Noncompact variational problems involving complex unimodular maps

Petru Mironescu

Institut Camille Jordan, Université Lyon 1

Taipei, October 25th, 2013 France-Taiwan Joint Conference on Nonlinear PDEs

- * Digression: a compact problem
- * The main tool: a minimum of the modulus principle
- * A non compact variational problem
- * Uniqueness
- * Existence for large ε
- Existence for small ε

Theorem (Dong Ye – Feng Zhou 96)

Assume $\Omega \subset \mathbb{R}^2$ simply connected, $g : \partial \Omega \to \mathbb{S}^1$ smooth of degree 0 Consider the Ginzburg-Landau type (GL) energy

$$E_{\varepsilon}(u) = rac{1}{2}\int_{\Omega}|
abla u|^2 + rac{1}{4arepsilon^2}\int_{\Omega}(1-|u|^2)^2$$

subject to u = g on $\partial \Omega$

Then, for small ε , there is only one minimizer u_{ε} of E_{ε}

If, in addition, $\|g-1\|_{C^2} \ll 1$, then uniqueness holds for every ε

Main lines of the proof

- * For small ε , $|u_{\varepsilon}| \approx 1$
- * Ω being simply connected, write $u_{\varepsilon} = \rho_{\varepsilon} e^{i \varphi_{\varepsilon}}$
- * The equation of u_{ε} is "close" to the limiting equation $\Delta \varphi_{\varepsilon} = 0$
- * Uniqueness of the solution of the limiting equation \implies uniqueness of the solution of the ε -equation

Technically...

- * Proof relies on uniform (pointwise) bounds on $abla arphi_{arepsilon}$
- * This is used to measure how "far" the ε -problem is from the limiting problem (essential for the perturbative argument)

However, natural assumption is $g \in H^{1/2}(\partial\Omega; \mathbb{S}^1)$

When we work with $g \in H^{1/2}(\partial\Omega; \mathbb{S}^1)$ maps...

- * Maps $g \in H^{1/2}(\partial\Omega; \mathbb{S}^1)$ do have a degree (Boutet de Monvel, Gabber 91)
- * For small arepsilon and deg g= 0, we still have $|u_arepsilon|pprox$ 1
- * But the perturbative argument does not work anymore

Theorem (Farina, M 11)

Assume Ω simply connected and $g \in H^{1/2}(\partial\Omega; \mathbb{S}^1)$ of degree 0

Then, for small ε , E_{ε} has a unique minimizer

If, in addition, $|g-1|_{H^{1/2}} \ll 1$, then E_{ε} has a unique minimizer for any ε

Minimum of the modulus principle in a nutshell

If an energy minimizer u has small energy, then |u| is almost constant

Minimum of the modulus principle

Let *u* minimize E_{ε} wrt its own Dirichlet bc in a simply connected domain Ω If |u| = 1 on $\partial\Omega$ and |u| < s somewhere in Ω , then $\int_{\Omega} |\nabla u|^2 \ge f(s) > 0$ (with explicit *f*)

Example

When s = 0, the argument gives $f(0) = 2\pi$ Which is optimal: take $\varepsilon = \infty$, $\Omega = \mathbb{D}$, $u = \mathrm{Id}$

Remarks

- $* \ \varepsilon$ independent conclusion
- * Also works for minimizers of $\int_{\Omega} |\nabla u|^2 + \int_{\Omega} F(|u|)$, with suitable *F*. The conclusion is *F*-independent
- Does not work in multiply connected domains (counterintuitive)

The proof of " $|g-1|_{H^{1/2}} \ll 1 \implies$ uniqueness of the minimizer of $E_{\varepsilon}, \forall \varepsilon$ " relies on Wente estimates (Wente 69)

Theorem (Bethuel, Ghidaglia 93)

Let $u \in H_0^1(\Omega)$ solve $-\Delta u = \nabla f \wedge \nabla g$. Then

•
$$\|u\|_{L^{\infty}} \leq 2\|\nabla f\|_{L^{2}}\|\nabla g\|_{L^{2}}$$

•
$$\|\nabla u\|_{L^2} \le \sqrt{2} \|\nabla f\|_{L^2} \|\nabla g\|_{L^2}$$

$$\left| \left| \int_{\Omega} h \nabla f \wedge \nabla g \right| \leq \sqrt{2} \| \nabla f \|_{L^2} \| \nabla g \|_{L^2} \| \nabla h \|_{L^2}, \forall h \in H^1_0(\Omega)$$

Proof of uniqueness for almost constant g

and on...

Identity (Lassoued, M 99)

Let $u, v \neq 0$, with u critical point of E_{ε} . Write $u = \rho e^{i\varphi}$, $v = u\eta e^{i\psi}$. Then

$$E_{\varepsilon}(v) = E_{\varepsilon}(u) + \approx \underbrace{\int_{\Omega} |\nabla \psi|^{2}}_{\text{good term}} + \underbrace{\int_{\text{good term}} |\nabla \eta|^{2}}_{\text{good term}} + \underbrace{\int_{\Omega} (\eta^{2} - 1)\rho^{2} \nabla \varphi \cdot \nabla \psi}_{\text{bad term}} + \approx \underbrace{\frac{1}{\varepsilon^{2}} \int_{\Omega} (1 - \eta^{2})^{2}}_{\text{good potential term}}$$

Strategy for uniqueness

- * Let *u*, *v* be minimizers
- * Prove that $u \neq 0$ and $v \neq 0$
- * Control the bad term in order to arrive at $E_{\varepsilon}(v) E_{\varepsilon}(u) > 0$ except when u = v

Sketch

- * *g* almost constant $\implies \exists$ an almost constant competitor u_0 of modulus 1
- * Thus minimal energy satisfies (1) $E_{\varepsilon}(u_{\varepsilon}) \leq E_{\varepsilon}(u_0) \ll 1$
- $*\,$ By the minimum of the modulus principle, (2) $|u_arepsilon|-1\ll 1$
- * GL equation \implies the bad term can be rewritten as

$$(3)\int_{\Omega}(\eta^2-1)\rho^2\nabla\varphi\cdot\nabla\psi=\int_{\Omega}(\eta^2-1)\nabla H\wedge\nabla\psi$$

for some *H*

 * (1) + (2) + (3) + Wente estimates ⇒ bad term is controlled by the good terms The proof of "deg $g = 0 \implies$ uniqueness of the minimizer of E_{ε} for small ε " relies on "asymptotic Wente estimates"

Baby estimate

Let $U_{\varepsilon} \in H_0^1(\Omega)$ satisfy

$$-\Delta U_{\varepsilon} + \frac{1}{\varepsilon^2} U_{\varepsilon} = \nabla f_{\varepsilon} \wedge \nabla g_{\varepsilon}$$

If (f_{ε}) converges in $H^1(\Omega)$, then

 $\|\nabla U_{\varepsilon}\|_{L^2} = o(1) \|\nabla g_{\varepsilon}\|_{L^2}$

Sketch

- * Prove that minimizers satisfy $|u_{\varepsilon}| \rightarrow 1$ as $\varepsilon \rightarrow 0$ (blow up argument)
- * Determine the equation satisfied by $\eta^2 1$
- Use this equation + asymptotic Wente estimates to control the bad term via the good terms (surprise: in the final computation, no need of the good potential term)

A non compact problem: GL with semi-stiff BC

Semi-stiff GL problem

Find minimizers/critical points of E_{ε} in a (generally multiply connected) domain $\Omega \subset \mathbb{R}^2$ with bc: $|\mu| = 1$ on $\partial \Omega$ and deg($\mu \Gamma_i$) = d_i given (with Γ_i component

|u| = 1 on $\partial \Omega$ and deg $(u, \Gamma_j) = d_j$ given (with Γ_j component of $\partial \Omega$)

Main features (partly conjectural)

- Allows boundary vortices (another model: Kurzke 06 for thin magnetic films)
- * Critical points always exist (for small ε)
- * Minimizers sometimes do exist, sometimes do not exist
- * Non compact problem

Golovaty, Berlyand 02, Berlyand, M 06, Golovaty, Berlyand, Rybalko 09, Dos Santos 09, Berlyand, Rybalko 10, Farina, M 11, Berlyand, M, Sandier, Rybalko 12, Lamy, M 13

Theorem (Golovaty, Berlyand 02)

Let $\Omega = \mathbb{D}_R \setminus \mathbb{D}$, with $R - 1 \ll 1$ (thin circular annulus)

Then E_{ε} attains its minimum in the class

 $\{u: \Omega \to \mathbb{C}; |u| = 1 \text{ on } \partial\Omega, \deg u = 1 \text{ on } C_R \text{ and } C_1\}$

In addition, "the" minimizer is unique and radial

Theorem (Farina, M 11)

There is some $\delta > 0$ s.t., if $\inf E_{\varepsilon}(u) < \delta_0$, then E_{ε} has a "unique" minimizer (with prescribed degrees)

Remark

 δ_0 does not depend on the prescribed degrees

Sketch of proof

- * Prove compactness of minimizing sequences. Otherwise, formation of bubbles. But not enough energy
- * This leads to existence of minimizers
- * Extend the minimum of the modulus principle to prescribed degrees minimizers
- * Then proceed as for the uniqueness of minimizers in case of almost constant *g*

Remark

Recall that, in multiply connected domains, the minimum of the modulus principle requires *some* extra assumption in addition to *u* being a minimizer of E_{ε} wrt its own Dirichlet bc

What is known

- In multiply connected domains, critical points do exist for small ε (Berlyad, Rybalko 10 for doubly connected domain, Dos Santos 09 for general multiply connected domains)
- * Such solutions are built as local minimizers of $E_{arepsilon}$
- Construction does not work in simply connected domains; similar with help from the topology of the domain in case of the critical Sobolev exponent (Coron 84, Bahri – Coron 88)

In simply connected domains

- * Fact: no minimizer (except for $\varepsilon = \infty$)
- * Critical points do exist (partial results)

Proposition

If $\varepsilon < \infty$ and prescribed degree \neq 0, then no minimizer

Proof.

Asume e.g. $\Omega = \mathbb{D}$ and d = 1. Then $|\nabla u|^2 \ge 2 \operatorname{Jac} u \implies$

$$rac{1}{2}\int_{\mathbb{D}}|
abla u|^2\geq\int_{\mathbb{D}}\operatorname{Jac} u=\pi\operatorname{deg}(u,\partial\mathbb{D})=\pi$$

so that $E_{\varepsilon}(u) > \pi$ Now test $E_{\varepsilon}(M_a)$ (Moebius transform centered at *a*) and let $|a| \nearrow 1$ to obtain inf $E_{\varepsilon}(u) \le \pi$

Remark

In general, inf $E_{\varepsilon} = \pi d$, with *d* the prescribed degree, and inf is not attained

Theorem (Berlyand, M, Rybalko, Sandier 12)

Assume Ω simply connected, and prescribe degree 1 on the boundary Then E_{ε} has critical points for *large* ε

Remarks

- * Probably holds also for degree \geq 2, but no proof
- * We may work on $\Omega = \mathbb{D}$ (price to pay: a weight in the potential)
- * Rough plan: start from $\varepsilon = \infty$, and perturb the problem
- * Help from the minimum of the modulus principle

Let

$$M_{a} = \frac{z - a}{1 - \overline{a}z}, \ a \in \mathbb{D}, z \in \overline{\mathbb{D}} \text{ (Moebius transform)}$$
$$B_{\alpha, a_{1}, \dots, a_{d}} = \alpha \prod_{j=1}^{d} M_{a_{j}}, \alpha \in \mathbb{S}^{1}, a_{1}, \dots, a_{d} \in \mathbb{D} \text{ (Blaschke product)}$$

Proposition

Blaschke products are precisely critical points of E_{∞} in \mathbb{D} with prescribed degree d > 0

Hint

Compute the Hopf differential of critical points

Almost Blaschke products

Remarks

- * Thus when $\varepsilon = \infty$, critical points = energy minimizers (all Blaschke products *B* have energy $E_{\infty}(B) = \pi d$)
- * Search of critical points when $\varepsilon \gg 1$ leads to maps of energy $E_{\varepsilon}(u) \pi d \ll 1$ (and thus $E_{\infty}(u) \pi d \ll 1$)
- * Energetically, these are "almost" Blaschke products
- * Their structure? Crucial matter for the existence of critical points
- * Objects better fitted for analysis: traces on \mathbb{S}^1 , thus $g: \mathbb{S}^1 \to \mathbb{S}^1$ s.t. deg g = d and $|g|^2_{H^{1/2}} \pi d \ll 1$, where

$$|g|_{H^{1/2}}^2 := \frac{1}{2} \int_{\mathbb{D}} |\nabla u|^2$$
, with *u* the harmonic extension of *g*

Theorem (Berlyand, M, Rybalko, Sandier 12)

Assume $|g|^2_{H^{1/2}} \le \pi + \delta < 2\pi$ (i.e., no room for 2 Moebius transforms M_a) and deg g = 1Then we may write $u = M_a e^{i\varphi}$ with (1) $|\varphi|_{H^{1/2}} \le F(\delta)$

In addition, for small δ we may pick *a* s.t. $g \mapsto a$ is continuous

Remark

The phase control part of the statement (estimate (1)) is not intuitively clear: if we take $g : \mathbb{S}^1 \to \mathbb{S}^1$ smooth and of zero degree, then its smooth phase φ does not satisfy (1)

Sketch of proof for small δ

- * Minimum of the modulus principle \implies there is no room for two zeros of the harmonic extension *u* of *g*
- * From this, control the region where $|u| \not\approx 1$, then the phase of u, then (by taking traces) the one of g
- We may take a = the zero of u. Continuity comes essentially from uniqueness

The set

$$X := \{ g \in H^{1/2}(\mathbb{S}^1; \mathbb{S}^1); \deg g = 1 \}$$

is not weakly closed (troubles come from the action of the Moebius group) However:

 $\{g \in X; |g|_{H^{1/2}}^2 \le \pi + \delta < 2\pi\}$ /Moebius group

is weakly closed

Theorem (Berlyand, M, Rybalko, Sandier 12)

Let $d \ge 2$ Then there exist ε , C > 0 such that

$$g: \mathbb{S}^1 \to \mathbb{S}^1, |g|_{H^{1/2}}^2 \le \pi d + \varepsilon, \ \deg u = d \Longrightarrow$$

$$\textit{u}=\textit{B}_{1,\,\textit{a}_{1},...,\,\textit{a}_{d}}\textit{e}^{\imath arphi}$$
, with $|arphi|_{\textit{H}^{1/2}} \leq \textit{C}$

Remark

Probably $\forall \varepsilon < 2\pi$ works...

Idea of proof

Induction, relying on the case d = 1 + Wente estimates in order to obtain almost orthogonal decomposition of the energy

Back to the existence of critical points of E_{ε} in simply connected domains. Recall

Theorem (Berlyand, M, Rybalko, Sandier 12)

Assume Ω simply connected, and prescribe degree 1 on the boundary Then E_{ε} has critical points for *large* ε

Sketch of proof

* Min-max method: consider

$$\begin{split} \min_{F} \max_{a \in \mathbb{D}} \{ E_{\varepsilon}(F(a)); \ F \in C(\mathbb{D}; H^{1}), F(a) = M_{a} \text{ for } |a| \approx 1 \\ |F(a)| = 1 \text{ on } \mathbb{S}^{1}, \ \forall \ a \in \mathbb{D} \} \end{split}$$

- Establish mountain pass geometry (relies on the structure of almost Moebius maps)
- * Prove that the energy functional is C^1 (small miracle)
- Next establish behavior of Palais-Smale (PS) sequences.
 Requires killing the Moebius group (rescaling)
- Establish decomposition of the energy (bubbling). Relies on Wente estimates
- * Identify all possible limits. Relies on the minimum of the modulus principle
- * Establish compactness of PS sequences (and conclude)

All steps but the identification of the limit and can be performed for arbitrary ε , degrees and multiply connected domains (via additional Wente type estimates) This leads to bubbling analysis à la Brezis-Coron or Struwe, but not to compactness

How much it takes to wind once (or more)

Find

$$m_{p} = \min\{|g|^{p}_{W^{1/p,p}}; g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}, \deg g = 1\}$$

with

$$\left|g\right|_{W^{1/p,p}}^p = \iint_{\mathbb{S}^1 imes \mathbb{S}^1} rac{\left|g(x) - g(y)
ight|^p}{|x - y|^2} \, dx dy$$

Main difficulty: non compact (energy invariant by the Moebius group)

Easy cases

p = 1: $m_1 = 2\pi$, minimizers are $W^{1,1}$ -maps with non decreasing phases p = 2: $m_2 = 4\pi^2$, minimizers are Moebius maps

Proof when p = 2

Write
$$g = \sum a_n e^{i n \theta}$$
. Then

$$|g|_{H^{1/2}}^2 = 4\pi^2 \sum |n| |a_n|^2$$

and

$$\deg g = \sum n |a_n|^2$$

Theorem (M 13)

There exists some $\varepsilon > 0$ such that m_p is attained when $p \in (2 - \varepsilon, 2)$

Sketch of proof

For such *p*,

$$\{g:\mathbb{S}^1 o\mathbb{S}^1;\, \deg g=1,\, |g|^p_{W^{1/p,p}}pprox m_p\}/ ext{Moebius group}$$

is weakly closed

I do not know what happens when deg $g \ge 2$ (even for p close to 2)

Theorem (Lamy, M 13)

Let Ω be simply connected, and $d \ge 1$. Then, for small ε

- Under some (explicit) non degeneracy assumptions on Ω, *E_ε* has critical points *u_ε* with prescribed degree *d*
- * In particular, critical points do exist when d = 1 and Ω is close to a disc
- When d = 1, the non degeneracy assumptions are "generically" satisfied

Remark

The non degeneracy assumptions look like generic ones. But we do not know whether they are indeeed generic when $d \ge 2$ or in multiply connected domains

Strategy of the proof

- * Assume existence of critical points. Find formal limit
- In the spirit of Bethuel, Brezis, Hélein 94, limit should be of the form

$$u_0(z) = \prod_{j=1}^d \left(\frac{z-a_j}{|z-a_j|}\right) e^{iH(z)}$$

with unknown $a_1, \ldots, a_d \in \Omega$ and *H* harmonic

* There is a formal relation between $a = (a_1, ..., a_d)$ and $g := \text{tr } u_0$: the configuration a is a critical point of some appropriate renormalized energy (intuitively not so clear)

Strategy of the proof -ctd

- * Next step consists in constructing critical points of E_{ε} with Dirichlet boundary condition $g_{\varepsilon} \approx g$ and "emanating from" a "singular" configuration $a_{\varepsilon} \approx a$
- This can be performed by either variational methods (Fang Hua Lin, Tai-Chia Lin 97, del Pino, Felmer 97) or gluing methods (Pacard, Rivière 00, del Pino, Kowalczyk, Musso 06)
- * This requires a (first) nondegeneracy assumption
- * Next find g_{ε} s.t. the solution with boundary value g_{ε} is a critical point with prescribed degrees
- * This requires a (second) nondegeneracy assumption
- * Existence of g_{ε} is not obtained by inverse functions, but by Leray-Schauder degree theory

Strategy of the proof -ctd

- Up to now, everything adapts to arbitrary domains and degrees
- * But we were able to prove genericity only when Ω is simply connected and d = 1
- * Even when d = 1, nondegeneracy assumptions do not look generic if taken separately. But their couple is generically satisfied
- * The last part relies on transversality results (à la Quinn 70)

Thank you for your attention!