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Overview

∗ Digression: a compact problem
∗ The main tool: a minimum of the modulus principle
∗ A non compact variational problem
∗ Uniqueness
∗ Existence for large ε
∗ Existence for small ε



“Compact motivation”

Theorem (Dong Ye –Feng Zhou 96)

Assume Ω ⊂ R2 simply connected, g : ∂Ω→ S1 smooth of
degree 0
Consider the Ginzburg-Landau type (GL) energy

Eε(u) =
1
2

∫
Ω
|∇u|2 +

1
4ε2

∫
Ω

(1− |u|2)2

subject to u = g on ∂Ω

Then, for small ε, there is only one minimizer uε of Eε

If, in addition, ‖g − 1‖C2 � 1, then uniqueness holds for every ε



Main lines of the proof

∗ For small ε, |uε| ≈ 1
∗ Ω being simply connected, write uε = ρεeıϕε

∗ The equation of uε is “close” to the limiting equation ∆ϕε = 0
∗ Uniqueness of the solution of the limiting

equation =⇒ uniqueness of the solution of the ε–equation



Technically...
∗ Proof relies on uniform (pointwise) bounds on ∇ϕε
∗ This is used to measure how “far” the ε–problem is from the

limiting problem (essential for the perturbative argument)

However, natural assumption is g ∈ H1/2(∂Ω; S1)

When we work with g ∈ H1/2(∂Ω;S1) maps...

∗ Maps g ∈ H1/2(∂Ω;S1) do have a degree (Boutet de Monvel,
Gabber 91)
∗ For small ε and deg g = 0, we still have |uε| ≈ 1
∗ But the perturbative argument does not work anymore



Uniqueness in degree 0

Theorem (Farina, M 11)

Assume Ω simply connected and g ∈ H1/2(∂Ω; S1) of degree 0

Then, for small ε, Eε has a unique minimizer

If, in addition, |g − 1|H1/2 � 1, then Eε has a unique minimizer
for any ε



A basic ingredient

Minimum of the modulus principle in a nutshell

If an energy minimizer u has small energy, then |u| is almost
constant

Minimum of the modulus principle
Let u minimize Eε wrt its own Dirichlet bc in a simply connected
domain Ω
If |u| = 1 on ∂Ω and |u| < s somewhere in Ω, then∫

Ω
|∇u|2 ≥ f (s) > 0 (with explicit f )

Example

When s = 0, the argument gives f (0) = 2π
Which is optimal: take ε =∞, Ω = D, u = Id



Remarks
∗ ε independent conclusion

∗ Also works for minimizers of
∫

Ω
|∇u|2 +

∫
Ω

F (|u|), with

suitable F . The conclusion is F -independent
∗ Does not work in multiply connected domains

(counterintuitive)



Proof of uniqueness for almost constant g

The proof of
“|g − 1|H1/2 � 1 =⇒ uniqueness of the mininimizer of Eε, ∀ ε”
relies on Wente estimates (Wente 69)

Theorem (Bethuel, Ghidaglia 93)

Let u ∈ H1
0 (Ω) solve −∆u = ∇f ∧∇g. Then

‖u‖L∞ ≤ 2‖∇f‖L2‖∇g‖L2

‖∇u‖L2 ≤
√

2‖∇f‖L2‖∇g‖L2∣∣∣∣∫
Ω

h∇f ∧∇g
∣∣∣∣ ≤ √2‖∇f‖L2‖∇g‖L2‖∇h‖L2 , ∀ h ∈ H1

0 (Ω)



Proof of uniqueness for almost constant g

and on...

Identity (Lassoued, M 99)
Let u, v 6= 0, with u critical point of Eε. Write u = ρeıϕ,
v = uηeıψ. Then

Eε(v) =Eε(u)+ ≈
∫

Ω
|∇ψ|2︸ ︷︷ ︸

good term

+≈
∫
|∇η|2︸ ︷︷ ︸

good term

+

+

∫
Ω

(η2 − 1)ρ2∇ϕ · ∇ψ︸ ︷︷ ︸
bad term

+ ≈ 1
ε2

∫
Ω

(1− η2)2︸ ︷︷ ︸
good potential term



Strategy for uniqueness
∗ Let u, v be minimizers
∗ Prove that u 6= 0 and v 6= 0
∗ Control the bad term in order to arrive at Eε(v)− Eε(u) > 0

except when u = v



Proof of uniqueness for almost constant g

Sketch
∗ g almost constant =⇒ ∃ an almost constant competitor u0 of

modulus 1
∗ Thus minimal energy satisfies (1) Eε(uε) ≤ Eε(u0)� 1
∗ By the minimum of the modulus principle, (2) |uε| − 1� 1
∗ GL equation =⇒ the bad term can be rewritten as

(3)

∫
Ω

(η2 − 1)ρ2∇ϕ · ∇ψ =

∫
Ω

(η2 − 1)∇H ∧∇ψ

for some H
∗ (1) + (2) + (3) + Wente estimates =⇒ bad term is controlled

by the good terms



Proof of asymptotic uniqueness for arbitrary g

The proof of
“deg g = 0 =⇒ uniqueness of the mininimizer of Eε for small ε”
relies on “asymptotic Wente estimates”

Baby estimate

Let Uε ∈ H1
0 (Ω) satisfy

−∆Uε +
1
ε2 Uε = ∇fε ∧∇gε

If (fε) converges in H1(Ω), then

‖∇Uε‖L2 = o(1)‖∇gε‖L2



Proof of asymptotic uniqueness for arbitrary g

Sketch
∗ Prove that minimizers satisfy |uε| → 1 as ε→ 0 (blow up

argument)
∗ Determine the equation satisfied by η2 − 1
∗ Use this equation + asymptotic Wente estimates to control

the bad term via the good terms (surprise: in the final
computation, no need of the good potential term)



A non compact problem: GL with semi-stiff BC

Semi-stiff GL problem
Find minimizers/critical points of Eε in a (generally multiply
connected) domain Ω ⊂ R2 with bc:
|u| = 1 on ∂Ω and deg(u, Γj) = dj given (with Γj component of
∂Ω)

Main features (partly conjectural)
∗ Allows boundary vortices (another model: Kurzke 06 for thin

magnetic films)
∗ Critical points always exist (for small ε)
∗ Minimizers sometimes do exist, sometimes do not exist
∗ Non compact problem

Golovaty, Berlyand 02, Berlyand, M 06, Golovaty, Berlyand,
Rybalko 09, Dos Santos 09, Berlyand, Rybalko 10, Farina, M
11, Berlyand, M, Sandier, Rybalko 12, Lamy, M 13



A existence + uniqueness case

Theorem (Golovaty, Berlyand 02)

Let Ω = DR \ D, with R − 1� 1 (thin circular annulus)

Then Eε attains its minimum in the class

{u : Ω→ C; |u| = 1 on ∂Ω, deg u = 1 on CR and C1}

In addition, “the” minimizer is unique and radial



Uniqueness in thin domains

Theorem (Farina, M 11)

There is some δ > 0 s.t., if inf Eε(u) < δ0, then Eε has a
“unique” minimizer (with prescribed degrees)

Remark
δ0 does not depend on the prescribed degrees



Sketch of proof
∗ Prove compactness of minimizing sequences. Otherwise,

formation of bubbles. But not enough energy
∗ This leads to existence of minimizers
∗ Extend the minimum of the modulus principle to prescribed

degrees minimizers
∗ Then proceed as for the uniqueness of minimizers in case of

almost constant g

Remark
Recall that, in multiply connected domains, the minimum of the
modulus principle requires some extra assumption in addition
to u being a minimizer of Eε wrt its own Dirichlet bc



Existence issues

What is known
∗ In multiply connected domains, critical points do exist for

small ε (Berlyad, Rybalko 10 for doubly connected domain,
Dos Santos 09 for general multiply connected domains)

∗ Such solutions are built as local minimizers of Eε
∗ Construction does not work in simply connected domains;

similar with help from the topology of the domain in case of
the critical Sobolev exponent (Coron 84, Bahri – Coron 88)



Existence issues

In simply connected domains
∗ Fact: no minimizer (except for ε =∞)
∗ Critical points do exist (partial results)



Proposition
If ε <∞ and prescribed degree 6= 0, then no minimizer

Proof.

Asume e.g. Ω = D and d = 1. Then |∇u|2 ≥ 2Jac u =⇒

1
2

∫
D
|∇u|2 ≥

∫
D

Jac u = π deg(u, ∂D) = π

so that Eε(u) > π
Now test Eε(Ma) (Moebius transform centered at a) and let
|a| ↗ 1 to obtain inf Eε(u) ≤ π

Remark
In general, inf Eε = πd , with d the prescribed degree, and inf is
not attained



Analysis for large ε

Theorem (Berlyand, M, Rybalko, Sandier 12)
Assume Ω simply connected, and prescribe degree 1 on the
boundary
Then Eε has critical points for large ε

Remarks
∗ Probably holds also for degree ≥ 2, but no proof
∗ We may work on Ω = D (price to pay: a weight in the

potential)
∗ Rough plan: start from ε =∞, and perturb the problem
∗ Help from the minimum of the modulus principle



A tool: almost Blaschke products

Let

Ma =
z − a

1− az
, a ∈ D, z ∈ D (Moebius transform)

Bα, a1,..., ad = α
d∏

j=1

Maj , α ∈ S1, a1, . . . , ad ∈ D (Blaschke product)



Blaschke products

Proposition
Blaschke products are precisely critical points of E∞ in D with
prescribed degree d > 0

Hint
Compute the Hopf differential of critical points



Almost Blaschke products

Remarks
∗ Thus when ε =∞, critical points = energy minimizers (all

Blaschke products B have energy E∞(B) = π d)
∗ Search of critical points when ε� 1 leads to maps of energy

Eε(u)− πd � 1 (and thus E∞(u)− πd � 1)
∗ Energetically, these are “almost” Blaschke products
∗ Their structure? Crucial matter for the existence of critical

points
∗ Objects better fitted for analysis: traces on S1, thus

g : S1 → S1 s.t. deg g = d and |g|2H1/2 − π d � 1, where

|g|2H1/2 :=
1
2

∫
D
|∇u|2, with u the harmonic extension of g



Structure of almost Moebius transforms

Theorem (Berlyand, M, Rybalko, Sandier 12)

Assume |g|2H1/2 ≤ π + δ < 2π (i.e., no room for 2 Moebius
transforms Ma) and deg g = 1
Then we may write u = Maeıϕ with (1) |ϕ|H1/2 ≤ F (δ)

In addition, for small δ we may pick a s.t. g 7→ a is continuous

Remark
The phase control part of the statement (estimate (1)) is not
intuitively clear: if we take g : S1 → S1 smooth and of zero
degree, then its smooth phase ϕ does not satisfy (1)



Structure of almost Moebius transforms

Sketch of proof for small δ
∗ Minimum of the modulus principle =⇒ there is no room for

two zeros of the harmonic extension u of g
∗ From this, control the region where |u| 6≈ 1, then the phase of

u, then (by taking traces) the one of g
∗ We may take a =the zero of u. Continuity comes essentially

from uniqueness



An application: killing the Moebius group

The set

X := {g ∈ H1/2(S1;S1); deg g = 1}

is not weakly closed (troubles come from the action of the
Moebius group)
However:

{g ∈ X ; |g|2H1/2 ≤ π + δ < 2π}/Moebius group

is weakly closed



Structure of almost Blaschke products

Theorem (Berlyand, M, Rybalko, Sandier 12)
Let d ≥ 2
Then there exist ε,C > 0 such that

g : S1 → S1, |g|2H1/2 ≤ πd + ε, deg u = d =⇒

u = B1, a1,..., ad eıϕ, with |ϕ|H1/2 ≤ C

Remark
Probably ∀ ε < 2π works...

Idea of proof
Induction, relying on the case d = 1 + Wente estimates in order
to obtain almost orthogonal decomposition of the energy



Back to the existence of critical points of Eε in simply connected
domains. Recall

Theorem (Berlyand, M, Rybalko, Sandier 12)
Assume Ω simply connected, and prescribe degree 1 on the
boundary
Then Eε has critical points for large ε



Sketch of proof
∗ Min-max method: consider

min
F

max
a∈D
{Eε(F (a)); F ∈ C(D; H1),F (a) = Ma for |a| ≈ 1

|F (a)| = 1 on S1, ∀a ∈ D}

∗ Establish mountain pass geometry (relies on the structure of
almost Moebius maps)
∗ Prove that the energy functional is C1 (small miracle)
∗ Next establish behavior of Palais-Smale (PS) sequences.

Requires killing the Moebius group (rescaling)
∗ Establish decomposition of the energy (bubbling). Relies on

Wente estimates
∗ Identify all possible limits. Relies on the minimum of the

modulus principle
∗ Establish compactness of PS sequences (and conclude)



All steps but the identification of the limit and can be performed
for arbitrary ε, degrees and multiply connected domains (via
additional Wente type estimates)
This leads to bubbling analysis à la Brezis-Coron or Struwe, but
not to compactness



A non local critical problem

How much it takes to wind once (or more)
Find

mp = min{|g|pW 1/p,p ; g : S1 → S1,deg g = 1}

with

|g|pW 1/p,p =

∫∫
S1×S1

|g(x)− g(y)|p

|x − y |2
dxdy



Main difficulty: non compact (energy invariant by the Moebius
group)

Easy cases

p = 1: m1 = 2π, minimizers are W 1,1-maps with non
decreasing phases
p = 2: m2 = 4π2, minimizers are Moebius maps

Proof when p = 2

Write g =
∑

aneınθ. Then

|g|2H1/2 = 4π2
∑
|n||an|2

and

deg g =
∑

n|an|2 �



Theorem (M 13)
There exists some ε > 0 such that mp is attained when
p ∈ (2− ε,2)

Sketch of proof
For such p,

{g : S1 → S1; deg g = 1, |g|pW 1/p,p ≈ mp}/Moebius group

is weakly closed �

I do not know what happens when deg g ≥ 2 (even for p close
to 2)



Analysis for small ε

Theorem (Lamy, M 13)
Let Ω be simply connected, and d ≥ 1. Then, for small ε
∗ Under some (explicit) non degeneracy assumptions on Ω, Eε

has critical points uε with prescribed degree d
∗ In particular, critical points do exist when d = 1 and Ω is

close to a disc
∗ When d = 1, the non degeneracy assumptions are

“generically” satisfied

Remark
The non degeneracy assumptions look like generic ones. But
we do not know whether they are indeeed generic when d ≥ 2
or in multiply connected domains



Strategy of the proof

∗ Assume existence of critical points. Find formal limit
∗ In the spirit of Bethuel, Brezis, Hélein 94, limit should be of

the form

u0(z) =
d∏

j=1

(
z − aj

|z − aj |

)
eıH(z)

with unknown a1, . . . ,ad ∈ Ω and H harmonic
∗ There is a formal relation between a = (a1, . . . ,ad ) and

g := tr u0: the configuration a is a critical point of some
appropriate renormalized energy (intuitively not so clear)



Strategy of the proof -ctd

∗ Next step consists in constructing critical points of Eε with
Dirichlet boundary condition gε ≈ g and “emanating from” a
“singular” configuration aε ≈ a

∗ This can be performed by either variational methods (Fang
Hua Lin, Tai-Chia Lin 97, del Pino, Felmer 97) or gluing
methods ( Pacard, Rivière 00 , del Pino, Kowalczyk, Musso
06)

∗ This requires a (first) nondegeneracy assumption
∗ Next find gε s.t. the solution with boundary value gε is a

critical point with prescribed degrees
∗ This requires a (second) nondegeneracy assumption
∗ Existence of gε is not obtained by inverse functions, but by

Leray-Schauder degree theory



Strategy of the proof -ctd
∗ Up to now, everything adapts to arbitrary domains and

degrees
∗ But we were able to prove genericity only when Ω is simply

connected and d = 1
∗ Even when d = 1, nondegeneracy assumptions do not look

generic if taken separately. But their couple is generically
satisfied

∗ The last part relies on transversality results (à la Quinn 70)



Thank you for your attention!


