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REGULARITY THEORY

(a) Warnings
Exercise (Weierstrass’ counterexample to Dirichlet’s principle) Let 0 < o < 1 and set
v(z,y) = (2* = y) (= In(z* +¢*))*, ¥ (z,y) € D.
Prove that:
@@ v ¢ C*D).
(b) The distributional Laplacian f := Awv is continuous on ID.

(c) The equation Au = f has no classical (i.e., C?) solution near the origin.

Exercise Let N > 2and u € C'(R" \ {0}) be such that d;u € L (RY). Prove that
u € L},.(RY) and that 9, u is the distributional derivative of u. What about N = 1?

loc

Useful reference for items|CJand D : [10]

Exercise Letaw € R\ {—1,1 — N} and set

ala+ N)

u(z) == 21 |2|%, Yo € RV \ {0}, 6::_(0z+1)(a—|—N—1)'

Then

1<i<N 1<j<N

| D] Theorem (Serrin) A homogeneous uniformly elliptic equation in divergence form may
have locally unbounded W,>} () weak solutions.

More specifically, if N > 2and 0 < £ < 1, and we set

T
ule) = e € RY,
and
b N -1
A =1d —(x; T; i RN ithp = —— — 1
(z) N+ ’IP(JC Tj)i<ijen, © € RY, wi crN-2)

then u € WoH(RN) \ Li2 (RY), A is uniformly elliptic in RY, and

oc loc

div (AVu) = 0in Z2'(R").



(b) Singular integrals

General reference: [8, Section 3]

Exercise. Let wy be the area of SV L. Let E be “the” fundamental solution of —A in RY,

Ble) m {—(1/wg) nfel, N =2
(1/[(N = 2)wy]) |2|>N, ifN >3

(@) Prove that, in the distributions sense,

1
8.E = g;. where g;(z) := —— —3_
J 95> where g](l') Wy |£C|N

(b) If1 <p < oocand f € LE(RY), then, in the distributions sense,

0;(f * EY) = h;,where h;(x / fy)gi(z —y)dy
Exercise. Let K € 2'(RY) N L (RN \ {0}). Let f € C>(RY) and set L := supp f.
Then:
(K Nie) = [ FK@=g)di= [ f@)K@=ydy Vo gswpL. 0

Proposition. With the above notation, let X' := 0yg; = 0x0;E (in the distributions
sense). Then:

@ K e 2'(RY)nC>®(RN\ {0}), and in particular (1) holds.
(b) K € .’ and, in the distributions sense,

&k

€17

(c) Forsome finite C, we have |[VK (z)| < C/|z|N T, Vz € RV \ {0}.

f((f) = {;r, where (;(§) :== —

Useful reference: [6, Theorem 2.3.4]

Exercise. Let (X, .7, i) be a measured space. (Warning: p is not supposed o-finite.) If
f: X — Rismeasurable and 1 < p < oo, then

I =0 [0 0] > )
0 ——
=Fy(t)
| D] Marcinkiewicz interpolation theorem (special case) Let (X, .7, 1) be a measured space.

Let 1 < r < oo and let T be a linear operator on L' N L"(X) such that, for every f €
L'N L"(X), Tf is a measurable function on X and, for some K, K, < oo, we have

w(|Tf| > 1) < Ky m Y feL'NL'(X), V>0,

||f||7~

w([|Tf] > 1)) < VfeL'nL'(X),Vt>0.




Then, forevery 1 < p < rand some C,, < o0,
1T, < Coll £, ¥ f € L' N LT(X),
andin particular 7" admits a unique linear continuous extension from L? (X ) into LP(X).

In the special case where y is a Radon measure in RY, the same holds if 7" is initially
defined on L (RY).

Calderén-Zygmund decomposition, second form Let f € C.(R")andt > 0. Then, with
finite constants independent of f and # there exist: a family of disjoint cubes C,, C RY
and functions g, h,, € L(RY) (depending on f and ¢) such that

@ g=finRY\U,C,.
(b) |g] < Ct.
(c) supp h, C C,, Vn.

(d) /hn =0,Vn.

© ][\hnl < Ctvn,

® f=9+ Z h,, (pointwise).

I£1
® gl + D lIhall, < ClII,-

Calderén-Zygmund theorem adapted to the Laplace equation Let K € .&7/(RY)NCY(RN\
{0}) satisfy

(1) K is a bounded real function.
() |[VK(z)| < C/|z|N*,Vx € RY \ {0}, for some finite C.

LetTf := K * f,V f € C®(R"Y). Then
ITfl, < Conlfll, V1< p<oo,VfeCERY).

In particular, for 1 < p < oo, T" admits a unique linear continuous extension from
LP(RY) into itself.

Corollary. Let 1 < p < ooand f € LF(RY), and setu := E * f. Then
1001, < Conlfll,, Y1 < j k< N.

A standard “elliptic estimate” Let 1 < p < oo, K C 2 C RY, with K compact and (2
open. If —Au = f € LP(Q)), thenu € VVfOCp(Q) and, for some finite C' = C, y ok,

lullwzr ey < CUF oy + 1wl )-

Exercise. Let u € H} () be an eigenfunction of —A. Prove thatu € C*°(12).
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(c) L? regularity theory
Useful references: [4, Chapter 9] for the regularity theory, [8, Section 1.5] for trace theory

Main regularity theorem (Calderén, Zygmund, Koselev, Greco, Agmon, Douglis, Niren-
berg, ...) Let 2 C R" be abounded C'-domain. Let 1 < p < coand f € L?(2). Then
the problem

—Au=f 1inQ
(2)
u=0 on 0f)

has a unique (generalized) solution u € W??(Q). In addition, for some finite C' inde-
pendent of f, 2,0, < CI/,

Exercise. The above u is not only a distributional solution, but also a strong solution, in
the sense that for a.e. x € 2 we have

— Z O;u(z) = f(x).

Toolbox In what follows, w, 2 C R" are bounded open sets.
For the record.

Rademacher’s theorem A Lipschitz function f : 2 — R is differentiable a.e., and its
distributional gradient and point gradient coincide.

Useful reference: [3, Section 3.1.2]

Exercise. Let ® : w — () be a bi-Lipschitz homeomorphism. Prove that, with constants
0 < () < Oy < codepending onlyon 1 < p < oo and on the Lipschitz constants of
® and !, we have

Cillf o @l o) < Il < Collf o @l s, ¥V measurable function f : @ — R.

Exercise. Let & : w — Q be a C''-diffeomorphism. If f € W' (Q), prove that f o ® €
W, (w) and that the chain rule holds, i.e.,

loc

0 (fo®) => [(0;f) 0 @] [0,®,], V1 <i < N.

j=1

Exercise. Let ® : w —  be a C"'-diffeomorphism and 1 < p < oo. Prove that
f = | o @[z, is equivalent to the usual norm on W2P(Q).

Lemma. Let & : w — Q be a C'-diffeomorphism. Let u € W, (Q) satisfy —Au = f €
LL.(Q) in the distributions sense. Set v := u o ® € W,>! (w). Then, in the distributions

loc

sense, we have

—div(AVv) =g € L, (), 3



where
A= Ax) = [JO|[(JO)[[(JO)]), g =T D| f o ®.

Lemma. Let A € Lip,,.(w), v € W (w), ¢ € Lip,,(w),and g € L} (w). If (3) holds,
then

—div (AV(¢v)) = (g — v div (AV() — (AVv) - V( — (AV() - V.

Exercise. Letu € W1 (Q) and ¢ € C'(Q). Prove that tr(pu) = pjan tr .

Exercise. Let (2 be a C'-domain, and let ¥ : U — R” be a C''-diffeomorphism from an
open set U C R" into its image. SetZ := ¥y : U — ¥(U)and ® := = Setalso
Y :=00NUand A := ¥(X). Letu € WH(U) and set v := u o ®. Give a meaning to
and prove the equality try(sy v = (trg(u)) o [(\D)"Al]

Exercise. Set RY := {x € RY; xy > 0}. Letu € WH(RY). Let h € RV~ x {0}. Give
a meaning to and prove the equality tr u(- + h) = (tr u)(- + h).

Lemma. Letp, ¢ be conjugated exponents, g € LY(RY ), w € W'P(RY), h € RN x{0}.
Then

/RN(Q(:B +h) = g(x)) w(z) dz| < [A]|lg], [Vw],-

Exercise. Let f € L} (RY). Then

loc

tim S g fin 9 (RY), V1< < N -1,
Exercise. Let u € W2!(RY).

(@) Let ¥ := RV~ x {0}, that we identify with RN~!. When ¢ € C2(RY), prove the
generalized (second) Green formula

/RN(—AU)SO = /sz_l[mz Onu] p — /RN—I[trE ul aNSO—i_/RNU(_AQD)'

(b) If F: R? — R, set

F ifzy >0
F*a) = Fr(@,...,an) = 4 1 O SRR

—F((El,...,l’N_l,—l’N), lf.CEN<0
Let u € W2H(RY) satisfy trs, u = 0. Prove that —A(u*) = (—Au)*.

Theorem (Higher order regularity) Let k > 0, Q € C*2! and1 < p < oco. If
f € WFr(Q), then the solution u of (2) satisfies u € W 2P(Q) and, for some finite
C independent of f, [[ullyxs2p(q) < Cllflwrr o)
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[D] For the record, we mentions some results in lower order regularity theory.

Theorem. Let ) € C''and 1 < p < co. For F' € LP(Q; RY), the equation
—Au =divFin 2'(Q)

has a unique solution u € W, ”?(Q). In addition, with some finite constant C' indepen-
dent of I, we have the estimate ||Vul|, < C|F.

Theorem (Stampacchia) Let 2 € C!. For f € L(), the equation
_Au= fin 2'(Q)

has a unique solution u. € W,"' (). Moreover, this u satisfies u € ﬁ1§p<N/(N_1)W01’p(Q)
and, with finite constants C), independent of f,

N
IVul, < Gl ¥1<p < .

Useful reference: [9, Section 4.1]

(d) A glimpse of the C® regularity theory

Useful reference: [4, Lemma 4.4, Theorem 6.14, Theorem 6.19]. For the record:

Theorem (C“ regularity) (Kellogg) Let 0 < o < 1,k > 0,Q € C*2 If f € C*(Q), then
the solution of (2) satisfies u € C**2%(Q)). In addition, for some finite C' independent of f,

|U||ck+2,a(ﬁ) < C||f||ck7a(§)-
Lemma (Holder estimates for the Newtonian potential) (Korn) Let 0 < o < 1. If f € C¥(RY)
and u := E x f, then, for some finite C independent of f,

| D% o gy < Clflga@my:

(e) Power growth nonlinearities. Bootstrap

Useful reference: [8, Section 3.3.2]. In what follows, we assume that N > 3.
Let f : Q x R — R be a measurable function satisfying

|f(z,t) < C(1+|t]F), Ve € Q, Vt € R.
Let u satisfy

u € Hypo(Q), @ = f(z,u(x)) € Ljye(Q)
—Au = f(z,u(z))in 2'(Q).

. N +2
Exercise. Assume that p <

N 2.Thenu c W2'(Q),Vr < co.



.. N +2
Proposition. The same holds when p = N—+2

Moreover, if u € H} () satisfies

—Au = a(x)u+ b(x), witha € L/(Q), b € L%, (Q),
thenu € L] (2),Vr < occ.

loc

. N+2 .
Exercise. Letp > N i 5 Prove that the equation —Au = |u|? has a locally unbounded

solution u € H' N LP(B;(0)), of the form u(x) = \|z|~¢, for appropriate constants
A, a > 0.

(f) A glimpse of the De Giorgi regularity theory

Useful references: [4, Sections 8.5-8.9], [5, Chapter 4]. For the record:
Theorem (local boundedness; Stampacchia, Ladyzhenskaya, Uraltseva, Trudinger,...) Let
A = A(z) be uniformly elliptic in Q := B;(0). Letu € H*() satisfy — div (AVu) =
f € LP(Q2), where p > g Then u € L;3 (Q2) and, with a finite constant depending only
on0 < R < 1landp,

||UHLoo(BR(0)) < O(Hf”Lq(Q) + H“”Ll(m)-

Theorem (local C'“ regularity; De Giorgi, Nash, Ladyzhenskaya, Uraltseva, Moser,...)
There exists some 0 < a < 1 depending only on p and the ellipticity constants of A
such that the above u belongs to C7 (2) and satisfies, with a finite constant C' depend-
ing onlyon Rand p

lu(z) —u(y)| < C(”f”Lq(Q) + ||u||L2(Q))7 Va,y € Bgr(0).

(g) Wente estimates. Compensation phenomena

Useful references: [1], [2], [7, Section 10.3]
Theorem (Wente) Let 2 € C! be a bounded domain in RY, and let ' € H'(Q;R?).

Then the problem
—Au =det (JF) inQ
u=0 on 0}

has a (unique) weak solution v € H}(€2). In addition, we have u € C(Q) and, for some
finite constant independent of F, we have the Wente estimates

lull o + IVul, < CIVE],.

For the record:

Theorem (Fefferman, Stein, Coifman, Lions, Meyer, Semmes) If F' € WLV (RN RY),
and we setu := E x [det JF)], then D*u € L*(R") and, with a finite constant indepen-
dent of F" and of its support,

| D?ul|, < CIIVF| -
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