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Lecture # 1
The direct method: a few examples

In what follows, Ω ⊂ RN is a bounded open set. Additional smoothness, if needed, is
explicitly assumed.

(a) Functional analytical preliminaries

A [4, Corollary 3.9] Let E be a Banach space. Let ϕ : E → (−∞,∞] be convex and lower
semicontinuous. Then ϕ is weakly lower semicontinuous.

B [4, Corollary 3.23] Let E be a reflexive Banach space. Let A ⊂ E be a closed convex set.
Let ϕ : A→ (−∞,∞] be convex and lower semicontinuous. Assume that:

(a) EitherA is bounded.
(b) Or lim

x∈A,‖x‖→∞
ϕ(x) =∞.

Then ϕ achieves its minimum onA.

C [4, Theorem 3.18] LetE be a reflexive Banach space. Let (xn) ⊂ E be a bounded sequence.
Then (xn) contains a weakly convergent subsequence.

D Fundamental exercise. Let 1 < p <∞. Letϕ : W 1,p(Ω)→ Rbe convex, lower semicon-
tinuous, and coercive, i.e., lim‖u‖→∞ ϕ(u) =∞. Then ϕ achieves its (global) minimum.

E Fundamental exercise. Let 1 < p <∞. Prove that a bounded sequence (un) ⊂ W 1,p
0 (Ω)

contains a subsequence (unj
) such that:

(a) unj
→ u a.e., for some u ∈ W 1,p

0 (Ω).
(b) ∇unj

⇀ ∇u in Lp(Ω).

Same forW 1,p(Ω) if Ω is assumed Lipschitz.

Can one replace, in item (b), weak convergence with strong convergence?

(b) Basic examples

In items A , B , C , a ∈ C(Ω), a ≥ 0, and f ∈ C(Ω).

A The problem{
−∆u+ a(x)u = f in Ω

u = 0 on ∂Ω

has a unique weak solution u ∈ H1
0 (Ω).
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B Same for the problem{
−∆u+ a(x)|u|q−1 sgnu = f in Ω

u = 0 on ∂Ω
, with 1 < q <∞.

In this case, give a meaning to the notion of solution, and specify a space in which this
solution is unique.

Useful results:

Exercise. Let 1 < q <∞. Then

Lq(X,T , µ) 3 u 7→ G(u) := |u|q−1 sgnu ∈ Lq/(q−1)(X,T , µ)

is continuous.

Lemma. Let 1 < q <∞. Then

Lq(X,T , µ) 3 u 7→ F (u) :=

ˆ
X

|u|q dµ isC1, and

F ′(u)(ϕ) = q

ˆ
Ω

|u|q−1 (sgnu)ϕ, ∀u, ϕ ∈ Lq(X,T , µ).

C The problem{
− div (|∇u|p−2∇u) + a(x)|u|q−1 sgnu = f in Ω

u = 0 on ∂Ω
,

with 1 < p, q < ∞, has a unique distributional solution in the space u ∈ W 1,p
0 (Ω) ∩

Lq(Ω).

Useful result:

Exercise. Let 1 < p <∞. Then

Lp(X,T , µ;Rd) 3 f 7→ F (f) :=

ˆ
X

|f |p dµ isC1, and

F ′(f)(g) = p

ˆ
Ω

|f |p−2 f · g, ∀ f, g ∈ Lp(X,T , µ;Rd).

D Definition. A Carathéodory function is a function f : Ω× Rm × Rd such that

(i) x 7→ f(x, u, ξ) is (Lebesgue) measurable, ∀ (u, ξ) ∈ Rm × Rd.

(ii) (u, ξ) 7→ f(x, u, ξ) is continuous, for a.e. x ∈ Ω.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let 1 ≤ p, q ≤ ∞. Let f be a Carathéodory
function such that:
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a) f(x, u, ξ) ≥ a(x) · u + b(x) · ξ, ∀u, ξ, for a.e. x, for some a ∈ Lq′(Ω;Rm), b ∈
Lp′(Ω;Rd).

b) ξ 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω and every u ∈ Ω.

Set

Lq(Ω;Rm)×Lp(Ω;Rd) 3 (u, ξ) 7→ L(u, ξ) :=

ˆ
Ω

f(x, u(x), ξ(x)) dx ∈ R∪ {∞}.

Then

[uj → u in Lq(Ω;Rm), ξj ⇀ ξ in Lp(Ω;Rd)] =⇒ lim inf L(uj, ξj) ≥ L(u, ξ).

(When p =∞, we may replace⇀ by ∗
⇀.)

Useful results:

Exercise. If f is a Carathéodory function and (u, ξ) : Ω→ Rm×Rd is measurable, prove
that Ω 3 x 7→ f(x, u(x), ξ(x)) is measurable. (Hint: start with the case where u and ξ
are step functions.)

Exercise. If f is a non-negative Carathéodory function, u : Ω → Rd is measurable,
1 ≤ p <∞, and ξj ⇀ ξ in Lp(Ω), then

ˆ
Ω

f(x, u(x), ξ(x)) dx ≤ lim inf

ˆ
Ω

f(x, u(x), ξj(x)) dx.

Exercise.

1. Let f be a Carathéodory function. Prove that, for each ε,M > 0, there exist: some
δ = δ(ε,M) > 0 and some compact setK = K(ε,M) ⊂ Ω such that:

i. |Ω \K| < ε.
ii. [x ∈ K, u, v ∈ Rm, ξ, η ∈ Rd, |u| ≤ M, |ξ| ≤ M, |u − v| ≤ δ, |ξ − η| ≤ δ]⇒
|f(x, u, ξ)− f(x, v, η)| ≤ ε.

(Hint: prove first the statement for some Lebesgue measurable (instead of compact)
set.)

2. Prove the Scorza-Dragoni theorem: f is a Carathéodory function if and only if for each
ε > 0 there exists some compact set Lε ⊂ Ω such that:

i. |Ω \ Lε| < ε.
ii. f is continuous on Lε × Rm × Rd.

(Hint: Consider u, ξ with rational coordinates and use Vitali’s theorem to find a large
set L ⊂ Ω such that L 3 x 7→ f(x, u, ξ) is continuous.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].
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(c) Notions of convexity

A Definition. A continuous function f : RNm → R is quasi-convex if

|U | f(ξ) ≤
ˆ
U

f(ξ +Dϕ(x)) dx, ∀U ⊂ RN bounded open set,

∀ ξ ∈ RNm, ∀ϕ ∈ C∞c (U ;Rm).

(1)

Exercise. Prove that a convex function is quasi-convex.

Exercise. Prove that the f is quasi-convex iff (1) is satisfied for one non empty U .

Exercise. Assume that U is bounded and convex.

1. Prove thatW 1,∞(U) = Lip (U).

2. Prove that (1) still holds when ϕ ∈ W 1,∞
c (U,Rm).

3. Prove that, with (ϕj) ⊂ W 1,∞(U ;Rm), we haveϕj
∗
⇀ 0 iff (ϕj) has uniformly bounded

Lipschitz constants and ϕj → 0 uniformly on U .

Lemma. (Morrey) If f is quasi-convex andQ ⊂ RN is a cube, then

[(ϕj) ⊂ W 1,∞(Q;Rm), ϕj
∗
⇀ 0] =⇒ lim inf

ˆ
Q

f(ξ +Dϕj(x)) dx ≥ |Q| f(ξ),

∀ ξ ∈ RNm.

Useful reference: [11, Lemma 2.2].

Exercise. Prove a version of Morrey’s lemma with Q replaced with a finite volume open
set.

B Theorem. (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on Ω×Rm×RNm

such that:

a) for a.e. x ∈ Ω and each u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

b) 0 ≤ f(x, u, ξ) ≤ a(x) + b(u, ξ), with a ∈ L1(Ω), b ∈ L∞loc(Rm × RNm).

If (uj) ⊂ W 1,∞(Ω;Rm) and uj
∗
⇀ u, then

lim inf

ˆ
Ω

f(x, uj(x), Duj(x)) dx ≥
ˆ

Ω

f(x, u(x), Du(x)) dx.

Useful result:

Exercise. (Easy version of Lebesgue’s differentiation theorem) Let Q := (0, 1)N and let
g ∈ L1(Q). Let ` ≥ 1 be an integer and

g`(x) :=

 
C

g(y) dy if x belongs to the dyadic cubeC of size 2−`.
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Then, up to a subsequence `n →∞, g` → g a.e.

Useful references: [1, Theorem II.1], [13, Corollary, p. 13].

Theorem. (Acerbi-Fusco, [1, Theorem II.4]) Let 1 ≤ p < ∞. Let f be a Carathéodory
function on Ω× Rm × RNm such that:

a) for a.e. x ∈ Ω and each u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

b) 0 ≤ f(x, u, ξ) ≤ a(x) + C(|u|p + |ξ|p), with a ∈ L1(Ω) andC finite.

If (uj) ⊂ W 1,p(Ω;Rm) and uj⇀u, then

lim inf

ˆ
Ω

f(x, uj, Duj(x)) dx ≥
ˆ

Ω

f(x, u,Du(x)) dx.

C Theorem. (Morrey) Let f : Ω×Rm ×RNm be continuous. If, for every open setU ⊂ Ω,

[uj
∗
⇀ u inW 1,∞(U)] =⇒

lim inf

ˆ
U

f(x, uj(x), Duj(x)) dx ≥
ˆ
U

f(x, u(x), Du(x)) dx,

then, for each x ∈ Ω and u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

Useful result:

Lemma. Let Q := (0, 1)N and let ζ ∈ C∞c (Q;Rm), extended as a smooth 1-periodic
function to Rm. Let U ⊂ Ω be relatively compact. Let u0 ∈ C(Ω;Rm), ξ0 ∈ C(Ω;RNm).

Set ζj(x) := 2−jζ(2jx), ∀ j ≥ 1, ∀x ∈ RN . Then

lim

ˆ
U

f(x, u0(x), ξ0(x) +Dζj(x)) dx =

ˆ
U

ˆ
Q

f(x, u0(x), ξ0(x) +Dζ(y)) dydx

and

lim

ˆ
U

f(x, u0(x) + ζj(x), ξ0(x) +Dζj(x)) dx

=

ˆ
U

ˆ
Q

f(x, u0(x), ξ0(x) +Dζ(y)) dydx.

Theorem. (Acerbi-Fusco, [1, Theorem II.2]) Let f : Ω × Rm × RNm be a Carathéodory
function such that 0 ≤ f(x, u, ξ) ≤ a(x)+b(u, ξ), ∀x ∈ Ω, ∀ (u, ξ) ∈ Rm×RNm, where
a ∈ L1(Ω) and b ∈ L∞loc(Rm × RNm). If, for every open set U ⊂ Ω,

[uj
∗
⇀ u inW 1,∞(U)] =⇒

lim inf

ˆ
U

f(x, uj(x), Duj(x)) dx ≥
ˆ
U

f(x, u(x), Du(x)) dx,

then, for a.e. x ∈ Ω and each u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.
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D Proposition. Assume that N = 1 and let f : Rm → R be continuous. Then f is quasi-
convex if and only if f is convex.

Theorem. [6, Theorem 3.1, Section 3.3.1] Assume that m = 1 (i.e., we work with scalar
functions u) and let f : RN → R. Then f is quasi-convex if and only if f is convex.

E We identify RNm with Mm,N(R). Let A ∈ Mm,N(R). Given 1 ≤ ` ≤ K := min(m,N),
and I = {i1 < i2 < . . . < i`} ⊂ {1, . . . ,m}, J = {j1 < j2 < . . . < j`} ⊂ {1, . . . , N},
letAI,J denote the minor of order ` ofA formed with the rows i1, . . . , i`, respectively the
columns j1, . . . , j`. LetM be the number of all possible minors. We order the minors as
A1, . . . , AM .

Definition. (Morrey, Ball) A function f : RNm → R is polyconvex if there exists some
convex function g : RM → R such that f(A) = g(A1, . . . , AM).

Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.

A useful result:

Lemma.

1. If Ω ⊂ Rk is open bounded and u, v ∈ C∞(Ω;Rk) are such that u = v near ∂Ω, thenˆ
Ω

det (∇u)(x) dx =

ˆ
Ω

det (∇v)(x) dx.

2. LetU ⊂ RN be open bounded. If I, J are as above,A ∈Mm,N(R) and ζ ∈ C∞c (U ;Rm),
then ˆ

U

(A+Dϕ(x))I,J dx = |U |AI,J .

Useful references: [2, Section 4], [6, Section 4.1].

(d) Passing to the weak limits in nonlinear quantities

A Theorem (Reshetnyak) If uj, u ∈ W 1,N(Ω,RN) and uj ⇀ u inW 1,N , then

det (∇uj)→ det (∇u) in D ′(Ω).

Useful reference: [12].

B Definition. (Ball) Let u = (u1, . . . , uN) ∈ W 1,N2/(N+1)(Ω,RN). Then

Det (∇u) := ∗d(u1du2 ∧ · · · ∧ duN) ∈ D ′(Ω).

Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.

Exercise. If u ∈ W 1,N(Ω,RN), prove that Det (∇u) = det (∇u).

Equivalently, prove that, if u ∈ W 1,N(Ω,RN), thenˆ
Ω

det (∇u)ϕ = −
ˆ

Ω

det (ϕ, u2, . . . , uN)u1,∀ϕ ∈ C∞c (Ω,R).
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C Theorem. (Reshetnyak, Ball, Brezis-Nguyen) Let N2/(N + 1) < p ≤ N . Let uj, u ∈
W 1,p(Ω,RN) be such that uj ⇀ u inW 1,p. Then

Det (∇uj)→ Det (∇u) in D ′(Ω).

Useful result:

Lemma. Let p ≥ N − 1 and let q ≥ 1 satisfy (N − 1)/p+ 1/q = 1. If u, v ∈ C∞(Ω,RN),
then ∣∣∣∣ˆ

Ω

[det (∇v)− det (∇u)]ϕ

∣∣∣∣ ≤ CN,Ω||v − u||q (||∇u||p + ||∇v||p)
N−1||∇ϕ||∞,

∀ϕ ∈ C∞c (Ω,R).

Useful reference: [5, Theorem 1].

Exercise. When N = 2, establish the above theorem by proving the following stronger
statement: if p > 4/3 and uj = (uj1, u

j
2) ⇀ u = (u1, u2) inW 1,p(Ω,R2), then uj1∇u

j
2 →

u1∇u2 in D ′(Ω).

D Theorem. (Edelsen, Ericksen, Ball) Let f : RNm → R be a continuous function such
that, for some 1 ≤ p <∞,

[uj ⇀ u inW 1,p(Ω,Rm)] =⇒ [f(Duj)→ f(Du) in D ′(Ω)].

Then f is an affine function of the minors of Du. Similarly when p = ∞, for the ∗
⇀

convergence.

Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].

E Gap (or Lavrentiev) phenomen

Theorem. (Maniá) Let

F (x) :=

ˆ 1

0

(x3(t)− t)2 x′6(t) dt, ∀x ∈ W 1,1((0, 1)) with x(0) = 0 and x(1) = 1.

Then we have the following Lavrentiev phenomenon

inf{F (x); x ∈ C1([0, 1])} > inf{F (x); x ∈ W 1,1((0, 1))}.

Useful reference: [8].

(e) Concentration-compactness

Useful general reference: [14, Section I.4].

A Exercise. Let Fm : [0,∞)→ [0, 1], m ≥ 0, be non decreasing functions. Prove that, up to
a subsequence, Fm converges simply.

First concentration-compactness lemma (Lions) Let (µm) be a sequence of Borel prob-
ability measures on RN . Then, up to a subsequence, one of the following holds:
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(a) (Compactness) There exists a sequence (xm) ⊂ RN such that, for every ε > 0, there
exists someR = R(ε) satisfying µm(BR(xm)) > 1− ε, ∀m.

(b) (Vanishing) For everyR > 0, sup
x∈RN

µm(BR(x))→ 0 asm→∞.

(c) (Dichotomy) There exists some 0 < λ < 1 and sequences (xm) ⊂ RN , Rm → ∞
such that

µm(BRm(xm))→ λ, µm(RN \B2Rm(xm))→ 1− λ,
µm(B2Rm(xm) \BRm(xm))→ 0.

Moreover, in the above we may replace 2Rm with any ρm > Rm.

B Brezis-Lieb lemma Let (X,T , µ) be a measured space and 0 < p <∞. Let fj, f : X →
C be measurable functions such that:

(i) fj → f a.e.

(ii) For some finiteC ,
ˆ
X

|fj|p ≤ C , ∀ j.

Then ˆ
X

||fj|p − |f |p − |fj − f |p| → 0,

In particular, if p ≥ 1,X = RN with the Lebesgue measure, and we set

µj := (|fj|p − |f |p − |fj − f |p) dx,

then µj
∗
⇀ 0 in the sense of measures.

Useful references: [7, Theorem 1.9], [10, Exercice de synthèse #10].

C Theorem (Lions) Let a = a(x) ∈ C(RN , (0,∞)) be such that

lim
|x|→∞

a(x) = a∞ > 0.

Let 1 < p <
N + 2

N − 2
and set

I := inf

{ˆ
RN

(|∇u|2 + au2); u ∈ H1(RN),

ˆ
RN

|u|p+1 = 1

}
,

I∞ := inf

{ˆ
RN

(|∇u|2 + a∞u
2); u ∈ H1(RN),

ˆ
RN

|u|p+1 = 1

}
.

If I < I∞, then the inf in I is attained. Up to a multiplicative constant, a minimizer is a
non trivial solution u ∈ H1(RN) of

−∆u+ au = |u|p−1u in RN .
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D Exercise. Let µ be a finite diffuse Borel measure in RN . Prove that

lim
r→0

sup
x∈RN

µ(Br(x)) = 0.

Exercise. Let ω, λ be finite Borel measures in RN and 1 ≤ p < q <∞. Assume that, for
some 0 < S <∞, we have

S

(ˆ
RN

|f |q dω
)p/q

≤
ˆ
RN

|f |p dλ, ∀ Borel function f : RN → R. (2)

Prove that:

(a) ω is a purely atomic measure, i.e., there exist αj > 0, xj ∈ RN such that ω =∑
j αjδxj

.

(b)
∑

j(αj)
p/q <∞.

(c) λ ≥ S
∑

j(αj)
p/qδxj

.

(d) (2) holds if and only if it holds for f ∈ C∞c (RN).

Hint. Step 1. Assume first that λ is diffuse. Using the previous exercise, prove that, for
every cubeC ⊂ RN , ω(C) = 0, and thus ω = 0.

Step 2. Apply Step 1 to ω0 and λ0, where ω0, respectively λ0, is the diffuse part of ω, re-
spectively λ.

Exercise. Let 1 ≤ p <∞ and k ≥ 1 be such that kp < N . Let
1

q
:=

1

p
− k

N
.

Set

Ẇ k,p := {u ∈ D ′(RN); Dku ∈ Lp, u ∈ Lq}.

Prove that, if we endow Ẇ k,p with the norm u 7→
∣∣∣∣Dku

∣∣∣∣
p
, then C∞c (RN) is dense in

Ẇ k,p. In particular, prove that we have the Sobolev inequality

S||u||pq ≤
∣∣∣∣Dku

∣∣∣∣p
p
, ∀u ∈ Ẇ k,p, (3)

for some (optimal Sobolev constant) 0 < S <∞.

Useful reference for k = 1: [9, Lemma 14]. Hint for k ≥ 2: prove the following result:

Exercise. Let k, p, and q be as above. ForR > 0, setAR := {x ∈ RN ; R ≤ |x| ≤ 2R}. If
v ∈ C∞(AR), then for every ε > 0 there exists some finite C(ε) (independent of R and
v) such that

k−1∑
`=0

R−(k−`)∣∣∣∣D`v
∣∣∣∣
Lp(AR)

≤ ε
∣∣∣∣Dkv

∣∣∣∣
Lp(AR)

+ C(ε)||v||Lq(AR).

Exercise. Let µ be a finite measure on X and 1 ≤ p < q ≤ ∞. If (fm) ⊂ Lq(X) is
bounded and fm → 0 a.e., then fm → 0 in Lp(X).

Second concentration-compactness lemma (Lions) Let 1 < p < ∞, k, q, and S be as
above. Let (um) ⊂ Ẇ k,p and u ∈ Ẇ k,p be such that:
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(i) um ⇀ u in Ẇ k,p and um → u a.e.

(ii) |um|q dx
∗
⇀ |u|qdx + ω in the sense of measures, for some (non-negative) Borel

measure ω.

(iii) |Dkum|pdx
∗
⇀ |Dku|pdx + µ in the sense of measures, for some (non-negative)

Borel measure µ.

Then:

(a) ω is a purely atomic measure: ω =
∑

j αjδxj
, with αj > 0, xj ∈ RN .

(b) We have
∑

j(αj)
p/q <∞.

(c) We have µ ≥ S
∑

j(αj)
p/qδxj

.

E Theorem (Aubin, Talenti, Lions) Let k ≥ 1 and 1 < p < ∞ be such that kp < N . Then
there exists some u ∈ Ẇ k,p \ {0} such that equality holds in (3).
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