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Lecture # 3
Regularity theory

(a) Warnings

A Exercise (Weierstrass’ counterexample to Dirichlet’s principle) Let 0 < α < 1 and set

v(x, y) := (x2 − y2) (− ln(x2 + y2))α, ∀ (x, y) ∈ D.

Prove that:

(a) v 6∈ C2(D).

(b) The distributional Laplacian f := ∆v is continuous on D.

(c) The equation ∆u = f has no classical (i.e.,C2) solution near the origin.

B Exercise Let N ≥ 2 and u ∈ C1(RN \ {0}) be such that ∂1u ∈ L1
loc(RN). Prove that

u ∈ L1
loc(RN) and that ∂1u is the distributional derivative of u. What aboutN = 1?

C Useful reference for items C and D : [10]

Exercise Let α ∈ R \ {−1, 1−N} and set

u(x) := x1 |x|α, ∀x ∈ RN \ {0}, β := − α(α +N)

(α + 1)(α +N − 1)
.

Then ∑
1≤i≤N

∂i

( ∑
1≤j≤N

(δij + β xixj |x|−2)∂ju

)
= 0 in RN \ {0}.

D Theorem (Serrin) A homogeneous uniformly elliptic equation in divergence form may
have locally unboundedW 1,1

loc (Ω) weak solutions.

More specifically, ifN ≥ 2 and 0 < ε < 1, and we set

u(x) :=
x1

|x|N−1+ε
, x ∈ RN ,

and

A(x) := IdN +
b

|x|2
(xi xj)1≤i,j≤N , x ∈ RN , with b :=

N − 1

ε(ε+N − 2)
− 1,

then u ∈ W 1,1
loc (RN) \ L∞loc(RN),A is uniformly elliptic in RN , and

div (A∇u) = 0 in D ′(RN).
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(b) Singular integrals

General reference: [8, Section 3]

A Exercise. Let ωN be the area of SN−1. LetE be “the” fundamental solution of−∆ in RN ,

E(x) :=

{
−(1/ω2) ln |x|, ifN = 2

(1/[(N − 2)ωN ]) |x|2−N , ifN ≥ 3
.

(a) Prove that, in the distributions sense,

∂jE = gj, where gj(x) := − 1

ωN

xj
|x|N

.

(b) If 1 ≤ p ≤ ∞ and f ∈ Lpc(RN), then, in the distributions sense,

∂j(f ∗ E) = hj,where hj(x) :=

ˆ
RN
f(y) gj(x− y) dy.

Exercise. Let K ∈ D ′(RN) ∩ L1
loc(RN \ {0}). Let f ∈ C∞c (RN) and set L := supp f .

Then:

(K ∗ f)(x) =

ˆ
RN
f(y)K(x− y) dy =

ˆ
L

f(y)K(x− y) dy, ∀x 6∈ suppL. (1)

B Proposition. With the above notation, let K := ∂kgj = ∂k∂jE (in the distributions
sense). Then:

(a) K ∈ D ′(RN) ∩ C∞(RN \ {0}), and in particular (1) holds.
(b) K ∈ S ′ and, in the distributions sense,

K̂(ξ) = `j,k, where `j,k(ξ) := −ξjξk
|ξ|2

.

(c) For some finiteC , we have |∇K(x)| ≤ C/|x|N+1, ∀x ∈ RN \ {0}.

Useful reference: [6, Theorem 2.3.4]

C Exercise. Let (X,T , µ) be a measured space. (Warning: µ is not supposed σ-finite.) If
f : X → R is measurable and 1 ≤ p <∞, then

||f ||pp = p

ˆ ∞
0

tp−1 µ([|f | > t])︸ ︷︷ ︸
:=Ff (t)

dt.

D Marcinkiewicz interpolation theorem (special case) Let (X,T , µ) be a measured space.
Let 1 < r < ∞ and let T be a linear operator on L1 ∩ Lr(X) such that, for every f ∈
L1 ∩ Lr(X), Tf is a measurable function onX and, for someK1, Kr <∞, we have

µ([|Tf | > t]) ≤ K1
||f ||1
t
, ∀ f ∈ L1 ∩ Lr(X), ∀ t > 0,

µ([|Tf | > t]) ≤ Kr
||f ||rr
tr

, ∀ f ∈ L1 ∩ Lr(X), ∀ t > 0.
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Then, for every 1 < p < r and someCp <∞,

||Tf ||p ≤ Cp||f ||p, ∀ f ∈ L
1 ∩ Lr(X),

and in particularT admits a unique linear continuous extension fromLp(X) intoLp(X).

In the special case where µ is a Radon measure in RN , the same holds if T is initially
defined on Lrc(RN).

F Calderón-Zygmund decomposition, second form Let f ∈ Cc(RN) and t > 0. Then, with
finite constants independent of f and t there exist: a family of disjoint cubes Cn ⊂ RN

and functions g, hn ∈ L∞c (RN) (depending on f and t) such that

(a) g = f in RN \ ∪nCn.
(b) |g| ≤ Ct.
(c) supp hn ⊂ Cn, ∀n.

(d)
ˆ
hn = 0, ∀n.

(e)
 
|hn| ≤ Ct, ∀n.

(f) f = g +
∑
n

hn (pointwise).

(g)
∑
n

|Cn| ≤ C
||f ||1
t

.

(h) ||g||1 +
∑
n

||hn||1 ≤ C||f ||1.

G Calderón-Zygmund theorem adapted to the Laplace equation LetK ∈ S ′(RN)∩C1(RN\
{0}) satisfy

(i) K̂ is a bounded real function.
(ii) |∇K(x)| ≤ C/|x|N+1, ∀x ∈ RN \ {0}, for some finiteC .

Let Tf := K ∗ f , ∀ f ∈ C∞c (RN). Then

||Tf ||p ≤ Cp,N ||f ||p, ∀ 1 < p <∞, ∀ f ∈ C∞c (RN).

In particular, for 1 < p < ∞, T admits a unique linear continuous extension from
Lp(RN) into itself.

Corollary. Let 1 < p <∞ and f ∈ Lpc(RN), and set u := E ∗ f . Then

||∂j∂k||p ≤ Cp,N ||f ||p, ∀ 1 ≤ j, k ≤ N.

H A standard “elliptic estimate” Let 1 < p < ∞, K ⊂ Ω ⊂ RN , with K compact and Ω
open. If−∆u = f ∈ Lp(Ω), then u ∈ W 2,p

loc (Ω) and, for some finiteC = Cp,N,Ω,K ,

||u||W 2,p(K) ≤ C(||f ||Lp(Ω) + ||u||L1(Ω)).

Exercise. Let u ∈ H1
0 (Ω) be an eigenfunction of−∆. Prove that u ∈ C∞(Ω).
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(c)Lp regularity theory

Useful references: [4, Chapter 9] for the regularity theory, [8, Section 1.5] for trace theory

A Main regularity theorem (Calderón, Zygmund, Koselev, Greco, Agmon, Douglis, Niren-
berg, ...) Let Ω ⊂ RN be a bounded C1,1-domain. Let 1 < p < ∞ and f ∈ Lp(Ω). Then
the problem{

−∆u = f in Ω

u = 0 on ∂Ω
(2)

has a unique (generalized) solution u ∈ W 2,p(Ω). In addition, for some finite C inde-
pendent of f , ||u||W 2,p(Ω) ≤ C||f ||p.

Exercise. The above u is not only a distributional solution, but also a strong solution, in
the sense that for a.e. x ∈ Ω we have

−
N∑
j=1

∂jju(x) = f(x).

B Toolbox In what follows, ω,Ω ⊂ RN are bounded open sets.

For the record.

Rademacher’s theorem A Lipschitz function f : Ω → R is differentiable a.e., and its
distributional gradient and point gradient coincide.

Useful reference: [3, Section 3.1.2]

Exercise. Let Φ : ω → Ω be a bi-Lipschitz homeomorphism. Prove that, with constants
0 < C1,p < C2,p < ∞ depending only on 1 ≤ p < ∞ and on the Lipschitz constants of
Φ and Φ−1, we have

C1||f ◦ Φ||Lp(ω) ≤ ||f ||Lp(Ω) ≤ C2||f ◦ Φ||Lp(ω),∀measurable function f : Ω→ R.

Exercise. Let Φ : ω → Ω be a C1-diffeomorphism. If f ∈ W 1,1
loc (Ω), prove that f ◦ Φ ∈

W 1,1
loc (ω) and that the chain rule holds, i.e.,

∂i (f ◦ Φ) =
N∑
j=1

[(∂jf) ◦ Φ] [∂iΦj], ∀ 1 ≤ i ≤ N.

Exercise. Let Φ : ω → Ω be a C1,1-diffeomorphism and 1 ≤ p ≤ ∞. Prove that
f 7→ ||f ◦ Φ||W 2,p(ω) is equivalent to the usual norm onW 2,p(Ω).

Lemma. Let Φ : ω → Ω be a C1-diffeomorphism. Let u ∈ W 1,1
loc (Ω) satisfy−∆u = f ∈

L1
loc(Ω) in the distributions sense. Set v := u ◦ Φ ∈ W 1,1

loc (ω). Then, in the distributions
sense, we have

− div (A∇v) = g ∈ L1
loc(ω), (3)
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where

A = A(x) := |J Φ| [(JΦ)−1] [t[(JΦ)−1]], g := |J Φ| f ◦ Φ.

Lemma. Let A ∈ Liploc(ω), v ∈ W 1,1
loc (ω), ζ ∈ Liploc(ω), and g ∈ L1

loc(ω). If (3) holds,
then

− div (A∇(ζv)) = ζ g − v div (A∇ζ)− (A∇v) · ∇ζ − (A∇ζ) · ∇v.

Exercise. Let u ∈ W 1,1(Ω) and ϕ ∈ C1(Ω). Prove that tr(ϕu) = ϕ|∂Ω tr u.

Exercise. Let Ω be aC1-domain, and let Ψ : U → RN be aC1-diffeomorphism from an
open set U ⊂ RN into its image. Set Ξ := Ψ|U : U → Ψ(U) and Φ := Ξ−1. Set also
Σ := ∂Ω ∩ U and Λ := Ψ(Σ). Let u ∈ W 1,1(U) and set v := u ◦ Φ. Give a meaning to
and prove the equality trΨ(Σ) v = (trΣ(u)) ◦ [(Ψ)−1

|Λ ].

Exercise. Set RN
+ := {x ∈ RN ; xN > 0}. Let u ∈ W 1,1(RN

+ ). Let h ∈ RN−1 × {0}. Give
a meaning to and prove the equality tr u(·+ h) = (tr u)(·+ h).

Lemma. Letp, q be conjugated exponents, g ∈ Lq(RN
+ ),w ∈ W 1,p(RN

+ ),h ∈ RN−1×{0}.
Then ∣∣∣∣∣

ˆ
RN+

(g(x+ h)− g(x))w(x) dx

∣∣∣∣∣ ≤ |h| ||g||q ||∇w||p.
Exercise. Let f ∈ L1

loc(RN
+ ). Then

lim
t→0

f(·+ tej)− f
t

= ∂jf in D ′(RN
+ ), ∀ 1 ≤ j ≤ N − 1.

Exercise. Let u ∈ W 2,1(RN
+ ).

(a) Let Σ := RN−1 × {0}, that we identify with RN−1. When ϕ ∈ C2
c (RN

+ ), prove the
generalized (second) Green formula

ˆ
RN+

(−∆u)ϕ =

ˆ
RN−1

[tr|Σ ∂Nu]ϕ−
ˆ
RN−1

[tr|Σ u] ∂Nϕ+

ˆ
RN+
u (−∆ϕ).

(b) If F : Rn
+ → R, set

F ∗(x) = F ∗(x1, . . . , xN) :=

{
F (x), if xN > 0

−F (x1, . . . , xN−1,−xN), if xN < 0
.

Let u ∈ W 2,1(RN
+ ) satisfy tr|Σ u = 0. Prove that−∆(u∗) = (−∆u)∗.

C Theorem (Higher order regularity) Let k ≥ 0, Ω ∈ Ck+2,1, and 1 < p < ∞. If
f ∈ W k,p(Ω), then the solution u of (2) satisfies u ∈ W k+2,p(Ω) and, for some finite
C independent of f , ||u||Wk+2,p(Ω) ≤ C||f ||Wk,p(Ω).
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D For the record, we mentions some results in lower order regularity theory.

Theorem. Let Ω ∈ C1,1 and 1 < p <∞. For F ∈ Lp(Ω;RN), the equation

−∆u = divF in D ′(Ω)

has a unique solution u ∈ W 1,p
0 (Ω). In addition, with some finite constant C indepen-

dent of F , we have the estimate ||∇u||p ≤ C||F ||p.

Theorem (Stampacchia) Let Ω ∈ C1,1. For f ∈ L1(Ω), the equation

−∆u = f in D ′(Ω)

has a unique solutionu ∈ W 1,1
0 (Ω). Moreover, thisu satisfiesu ∈ ∩1≤p<N/(N−1)W

1,p
0 (Ω)

and, with finite constantsCp independent of f ,

||∇u||p ≤ Cp||f ||1, ∀ 1 ≤ p <
N

N − 1
.

Useful reference: [9, Section 4.1]

(d) A glimpse of theCα regularity theory

Useful reference: [4, Lemma 4.4, Theorem 6.14, Theorem 6.19]. For the record:
Theorem (Cα regularity) (Kellogg) Let 0 < α < 1, k ≥ 0, Ω ∈ Ck+2,α. If f ∈ Ck,α(Ω), then
the solution of (2) satisfies u ∈ Ck+2,α(Ω). In addition, for some finite C independent of f ,
||u||Ck+2,α(Ω) ≤ C||f ||Ck,α(Ω).

Lemma (Hölder estimates for the Newtonian potential) (Korn) Let 0 < α < 1. If f ∈ Cα
c (RN)

and u := E ∗ f , then, for some finiteC independent of f ,∣∣D2u
∣∣
Cα(RN )

≤ C|f |Cα(RN ).

(e) Power growth nonlinearities. Bootstrap

Useful reference: [8, Section 3.3.2]. In what follows, we assume thatN ≥ 3.
Let f : Ω× R→ R be a measurable function satisfying

|f(x, t) ≤ C(1 + |t|p), ∀x ∈ Ω, ∀ t ∈ R.

Let u satisfy

u ∈ H1
loc(Ω), x 7→ f(x, u(x)) ∈ L1

loc(Ω)

−∆u = f(x, u(x)) in D ′(Ω).

A Exercise. Assume that p <
N + 2

N − 2
. Then u ∈ W 2,r

loc (Ω), ∀ r <∞.
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B Proposition. The same holds when p =
N + 2

N − 2
.

Moreover, if u ∈ H1
loc(Ω) satisfies

−∆u = a(x)u+ b(x), with a ∈ LN/2loc (Ω), b ∈ L∞loc(Ω),

then u ∈ Lrloc(Ω), ∀ r <∞.

C Exercise. Let p >
N + 2

N − 2
. Prove that the equation−∆u = |u|p has a locally unbounded

solution u ∈ H1 ∩ Lp(B1(0)), of the form u(x) = λ|x|−α, for appropriate constants
λ, α > 0.

(f) A glimpse of the De Giorgi regularity theory

Useful references: [4, Sections 8.5–8.9], [5, Chapter 4]. For the record:

A Theorem (local boundedness; Stampacchia, Ladyzhenskaya, Uraltseva, Trudinger,...) Let
A = A(x) be uniformly elliptic in Ω := B1(0). Let u ∈ H1(Ω) satisfy − div (A∇u) =

f ∈ Lp(Ω), where p >
N

2
. Then u ∈ L∞loc(Ω) and, with a finite constant depending only

on 0 < R < 1 and p,

||u||L∞(BR(0)) ≤ C(||f ||Lq(Ω) + ||u||L1(Ω)).

B Theorem (local Cα regularity; De Giorgi, Nash, Ladyzhenskaya, Uraltseva, Moser,...)
There exists some 0 < α < 1 depending only on p and the ellipticity constants of A
such that the above u belongs to Cα

loc(Ω) and satisfies, with a finite constant C depend-
ing only onR and p

|u(x)− u(y)| ≤ C(||f ||Lq(Ω) + ||u||L2(Ω)), ∀x, y ∈ BR(0).

(g) Wente estimates. Compensation phenomena

Useful references: [1], [2], [7, Section 10.3]

A Theorem (Wente) Let Ω ∈ C1,1 be a bounded domain in RN , and let F ∈ H1(Ω;R2).
Then the problem{

−∆u = det (JF ) in Ω

u = 0 on ∂Ω

has a (unique) weak solution u ∈ H1
0 (Ω). In addition, we have u ∈ C(Ω) and, for some

finite constant independent of F , we have the Wente estimates

||u||∞ + ||∇u||2 ≤ C||∇F ||2.

B For the record:

Theorem (Fefferman, Stein, Coifman, Lions, Meyer, Semmes) If F ∈ W 1,N
c (RN ;RN),

and we set u := E ∗ [det JF )], thenD2u ∈ L1(RN) and, with a finite constant indepen-
dent of F and of its support,∣∣∣∣D2u

∣∣∣∣
1
≤ C||∇F ||N .
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