Lecture # 3 Maximum principles and applications

(a) Basic maximum principles for positive elliptic operators

We work in a bounded domain $\Omega\subset\mathbb{R}^N$, and consider functions $c,u:\Omega\to\mathbb{R}$ such that $u\in C^2(\Omega)$ and

$$Lu := -\Delta u + c \, u \le 0 \text{ in } \Omega, \tag{1}$$

$$c > 0$$
 in Ω and c is bounded. (2)

The non-negativity condition in (2) will be removed later, under additional assumptions on u and/or Ω .

General references for this section: [5, Sections 3.1–3.3], [6, Sections 2.2–2.3]

 $oxed{\mathsf{A}}$ **Exercise.** Let $A=(a_{ij})_{1\leq i,j\leq N}$ satisfy the (weak) ellipticity condition

$$\sum_{1 \le i, j \le N} a_{ij} \xi_i \xi_j \ge 0, \ \forall \, \xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^N.$$

Let
$$B=(b_{ij})_{1\leq i,j\leq N}$$
 be a positive (symmetric) matrix. Then $\sum_{1\leq i,j\leq N}a_{ij}\,b_{ij}\geq 0$.

Use the above exercise to undertake the following

General exercise. Extend the results in this section to more general operators of the form

$$Lu = -\sum_{1 \le i,j \le N} a_{ij} \partial_{ij} u + \sum_{1 \le j \le N} b_j \partial_j u + cu,$$

with $b_j = b_j(x)$, $\forall j, c = c(x) \ge 0$ (possibly b_j bounded), $(a_{ij})_{1 \le i,j \le N}$ weakly elliptic, or possibly satisfying the *uniform ellipticity condition*

$$\lambda |\xi|^2 \le \sum_{1 \le i,j \le N} a_{ij}(x) \, \xi_i \xi_j \le \Lambda |\xi|^2, \, \forall \, \xi \in \mathbb{R}^N, \, \forall \, x \in \Omega,$$

where $0 < \lambda \le \Lambda < \infty$.

- B **Exercise.** (Basic lemma; no sign or boundedness condition on c) If Lu < 0 and if u has a local maximum point $x_0 \in \Omega$, then $c(x_0) u(x_0) < 0$.
- C (Weak maximum principle; no boundedness condition on c) If $u \in C(\overline{\Omega})$, then $u(x) \leq \sup_{\partial \Omega} u^+$, $\forall x \in \Omega$.

- D (Hopf lemma) If:
 - (a) Ω is a ball
 - (b) $x_0 \in \partial \Omega$
 - (c) $u \in C^1(\overline{\Omega})$
 - (d) $u(x) < u(x_0), \forall x \in \Omega$
 - (e) $u(x_0) \ge 0$,

then $\frac{\partial u}{\partial \nu}(x_0) > 0$, where ν is the outward unit normal at Ω at x_0 .

In the above and in all the versions below of the Hopf lemma, we may replace the assumption $u \in C^1(\overline{\Omega})$ by the continuity of u at x_0 and the existence of $\frac{\partial u}{\partial \nu}(x_0)$. We may also require boundedness of c only near x_0 .

- E (Strong maximum principle) If u has an interior maximum point x_0 such that $u(x_0) \ge 0$, then u is constant.
- $\boxed{ \mathbf{F} }$ (Comparison principle) If $u \in C(\overline{\Omega})$ and $u \leq 0$ on $\partial \Omega$, then either u = 0 in Ω , or u < 0 in Ω .
- G (Hopf boundary lemma)
 - a) Assume that Ω is of class C^2 . If $u \in C^1(\overline{\Omega})$, u is non constant, and $x_0 \in \partial \Omega$ is a boundary maximum point of u such that $u(x_0) \geq 0$, then $\frac{\partial u}{\partial \nu}(x_0) > 0$, where ν is the outward unit normal to Ω at x_0 .
 - b) In particular, if $u \in C^1(\overline{\Omega})$, u is non constant, and u = 0 on $\partial\Omega$, then $\frac{\partial u}{\partial\nu}(x_0) > 0$ at each point $x_0 \in \partial\Omega$.
 - c) If we don't assume Ω of class C^2 , then the above conclusions hold at each point $x_0 \in \partial \Omega$ such that there exists an open ball $B \subset \Omega$ with $\overline{B} \cap \partial \Omega = \{x_0\}$.

Useful result:

Exercise. Let Ω be a C^2 domain. (Or even a $C^{1,1}$ domain.) Then Ω satisfies the *interior ball condition* and the *exterior ball condition*: for every $x_0 \in \partial \Omega$, there exist open balls B and C such that: $B \subset \Omega$, $C \subset \mathbb{R}^N \setminus \overline{\Omega}$, $\overline{B} \cap \partial \Omega = \{x_0\}$, $\overline{C} \cap \partial \Omega = \{x_0\}$.

In addition, we may choose balls of same radius.

Useful reference: [7, Lemma 2.31]

(b) Maximum principles for elliptic operators

Here, we don't have any sign assumption on c, but we still assume that $-\Delta u + c u \le 0$ in Ω . General references for this section: [5, Section 9.1], [6, Section 2.5]

A (Serrin's maximum principle) If $u \leq 0$ in Ω , then either u = 0 in Ω , or u < 0 in Ω .

- B (Maximum principle in narrow domains) Assume that $c \geq -M$ for some $M \geq 0$. Then there exists some $\delta > 0$ and C > 0 depending only on M such that, if Ω is contained in a strip of width $\leq \delta$ and $u \in C(\overline{\Omega})$, then $u(x) \leq C \sup_{\partial \Omega} u^+$, $\forall \, x \in \Omega$.
- C (Hopf boundary lemma) Let $u \in C^1(\overline{\Omega})$ satisfy $u \leq 0$ on $\partial\Omega$ and u < 0 in Ω . Then, at each point $x_0 \in \partial\Omega$ such that $u(x_0) = 0$ and there exists an open ball $B \subset \Omega$ with $\overline{B} \cap \partial\Omega = \{x_0\}$, we have $\frac{\partial u}{\partial \nu}(x_0) > 0$.
- $\boxed{\mathsf{D}}$ (Supercritical maximum principle) Let N . Assume that:
 - (a) $c \ge 0$
 - (b) $u \in C(\overline{\Omega})$
 - (c) $-\Delta u + c u \leq f$, with $f \in L^p(\Omega, \mathbb{R}_+)$.

If $d := \operatorname{diam}(\Omega)$, then

$$u(x) \le \sup_{\partial \Omega} u^{+} + C_{p,N} d^{2-p/N} \|f\|_{p}.$$
(3)

- E (Varadhan's maximum principle; maximum principle in small domains) Fix two numbers $M \geq 0$, D > 0. Then there exists some $\delta = \delta(M,D) > 0$ such that: if $c \geq -M$, $\operatorname{diam}(\Omega) \leq D$, $|\Omega| < \delta$, then: for every non constant $u \in C(\overline{\Omega})$ such that $-\Delta u + c \, u \leq 0$ in Ω and $u \leq 0$ on $\partial \Omega$, we have u < 0 in Ω .
- **Exercise** (Alexandroff's maximum principle) With the notation in item D, we assume this time that $f \in L^N(\Omega, \mathbb{R}_+)$. Prove the estimate

$$u(x) \le \sup_{\partial \Omega} u^+ + C_N d \|f\|_N,$$
 (4)

which formally corresponds to p = N in (3), following these lines:

(a) Let $M \subset \Omega$ be a Borel set. Prove that

$$\int_{M} |\det(D^{2}u)(x)| dx \ge |Du(M)|.$$

Hint: use the area formula/Banach indicatrix formula. [4, Section 3.4.3, Theorem 2], [8, Exercices de synthèse et avancés, Exercice 28].

(b) Let

$$M:=\{x\in\Omega;\, u(x)\geq \sup_{\partial\Omega}u_+ \text{ and } u(y)\leq u(x)+Du(x)\cdot (y-x),\, \forall\, y\in\Omega\}.$$

Prove that, at each $x \in M$:

i. $D^2u(x)$ is non-positive

ii.
$$|\det(D^2u)(x)| \le \left(\frac{-\Delta u(x)}{N}\right)^N \le \left(\frac{f(x)}{N}\right)^N$$
.

(c) Prove that, if $a \in \mathbb{R}^N$ is such that

$$|a| < \frac{\sup u - \sup u_+}{\frac{\partial \Omega}{d}},$$

then $a \in Du(M)$.

Hint: prove that $\overline{\Omega} \ni x \mapsto u(x) - a \cdot x$ achieves its maximum in Ω .

- (d) Derive (4).
- G (Stampacchia's maximum principle) Here, Ω is of class C^1 (Lipschitz would suffice). If:
 - (a) $c = c(x) > -\lambda_1(\Omega)$ for a.e. $x \in \Omega$, with $\lambda_1(\Omega)$ the least eigenvalue of $-\Delta$ in $H_0^1(\Omega)$
 - (b) *c* is bounded from above
 - (c) $u \in H^1(\Omega)$ satisfies $-\Delta u + c u \ge 0$ in Ω and $u \ge 0$ on $\partial \Omega$,

then $u \geq 0$ in Ω .

Here, the meaning of $-\Delta u + c u \ge 0$ is

$$\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} c \, u \, \varphi \ge 0, \, \forall \, \varphi \in C_c^{\infty}(\Omega, \mathbb{R}_+).$$

Useful results: the *de la Vallée Poussin chain rule* and its consequences [7, Theorem 3.16, Corollary 3.17, Lemma 3.20], and basic trace theory [7, Section 1.5], [2, Theorem 9.17]

(c) Moving planes

General references: [6, Section 2.6], [1]

A **Theorem.** (Gidas-Ni-Nirenberg) Let Ω be a convex bounded domain, symmetric with respect to the hyperplane $\{x_1 = 0\}$. If $f \in \text{Lip}_{loc}(\mathbb{R}, \mathbb{R})$ and if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$\begin{cases}
-\Delta u + f(u) = 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega ,\\
u > 0 & \text{in } \Omega
\end{cases}$$
(5)

then:

- (a) $u(-x_1, x_2, ..., x_N) = u(x_1, ..., x_N), \forall x = (x_1, ..., x_N) \in \Omega$
- (b) $\partial_1 u < 0$ in the set $\{x \in \Omega; x_1 > 0\}$.
- **Theorem.** (Gidas-Ni-Nirenberg) Let $\Omega = B_R(0)$, and f and u as above. Then there exists some $g \in C^2([0,R]) \cap C([0,R])$ such that:
 - (a) $u(x) = g(|x|), \forall x \in \overline{\Omega}$
 - (b) $g'(r) < 0, \forall 0 < r < R$.

(d) Sub- and supersolutions

General reference: [3, Section 9.3]

We consider the problem

$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
 (6)

We assume that:

- 1. Ω is connected and of class C^3 .
- 2. $f \in C^1(\overline{\Omega} \times \mathbb{R})$.
- **Theorem.** Assume that there exist $\underline{u}, \overline{u} \in C^2(\Omega) \cap C(\overline{\Omega})$ such that:
 - (a) $-\Delta \underline{u} \leq f(x,\underline{u})$ in Ω and $\underline{u} \leq 0$ on $\partial \Omega$ (\underline{u} is a subsolution)
 - (b) $-\Delta \overline{u} \ge f(x, \overline{u})$ in Ω and $\overline{u} \ge 0$ on $\partial \Omega$ (\overline{u} is a supersolution)
 - (c) $\underline{u} \leq \overline{u}$ in Ω .

Then the set

$$M:=\{u\in C^2(\overline{\Omega}); u \text{ solves (6) and } \underline{u}\leq u\leq \overline{u}\}$$

is non-empty, and contains a minimal element and a maximal element.

- $\lceil \mathtt{B} \rceil$ Same conclusion if $\underline{u}, \overline{u} \in H^1(\Omega) \cap C(\overline{\Omega})$.
- **Exercise.** [3, Section 9.7, exercise 6] Assume f = f(u), with f(0) = 0, $f'(0) > \lambda_1(\Omega)$, and f bounded from above on \mathbb{R}_+ . Prove that the problem

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
u > 0 & \text{in } \Omega
\end{cases}$$
(7)

has a solution $u \in C^2(\overline{\Omega})$.

(e) Uniqueness

In this section, Ω is of class C^2 , and we work with functions $u \in C^2(\overline{\Omega})$. General reference: [3, Section 9.4.2]

A **Theorem.** (Krasnoselskii) Let $f:[0,\infty)\to[0,\infty)$ be a continuous function such that

$$(0,\infty)\ni t\mapsto \frac{f(t)}{t}$$
 is (strictly) decreasing.

Then the problem

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega \\
u > 0 & \text{in } \Omega
\end{cases}$$
(8)

has at most one solution.

B **Theorem** (Pohozaev) Assume $N\geq 3$ and $\frac{N+2}{N-2}< p<\infty$. Assume also that Ω is convex. Then the problem

$$\begin{cases}
-\Delta u = |u|^{p-1} u & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$
(9)

has only the trivial solution u = 0.

(f) Exercises for the November 17 session

Exercise 1. Let $0 < \alpha < 1$. Let Ω be a bounded open set. Let $(u_j) \subset C^{2,\alpha}(\overline{\Omega})$ be bounded in $C^{2,\alpha}(\overline{\Omega})$ and non-decreasing. Set $u := \lim u_j$. Prove that $u_j \to u$ in $C^2(\overline{\Omega})$.

Exercise 2. Let u satisfy (8). Prove that $\frac{\partial u}{\partial \nu}(x) < 0$, $\forall x \in \partial \Omega$.

Exercise 3. Let Ω be a bounded open set.

- 1. Let $u \in C^1(\overline{\Omega})$ be such that u(x) = 0, $\forall x \in \partial \Omega$. Prove that there exists some $C_2 < \infty$ such that $u(x) \leq C_2 \operatorname{dist}(x, \partial \Omega)$, $\forall x \in \overline{\Omega}$.
- 2. Assume $\Omega \in C^{1,1}$. Let $u \in C^1(\overline{\Omega})$ be such that u(x) = 0, $\forall x \in \partial \Omega$, u(x) > 0, $\forall x \in \Omega$, and $\frac{\partial u}{\partial \nu}(x) < 0$, $\forall x \in \partial \Omega$. Prove that there exists some $C_1 > 0$ such that $u(x) \geq C_1 \operatorname{dist}(x, \partial \Omega)$, $\forall x \in \overline{\Omega}$.

Exercise 4. Let $\Omega \in C^{1,1}$ be a bounded open set. Let $u,v \in C^1(\overline{\Omega})$ be such that u(x)=v(x)=0, $\forall \, x \in \partial \Omega$, u(x),v(x)>0, $\forall \, x \in \Omega$, $\frac{\partial u}{\partial \nu}(x),\frac{\partial v}{\partial \nu}(x)<0$, $\forall \, x \in \partial \Omega$. Prove that $\Omega \ni x \mapsto w(x):=\frac{u(x)}{v(x)}$ extends by continuity to $\overline{\Omega}$.

References

- [1] Henri Berestycki and Louis Nirenberg. On the method of moving planes and the sliding method. *Bol. Soc. Brasil. Mat. (N.S.)*, 22(1):1–37, 1991.
- [2] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.

- [3] Lawrence C. Evans. *Partial differential equations*, volume 19 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2010.
- [4] Lawrence C. Evans and Ronald F. Gariepy. *Measure theory and fine properties of functions*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [5] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
- [6] Qing Han and Fanghua Lin. Elliptic partial differential equations, volume 1 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
- [7] Petru Mironescu. Sobolev spaces. Elliptic equations (Partial lecture notes). http://math.univ-lyon1.fr/~mironescu/resources/sobolev_spaces_elliptic_equations_2010.pdf, 2010.
- [8] Petru Mironescu. Mesure et intégration. http://math.univ-lyon1.fr/~mironescu/resources/complet_mesure_integration.pdf, 2023.