepsilon)$ (independent of R and v) such that

$$
\sum_{\ell=0}^{k-1} R^{-(k-\ell)}\left\|D^{\ell} v\right\|_{L^{p}\left(A_{R}\right)} \leq \varepsilon\left\|D^{k} v\right\|_{L^{p}\left(A_{R}\right)}+C(\varepsilon)\|v\|_{L^{q}\left(A_{R}\right)}
$$

Exercise. Let μ be a finite measure on X and $1 \leq p<q \leq \infty$. If $\left(f_{m}\right) \subset L^{q}(X)$ is bounded and $f_{m} \rightarrow 0$ a.e., then $f_{m} \rightarrow 0$ in $L^{p}(X)$.

Second concentration-compactness lemma (Lions) Let $1<p<\infty, k, q$, and S be as above. Let $\left(u_{m}\right) \subset \dot{W}^{k, p}$ and $u \in \dot{W}^{k, p}$ be such that:
(i) $u_{m} \rightharpoonup u$ in $\dot{W}^{k, p}$ and $u_{m} \rightarrow u$ a.e.
(ii) $\left|u_{m}\right|^{q} d x \xrightarrow{*}|u|^{q} d x+\omega$ in the sense of measures, for some (non-negative) Borel measure ω.
(iii) $\left|D^{k} u_{m}\right|^{p} d x \xrightarrow{*}\left|D^{k} u\right|^{p} d x+\mu$ in the sense of measures, for some (non-negative) Borel measure μ.

Then:
(a) ω is a purely atomic measure: $\omega=\sum_{j} \alpha_{j} \delta_{x_{j}}$, with $\alpha_{j}>0, x_{j} \in \mathbb{R}^{N}$.
(b) We have $\sum_{j}\left(\alpha_{j}\right)^{p / q}<\infty$.
(c) We have $\mu \geq S \sum_{j}\left(\alpha_{j}\right)^{p / q} \delta_{x_{j}}$.

E Theorem (Aubin, Talenti, Lions) Let $k \geq 1$ and $1<p<\infty$ be such that $k p<N$. Then there exists some $u \in \dot{W}^{k, p} \backslash\{0\}$ such that equality holds in (3).

References

[1] Emilio Acerbi and Nicola Fusco. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal., 86(2):125-145, 1984.
[2] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63(4):337-403, 1976/1977.
[3] Vladimir I. Bogachev. Measure theory. Vol. I. Springer-Verlag, Berlin, 2007.
[4] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
[5] Haim Brezis and Hoai-Minh Nguyen. The Jacobian determinant revisited. Invent. Math., 185(1):17-54, 2011.
[6] Bernard Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer-Verlag, Berlin, 1989.
[7] Elliott H. Lieb and Michael Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001.
[8] Philip D. Loewen. On the Lavrentiev phenomenon. Canad. Math. Bull., 30(1):102-108, 1987.
[9] Petru Mironescu. The role of the Hardy type inequalities in the theory of function spaces. Rev. Roumaine Math. Pures Appl., 63(4):447-525, 2018.
[10] Petru Mironescu. Mesure et intégration. http://math.univ-lyon1.fr/~mironescu/ resources/complet_mesure_integration.pdf, 2023.
[11] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25-53, 1952.
[12] Yuriĭ G. Reshetnyak. Mappings with bounded distortion as extremals of integrals of Dirichlet type. Sibirsk. Mat. Z̈., 9:652-666, 1968.
[13] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
[14] Michael Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3 rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.

