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Lecture # 4
EXISTENCE METHODS

(a) Concentration-compactness
Useful general reference: [6, Section 1.4]

Exercise. Let F},, : [0,00) — [0, 1], m > 0, be non decreasing functions. Prove that, up to
a subsequence, F,,, converges simply a.e.

First concentration-compactness lemma (Lions) Let (1,,) be a sequence of Borel prob-
ability measures on R™. Then, up to a subsequence, one of the following holds:

(@) (Compactness) There exists a sequence (z,,,) C RY such that, foreverye > 0, there
exists some R = R(¢) satisfying pi,,(Br(2m)) > 1 — ¢, Vm.

(b) (Vanishing) For every R > 0,

sup pm(Bgr(z)) = 0asm — 0.
zeRN

(¢) (Dichotomy) There exists some 0 < A < 1and sequences (z,,) C RY, R, — o
such that

SUp |t (Br, (Tm)) — Al = 0,
sup | (RN \ Bag, (z)) — (1 — A)| = 0as j — oo.

Brezis-Lieblemma Let (X, .7, 1) be a measured spaceand 0 < p < oo. Let f;, f : X —
C be measurable functions such that:

@) f; — fae.
(i) For some finite C, / \filF <C,Vj.
X

Then
sl =157 = 18y = 5 =0
X
In particular, if p > 1, X = R with the Lebesgue measure, and we set
i = (| f5l" = 1f1P = 1f; = fIF) du,

* .
then yi; — 0 in the sense of measures.

Useful references: [1, Theorem 1.9], [5, Exercice de synthese #10]



Theorem (Lions) Let a = a(x) € C(RY, (0, 00)) be such that

lim a(x) = ax > 0.
|z|—o00

N+2
Letl <p< N+2andset

[ = inf{/ (IVul2 + au?): u € Hl(RN),/ ! = 1},
RN RN
I, :=inf {/ (|Vul* + asr?®); u € HY(RY), / u|Ptt = 1} .
RN RN

If I < I, then theinfin [ is attained. Up to a multiplicative constant, a minimizer is a
non trivial solution u € H'(RY) of

—Au +au = |ufftuin RY,

D] Exercise. Let 1 be a finite diffuse Borel measure in RY. Prove that

lim sup p(B,(z)) = 0.

r—0 zERN

Exercise. Let w, \ be finite Borel measures in R and 1 < p < ¢ < co. Assume that, for
some 0 < S < oo, we have

p/q
S (/ ’f’qdw) < / |f|P d), V Borel function f : RV — R. )
RN RN

Prove that:

(a) w is a purely atomic measure, i.e., there exist a; > 0, z; € R" such thatw =

Zajéxj.
j
(b) Z(ozj)p/q < 0.
j
(@ A> S (a;)"5,,.
j

(d) () holds if and only if it holds for f € C>°(RY).

Hint. Step 1. Assume first that X is diffuse. Using the previous exercise, prove that, for
every cube C' C RY, w(C) = 0, and thus w = 0.

Step 2. Apply Step 1 to wy and A, where wy, respectively ), is the diffuse part of w, re-
spectively \.

. 1 1 k
Exercise. Let 1 < p < coand k > 1be such thatkp < N. Let — := — — N
q b



Set

Whe .= {u e 2'(RY); D*u e LP,u € L7}

Prove that, if we endow W*? with the norm u | D*u

,» then C>(RY) is dense in

JW*P. In particular, prove that we have the Sobolev inequality
Slully < [[D*ul?, Vu € WP, @)

for some (optimal Sobolev constant) 0 < S < 0.
Useful reference for k = 1: [4, Lemma 14]. Hint for & > 2: prove the following result:
Exercise. Let k, p, and g be as above. For R > 0, set Ag := {z € RY; R < |z| < 2R}. If

v € C*(Ag), then for every ¢ > 0 there exists some finite C'(¢) (independent of R and
v) such that

k-1
> RTEOD ]| s,y < El1D 0] ogay + CENNaany
=0

Second concentration-compactness lemma (Lions) Let 1 < p < oo, k, ¢, and S be as
above. Let (u,,) C WP and u € W*P be such that:
@) wu, — vwin W*? and u,, — v a.e.

(ii) |um|?dz = |u|?dz + w in the sense of measures, for some (non-negative) Borel
measure w.

coe * . .
(ii) |D*uy|Pdz = |D*ulPdx + p in the sense of measures, for some (non-negative)
Borel measure p.

Then:

(@) wisapurely atomic measure: w = Z a0y, witha; > 0, 7; € RM.
J

(b) Wehave » (a;)"? < occ.
J

(c) Wehaveu > S Z(aj)p/qézj.

J

Theorem (Aubin, Talenti, Lions) Let k > 1and 1 < p < oo be such that kp < N. Then

there exists some u € W% \ {0} such that equality holds in (2).

(b) Mountain pass solutions. A glimpse of other topological methods

Useful references: [2, Chapter 4], [7, Chapter 1]

Ekeland’s Variational Principle Let (), 0) be a complete metric space,  : M — R, and

€ > (. Assume that:



(1) ®isls.c.candm :=inf ® > —o0.

(i) v € M issuch that ®(u) < m + &2
Then there exists some v € M such that:
@ ¢(v) < P(u).
b) d(w) > P(v) —ed(w,v),Vw e M\ {v}.
(© d(v,u) <e.

In the special case where (M, | ||) is 2 Banach space and ® is Giteaux différentiable at
the above v, we have

0o

oy 0| =clvl vy € M.

Minimax principle (Shi) Consider:

(i) ABanachspace X and J € C'(X,R).

(ii) A compact metric space (K, d), a compact subspace K, C K, and a continuous
map ¢ : Ky — X.

Set

M :={ye C(K,X); Mk, = C}
P(ry) = m}f{iXJO’y, Vvye M,
¢ :=inf @,

M

co :=max J o (.
Ko

If ¢ > ¢, then there exists a sequence (z;) C X such that:
@ J(zj) —c.
(b) J'(z;) = 0in X'.
Corollary. Assume that, with c as above, J satisfies the Palais-Smale condition (PS).. at level

c: any sequence (z;) C X satisfying (a) and (b) contains a convergent subsequence.
Then J has a critical point x such that J(z) = c.

Exercise. Prove the Ambrosetti-Rabinowitz Mountain pass theorem. Let X be a Banach space
and J € C*(X,R). Assume that there exist R > 0 and zy € X such that:

@ max{J(0), J(zo)} < inf{J(z); || = R}.
(i) [lzoll > R.



Set

ci= inf { e (3(0): 7 € C([0.1],2), 4(0) = 0, (1) =, |
€lo,
If J satisfies the (PS). condition, then J has a critical point x such that J(z) = c.

N +2
N-2

Theorem. Let ) C R" be a bounded C''-domainand 1 < p <

Prove that the problem

—Au=X u+u? InQ
u=0 on 0f)
u >0 in Q)

has a classical solution u € C?(Q2) N C(2) ifand only if A < A\;(€2).
Useful reference: [7, Theorem 1.19]

Exercise. Prove the Rabinowitz saddle point theorem. Let X be a Banach space and J €
CHX,R).Let X = X~ & X', with X~ finite dimensional and X closed.

For fixed R > 0, let

K:={xe X7 |z| <R}and K, := {z € X~; ||z| = R}.

Assume that:
(1) maxJ < inf J.
Ko X+
(i1) J satisfies the (PS). condition, where

c¢:=inf{maxJog; g € C(K,X),g(z) =zifx € Ky}.

Then J has a critical point x such that J(z) = c.
Useful references: [2, Theorem 4.7], [3]

Theorem. Let N > 3 and Q C RY be a bounded Lipschitz domain. Leta = a(z) €
LEN/N+2)(Q) a > 0, a # 0. Prove that the problem

_ U :
—Au=a 2 in
%—0 on 0f)

v

has a weak solution u € H'(2).



Rabinowitz linking theorem Let X, X ~, X *, and J be as above.

Forfixed R > p > 0andz € X\ {0}, let

K={u=x+tz;ze X, t>0, |u] <R},
Ky := OK (where K is considered as a subset of Y @ Rz),
L= {z € X% |l = p}.

Assume that:
(1) max.J < min J.
Ko L
(i1) J satisfies the (PS). condition, where
c¢:=inf{maxJog; g € C(K,X),g(x) =zifx € Ky}.

Then J has a critical point x such that J(x) = c.

Useful reference: [7, Theorem 2.12]

) N +2 .
Theorem. Let ) C R" be a bounded domain, A € R,and 1 < p < N + 5 The equation

—Au =M+ [ufPtuin Q

has a non trivial solution u € H}(12).
Useful reference: [7, Theorem 2.18, Corollary 2.19]
For the record:

Theorem (Lusternik/Ljusternik, Schnirelman, Rabinowitz) Let X be a Banach space
and G a discrete subgroup of X spanning an N-dimensional subspace of X.

Let J € C''(X,R) be such that:

i) J(z+g)=Jx),VreX,VgeQq.
(i) J: X/G — R satisfies the (PS). condition at any level ¢ € R.

(iii) J is bounded from below.
Then J has atleast N + 1 critical orbits, i.e., there exist x1, ...,z x,1 € X such that:

@ J'(z;) = 0,7
b) z;, —xp € Gif j # k.

Useful reference: [2, Section 4.6].
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