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Lecture # 3
MAXIMUM PRINCIPLES AND APPLICATIONS

(a) Basic maximum principles for positive elliptic operators
We work in a bounded domain 2 C R, and consider functions c,u : € — R such that
u € C?*(Q2) and
Lu:=—-Au+cu <0in (), )]
¢ > 01inQ and cis bounded. (2)

The non-negativity condition in (2) will be removed later, under additional assumptions on u
and/or €.

General references for this section: [5, Sections 3.1-3.3], [6, Sections 2.2-2.3]

Exercise. Let A = (a;;)1<i j<n satisfy the (weak) ellipticity condition

Z ai;;&& >0, VE=(&,....En) € RY.

1<i,j<N

Let B = (b;;)1<; j<n be a positive (symmetric) matrix. Then Z a;jbij > 0.
1<i,j<N
Use the above exercise to undertake the following
General exercise. Extend the results in this section to more general operators of the form
Lu=— Z aijﬁiju —+ Z b]@ju -+ cu,
1<ij<N 1<j<N
with b, = b;(x),V j, ¢ = ¢(x) > 0 (possibly b; bounded), (a;;)1<; j<n Weakly elliptic, or
possibly satisfying the uniform ellipticity condition
Me2< Y ay(@) 6 < ALEP ¥EERY, Vo e,
1<i,j<N

where ) < A < A < o0.

Exercise. (Basic lemma; no sign or boundedness condition on ¢) If Lu < 0 and if u has
alocal maximum point z, € €2, then ¢(z¢) u(zo) < 0.

(Weak maximum principle; no boundedness condition on ¢) If u € C(€2), then u(z) <

suput,Vx € Q.
o0



@ (Hopflemma) If:

(@) Qisaball

(b) zy € 00

© ue Q)

(d) u(z) < u(zg), Vo € Q
(@) u(zo) >0,

ou : .
then — (zo) > 0, where v is the outward unit normal at 2 at z.

ov

In the above and in all the versions below of the Hopf lemma, we may replace the as-

sumption u € C*(Q) by the continuity of u at xy and the existence of %(mo). We may

also require boundedness of ¢ only near x.

(Strong maximum principle) If v has an interior maximum point x such that u(zy) > 0,
then w is constant.

(Comparison principle) If u € C(€) and u < 0 on 95, then either u = 0in Q, or u < 0
in €.

(Hopf boundary lemma)

a) Assume that 2 is of class C2. If u € C'(f), u is non constant, and 2y € 9 is a

. ) 0 )
boundary maximum point of u such that u(z,) > 0, then a—u(xo) > (0, where v is the
v

outward unit normal to €2 at z.

. . = . 0
b) In particular, ifu € C*(Q), u is non constant, and u = 0 on 9), then a—u(aso) > (0at
1%
each point zy € 0€).

c) If we don’t assume 2 of class C?, then the above co&clusions hold at each point zy €
02 such that there exists an open ball B C Q with B N 0Q = {x}.

Useful result:

Exercise. Let () be a C? domain. (Or even a C'"! domain.) Then () satisfies the interior ball
condition and the exterior ball condition: for every xo € 052, there exist open balls B and C such
that: B C Q,CCRN\Q,308(2: {xo},C’ﬂE)Q: {l‘g}

In addition, we may choose balls of same radius.

Useful reference: [7, Lemma 2.31]

(b) Maximum principles for elliptic operators

Here, we don’t have any sign assumption on ¢, but we still assume that —Au + cu < 0in 2.

General references for this section: [5, Section 9.1], [6, Section 2.5]

(Serrin’s maximum principle) If u < 0in €2, then either u = 0in Q, oru < 01in 2.
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(Maximum principle in narrow domains) Assume that ¢ > —M for some M > 0. Then
there exists some § > 0 and C' > 0 depending only on M such that, if (2 is contained in
a strip of width < § and u € C'(Q), then u(z) < C'supu™,Vz € Q.
o)

(Hopf boundary lemma) Let v € C'(Q) satisfyu < 0on dQ and u < 0 in €. Then,
at each point 2y € 92 such that u(xy) = 0 and there exists an open ball B C 2 with

BN = {xy}, we have %(mo) > 0.

D] (Supercritical maximum principle) Let N < p < oc. Assume that:

@ c>0

b) ueCQ)
(© —Au+cu < f,with f € LP(Q,R,).

If d := diam ((2), then

u(x) < suput + C, yd> PN 1£1],- 3)
20

(Varadhan’s maximum principle; maximum principle in small domains) Fix two num-
bers M > 0, D > 0. Then there exists some § = 6(M, D) > 0 such that: if ¢ > —M,

diam (Q) < D, |Q| < §, then: for every non constantu € C'(Q2) such that —Au+cu <0
in Qand v < 0on 0f, we have u < 01in €.

Exercise (AlexandrofPs maximum principle) With the notation in item | D], we assume
this time that f € LV (Q, R, ). Prove the estimate

u(z) < sup ut + Cnd || f]l v 4)

which formally corresponds to p = N in (3), following these lines:

(@) Let M C ) be a Borel set. Prove that
| det (D*u)(z)| dz > |Du(M)|.
M

Hint: use the area formula/Banach indicatrix formula. [4, Section 3.4.3, Theorem
2], [8, Exercices de synthése et avancés, Exercice 28].

(b) Let

M :={zx € Q; u(x) > S;éj uy and u(y) < u(x)+ Du(x) - (y —z), Vy € Q}.

Prove that, ateach x € M:

i. D%u(x) is non-positive

ii. | det (D%u)(z)| < (%“(“T))N < (%)N
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(¢) Prove that,if a € RY is such that

Sup u — sup u4
Q i)

|a| < d Y

thena € Du(M).
Hint: prove that Q > 2 — u(x) — a - x achieves its maximum in ().

(d) Derive (4).
(Stampacchia’s maximum principle) Here, 2 is of class C'* (Lipschitz would suffice). If:
@ c=c(z) > -\ (Q) fora.e. z € Q, with \;(Q) the least eigenvalue of —A in H; (2)

(b) cisbounded from above
(©) u € HY(Q)satisfies —Au+ cu > 0inQand u > 0on 05,

thenwu > 0in Q.

Here, the meaning of —Au + cu > 01is

/Vu~Vgo+/cug020,VQOEC’SO(Q,RJF).
0 Q

Useful results: the de la Vallée Poussin chain rule and its consequences [7, Theorem 3.16,
Corollary 3.17, Lemma 3.20], and basic trace theory [7, Section 1.5], [2, Theorem 9.17]

(c) Moving planes

General references: [6, Section 2.6], [1]

Theorem. (Gidas-Ni-Nirenberg) Let €2 be a convex bounded domain, symmetric with
respect to the hyperplane {z; = 0}. If f € Lip,,.(R,R) andifu € C?*Q) N C(Q)

satisfies
—Au+ f(u)=0 inQ
u=>0 on Jf) , (5)
u >0 in €2
then:
(a) U(—ﬂfl,ZEQ,...,I‘N) = U(l‘l,...,Q?N),VZL’ = (x17"'7$N) €

(b) d1u < Ointheset {x € Q; x; > 0}.

Theorem. (Gidas-Ni-Nirenberg) Let 2 = Bg(0), and f and u as above. Then there exists
some g € C*([0, R)) N C([0, R]) such that:

@ u(z) =g(|z]),Vr € Q
b ¢(r) <0,YO<7r <R.



(d) Sub- and supersolutions

General reference: [3, Section 9.3]
We consider the problem

—Au = in ()
{ u= f(x,u) in _ ©
u=>0 on 02

We assume that:
1. Qis connected and of class C3.
2. f€CHQ xR).
Theorem. Assume that there exist u, 7 € C*(Q2) N C(Q) such that:

@ —Au < f(z,u)in Qandu < 0on J (u is a subsolution)
(b) —Au > f(x,u)in Qandu > 0 on JS (u is a supersolution)
(© u<uwinf.

Then the set
M = {u € C*(Q); usolves (6) and u < u < U}
is non-empty, and contains a minimal element and a maximal element.
Same conclusion ifu,w € H'(2) N C(Q).

Exercise. [3, Section 9.7, exercise 6] Assume f = f(u), with f(0) = 0, f/(0) > A (),
and f bounded from above on R . Prove that the problem

—Au= f(u) inQ
u=0 on Of) (7)
u >0 in

has a solution u € C?(Q).

(e) Uniqueness

In this section, 2 is of class C?, and we work with functions u € C%((Q).

General reference: [3, Section 9.4.2]

Theorem. (Krasnoselskii) Let f : [0, 00) — [0, c0) be a continuous function such that

ft)

(0,00) 2t — e is (strictly) decreasing.



Then the problem

—Au= f(u) inQ
u=>0 on Of) 8
u>0 in

has at most one solution.

N
Theorem (Pohozaev) Assume N > 3 and

) < p < oo. Assume also that € is

convex. Then the problem

©)

—Au=|[uftu inQ
u=20 on 0f)

has only the trivial solution u = 0.

(f) Exercises for the November 17 session

Exercise 1. Let 0 < o < 1. Let (2 be a bounded open set. Let (u;) C C*%(2) be bounded in
C%2(Q) and non-decreasing. Set u := lim u;. Prove that u; — u in C?(€2).

ou
v
Exercise 3. Let ) be a bounded open set.

Exercise 2. Let u satisfy (8). Prove that —(z) < 0, Vz € 0.

1. Letu € C'(Q) be such that u(z) = 0, Va € 0f. Prove that there exists some Cy < o0
such that u(z) < Cy dist(x,00), Vo € .

2. Assume Q2 € CHL. Letu € CY(Q) be such that u(z) = 0,V € 99, u(z) > 0,Vx € ©,

0 :
and a—u(:c) < 0,V € 09. Prove that there exists some C; > 0 such that u(z) >
14

C) dist(z,00),Vz € Q.

Exercise 4. Let O € C'"! be a bounded open set. Let u, v € C*(Q2) be such that u(z) = v(z) =

0,Vz € 0Q, u(z),v(x) > 0,Vx € Q, ?(m),%(w) < 0,Vx € 00. Provethat Q2 5 2 —
v v
u(x) o =
w(z) = @) extends by continuity to €).
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