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A muggle’s approach to inequalities

To the memory of Mihai Onucu Drimbe (1952–2014)

A wonderful teacher, a passionated researcher, and a dear friend

A few years ago, my colleague Bodo Lass proposed me to give lectures at
the Club de Mathématiques Discrètes, a twenty years old Lyon-based initiative
gathering passionated high school students for week-end or week-long sessions
of intensive mathematical training. (Bodo is Club’s linchpin.) Though the Club
sessions tend to look like training for Olympiads, Bodo gave me carte blanche,
so that I chose a path that can be loosely defined as “a problem-based muggle’s
introduction to analysis through inequalities”. This came somehow as a reaction
to the excess of magic that tends to encompass such training (the Holy Hand
Grenade of Antioch syndrome), conjugated with an excessive attention paid to
problems that can be solved in little time.

Along the years, I have accumulated too much material to be discussed in
one session, so I decided to gather it in a written text. Its purpose is twofold:
to provide an essentially self-contained source (including the solutions to all the
problems) to a junior reading group or to colleagues who want to teach classical
analysis to advanced high school students, and to complement my lectures at the
Club, allowing along the way motivated students to consolidate their knowledge
and work independently on the problems presented.

The August 2025 version of this text is only about inequalities. I plan to add
later extra chapters, dealing with topics as polynomials, systems, and some of the
problems that struck me when I was a high school student myself.

A few legal disclaimers. This is by no means a monograph on inequalities,
and I do not mention the most useful inequalities in advanced analysis, which
often involve integrals of functions. Nevertheless, in selecting the questions pro-
posed, their relevance and (necessarily subjective) aesthetic criteria played an im-
portant role. Speaking of aesthetics, I tried to avoid rhinestones and glitter. The
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text has almost no claim of originality, at least concerning most of the statements
and proofs. Occasionally, the proofs use standard undergraduate level analysis,
which is part of every bachelor level curriculum in mathematics, but I have tried
to limit the use of such tools. I provided the references whenever I was aware of
the original source, but I have certainly missed many of them.

An important source of inspiration for the text was the book (in Romanian)
“Inequalities. Ideas and methods” of my former teacher Mihai Onucu Drimbe,
a charismatic figure who passed on his passion for mathematics to me and to
whom I dedicate this text.

Finally, a warm recommandation to the young readers: try to solve the prob-
lems first, not to read the solutions right away.

Lyon, August 2025
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Chapter 1

Basic methods and inequalities

Overview. In this chapter, we present some must-know inequalities and a few of
the most significant basic methods used in proving inequalities.

1.1 Must-know inequalities

Definition 1.1. Let x1, x2, . . . , xn ą 0. The numbers

A “ Apx1, x2, . . . , xnq –
x1 ` x2 ` ¨ ¨ ¨ ` xn

n
“

řn
j“1 xj

n
, (1.1)

G “ Gpx1, x2, . . . , xnq – n
?
x1x2 ¨ ¨ ¨ xn “ x

1{n
1 x

1{n
2 ¨ ¨ ¨ x1{n

n “ n

g

f

f

e

n
ź

j“1

xj, (1.2)

H “ Hpx1, . . . , xnq –
n

1

x1

`
1

x2

` ¨ ¨ ¨ `
1

xn

, (1.3)

are respectively the arithmetic mean (AM), geometric mean (GM), and harmonic mean
(HM) of x1, x2, . . . , xn.

We have the (AM-GM) and (GM-HM) inequalities

A ľ G, (AM-GM)
G ľ H, (GM-HM)

with equality iff all the xj’s are equal.

The following is obvious.

Problem 1.1. (GM-HM) for x1, x2, . . . , xn is equivalent to (AM-GM) applied to
1

x1

,

1

x2

, . . . ,
1

xn

.
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Basic methods and inequalities 1.1 Must-know inequalities

Definition 1.2. Two numbers 1 ă p, q ă 8 are conjugate (or conjugate exponents) if
they satisfy one of the following equivalent conditions

1

p
`

1

q
“ 1, or q “

p

p ´ 1
, or p “

q

q ´ 1
, or pq “ p ` q. (1.4)

By extension, 1 and 8 are also conjugate exponents.

When 1 ă p, q ă 8, we have the Hölder inequality (H)

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

ajbj

ˇ

ˇ

ˇ

ˇ

ˇ

ĺ

˜

n
ÿ

j“1

|aj|
p

¸1{p˜ n
ÿ

j“1

|bj|
q

¸1{q

, @ a1, . . . , an, b1, . . . , bn P R. (H)

When p “ 2 (and thus q “ 2), the Hölder inequality takes the form of the
Cauchy-Schwarz inequality (CS)

˜

n
ÿ

j“1

ajbj

¸2

ĺ

n
ÿ

j“1

a2j

n
ÿ

j“1

b2j , @ a1, . . . , an, b1, . . . , bn P R. (CS)

When 1 ă p ă 8, we have the Minkowski inequality (M)

˜

n
ÿ

j“1

|aj ` bj|
p

¸1{p

ĺ

˜

n
ÿ

j“1

|aj|
p

¸1{p

`

˜

n
ÿ

j“1

|bj|
p

¸1{p

,

@ a1, . . . , an, b1, . . . , bn P R.

(M)

The following is easily obtained by taking square on both sides of (M) with
p “ 2.

Problem 1.2. The Minkowki inequality (M) with p “ 2 is equivalent to the (CS)
inequality.

The next two must-know inequalities are rearrangement inequalities, involving
ordered lists of numbers, a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ an, b1 ĺ b2 ĺ ¨ ¨ ¨ ĺ bn, and permutations
σ P Sn. We have the rearrangement inequality (R)

n
ÿ

j“1

ajbn´j`1 ĺ

n
ÿ

j“1

ajbσpjq ĺ

n
ÿ

j“1

ajbj, @σ P Sn, (R)

and the Chebyshev inequality (C)

n
ÿ

j“1

ajbj ľ
1

n

n
ÿ

j“1

aj

n
ÿ

j“1

bj. (C)
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Petru Mironescu Inequalities and other stories

The above inequalities are reversed if the lists are ordered a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ an,
b1 ľ b2 ľ ¨ ¨ ¨ ľ bn.

A common feature of these inequalities is that they are homogenous: for ex-
ample, proving (AM-GM) for x1, x2, . . . , xn is equivalent to proving the same in-
equality for tx1, tx2, . . . , txn for some t ą 0.

Problem 1.3. Use the homogeneity of the inequalities to reduce them to the fol-
lowing special cases:

(1) (AM-GM) when x1x2 ¨ ¨ ¨ xn “ 1 or when x1 ` x2 ` ¨ ¨ ¨ ` xn “ n.

(2) (H) when
řn

j“1 |aj|
p “ 1 and

řn
j“1 |bj|

q “ 1.

(3) (CS) when
řn

j“1 b
2
j “ 1.

1.2 Induction

Problem 1.4. Prove (AM-GM) by Cauchy induction, that is, using the following
scheme:

(1) Prove (AM-GM) for n “ 2, 4, . . . , 2k, . . .

(2) Given n and some integer k such that n ă 2k, prove (AM-GM) for n starting
from (AM-GM) for 2k.

(3) On the way, prove that equality holds in (AM-GM) iff x1 “ ¨ ¨ ¨ “ xn.

Problem 1.5. Prove (AM-GM) by induction.

Problem 1.6. Prove (CS) by induction.

1.3 Convexity

Convexity provides a very fruitful insight to inequalities. Many of the must-
know inequalities, if interpreted correctly, are occurrences of the Jensen inequal-
ity that we recall below.

Definition 1.3. If I Ă R is an interval, a function f : I Ñ R is convex iff it satisfies
the Jensen inequality (J)

fpp1 ´ tqx ` tyq ĺ p1 ´ tqfpxq ` tfpyq, @x, y P I, @ 0 ĺ t ĺ 1. (J)

A convex function is strictly convex if equality in (J) for some 0 ă t ă 1 implies
that x “ y.

3



Basic methods and inequalities 1.3 Convexity

A function is concave if it satisfies the reverse inequality. Similarly for strictly
concave. In general, a function is neither convex, nor concave.

A straightforward induction leads to the following generalization of (J).

Problem 1.7. (1) If f : I Ñ R is convex, then it satisfies the general(ized) Jensen
inequality (GJ)

f

˜

n
ÿ

j“1

λjxj

¸

ĺ

n
ÿ

j“1

λj fpxjq, @n ľ 2, @x1, . . . , xn P I,

@λ1, . . . , λn P r0, 1s such that
n
ÿ

j“1

λj “ 1.

(GJ)

(2) If f is strictly convex and equality occurs in (GJ) for some 0 ă λ1, . . . , λn ă 1,
then x1 “ x2 “ ¨ ¨ ¨ “ xn.

The inequality is reversed if f is concave.

Definition 1.4. A convex combination of x1, . . . , xn is a sum of the form
řn

j“1 λjxj ,
with λ1, . . . , λn P r0, 1s such that

řn
j“1 λj “ 1.

In order to effectively use (GJ), one needs examples of convex and concave
functions. They can be found in most of calculus books. A good executive sum-
mary can be found on Wikipedia [12]. For us to start, the following examples are
sufficient.

a) R Q x ÞÑ ex is strictly convex.

b) If 1 ă p ă 8, R Q x ÞÑ |x|p is strictly convex. In particular, if 1 ă p ă 8

r0,8q Q x ÞÑ xp is strictly convex.

c) p0,8q Q x ÞÑ lnx is strictly concave. So is p´1,8q Q x ÞÑ lnp1 ` xq.

d) If n is an integer, p´8, 0s Q x ÞÑ x2n`1 is strictly concave.

e) Affine functions R Q x ÞÑ ax ` b are both convex and concave. In particular,
linear functions R Q x ÞÑ ax are both convex and concave.

f) The functions R Q x ÞÑ px ´ aq` and R Q x ÞÑ px ´ aq´ are convex. Recall that

x` –

#

x, if x ľ 0

0, if x ĺ 0
and x´ –

#

0, if x ľ 0

´x, if x ĺ 0
.

g) If f : I Ñ R satisfies f2 ľ 0, respectively f2 ą 0 possibly except at the end-
points, then f is convex, respectively strictly convex.

4



Petru Mironescu Inequalities and other stories

Problem 1.8. Prove (AM-GM), with the equality case, using the strict convexity
of R Q x ÞÑ ex.

Problem 1.9. (1) Prove (H) using the strict convexity of R Q x ÞÑ |x|p (with 1 ă

p ă 8). Hint: take, in (GJ), λj – C|bj|
q, for some appropriate constant C.

(2) Prove that equality occurs in (H) iff

the vectors pajq1ĺjĺn and psgn bj|bj|
q´1

q1ĺjĺn are proportional. (1.5)

A few comments about (1.5).

a) By symmetry of (H) in p and q, equality occurs in (H) iff

the vectors pbjq1ĺjĺn and psgn aj|aj|
p´1

q1ĺjĺn are proportional. (1.6)

b) In the special case where p “ q “ 2, (1.5) reads as follows: equality occurs in
(CS) iff the vectors pajq1ĺjĺn and pbjq1ĺjĺn are proportional.

The perspective of convexity allows to see the (AM-GM) and (GM-HM) in-
equalities as special cases of an infinite family of inequalities. First, a definition.

Definition 1.5. Let x1, x2 . . . , xn ą 0. For r P Rzt0u, we define the generalized mean

Mr “ Mrpx1, x2, . . . , xnq –

˜

řn
j“1 x

r
j

n

¸1{r

. (1.7)

Set also

M0 “ M0px1, x2, . . . , anq – x
1{n
1 . . . x1{n

n . (1.8)

This scale of means includes AM, GM, and HM:

A “ M1, G “ M0, H “ M´1.

Another important mean is the quadratic mean M2 “

d

řn
j“1 x

2
j

n
.

These inequalities are related by the following noticeable means inequality:

if r1 ă r2, then Mr1 ĺ Mr2 , (MI)

with equality iff x1 “ x2 “ ¨ ¨ ¨ “ xn.
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Basic methods and inequalities 1.3 Convexity

Problem 1.10. Prove (MI) via the following strategy.

(1) Reduce the study of (MI) to the case where 0 ĺ r1 ă r2.

(2) When r1 “ 0 and r2 ą 0, reduce (MI) to the (AM-GM) inequality.

(3) If 0 ă r1 ă r2, reduce (MI) to (GJ) applied to the function p0,8q Q x ÞÑ xr,
where r – r2{r1.

Remark 1.1. One may consider, more generally, numbers 0 ĺ λ1, . . . , λn ĺ 1 such
that

řn
j“1 λj “ 1 and the more general means

Mr –

˜

n
ÿ

j“1

λjx
r
j

¸1{r

, if r ‰ 0,

M0 –

n
ź

j“1

x
λj

j .

((1.7) and (1.8) correspond to the choice λj “ 1{n, @ j.) Then (MI) still holds. This
is proved by repeating the argument in Problem 1.10.

The following general means inequality (corresponding to r2 “ 1 and r1 “ 0)
is frequently used.

n
ÿ

j“1

λjxj ľ

n
ź

j“1

x
λj

j , @xj ą 0, λj ľ 0 s.t.
n
ÿ

j“1

λj “ 1. (GMI)

It is less obvious to recognize (M) as an occurrence of (J). The starting point is
that, when 1 ă p ă 8, the function

r0,8q Q x ÞÑ fpxq – p1 ` xp
q
1{p (1.9)

is strictly convex. This fact can be proved in calculus, and we take it for granted.

Problem 1.11. (1) Prove by induction that, if (M) holds for n “ 2, then it holds
for every n.

(2) When n “ 2, use homogeneity to reduce (M) to the special case where |a1| `

|b1| “ 1.

(3) In the above special case, use (J) for the function f defined in (1.9) to derive
(M).

6



Petru Mironescu Inequalities and other stories

1.4 Majorization

The Jensen inequalities (J) and (GJ) lead to more general inequalities, involving
more points. To give a flavor of this, let us prove that, for f : r0, 3s Ñ R, f convex,
we have

fp1q ` fp2q ĺ fp0q ` fp3q. (1.10)

Indeed, we have

1 “
2

3
ˆ 0 `

1

3
ˆ 3 and 2 “

1

3
ˆ 0 `

2

3
ˆ 3. (1.11)

Applying twice (J), we find that

fp1q ` fp2q “f

ˆ

2

3
ˆ 0 `

1

3
ˆ 3

˙

` f

ˆ

1

3
ˆ 0 `

2

3
ˆ 3

˙

ĺ
2

3
fp0q `

1

3
fp3q `

1

3
fp0q `

2

3
fp3q “ fp0q ` fp3q,

whence (1.10).

Here is an easy generalization of the above. (Deeper results, soon after.)

Problem 1.12. Let f : I “ rα, βs Ñ R be convex.

(1) Assume that a, b, c, d P I , a ĺ c ĺ b, and a` b “ c` d. Prove that fpcq ` fpdq ĺ

fpaq ` fpbq. If in addition, f is strictly convex, characterize the equality cases.

(2) Assume that f is strictly convex. Given S P R:

(a) Prove that the couple px, yq achieves

maxtfpxq ` fpyq; x, y P I, x ` y “ Su

iff either x or y is an endpoint of I .

(b) Prove that the couple px, yq achieves the min in the above iff x “ y “ S{2.

In this section, we characterize the inequalities of the type (1.10) that are valid
for all convex functions. Some intuition is provided by (1.11), which can be rewrit-
ten, using vectors and a matrix, as

ˆ

1
2

˙

“

ˆ

2{3 1{3
1{3 2{3

˙ˆ

0
3

˙

.

The properties of the above matrix are captured in the following definition.

7



Basic methods and inequalities 1.4 Majorization

Definition 1.6 (Doubly stochastic matrix). A matrix A “ pajkq1ĺj,kĺn is doubly
stochastic (DS) iff

ajk ľ 0, @ j, k, (1.12)
n
ÿ

k“1

ajk “ 1, @ j, (1.13)

n
ÿ

j“1

ajk “ 1, @ k. (1.14)

The next definition, less intuitive, will be crucial in the first main result of this
section, Theorem 1.1 below.

Definition 1.7 (Majorization). Let x1, . . . , xn, y1, . . . , yn P R. By definition, px1, . . . , xnq

majorizes py1, . . . , ynq iff

x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn, y1 ĺ y2 ĺ ¨ ¨ ¨ ĺ yn, (1.15)
x1 ĺ y1, (1.16)
x1 ` x2 ĺ y1 ` y2, (1.17)
...
x1 ` x2 ` ¨ ¨ ¨ ` xn´1 ĺ y1 ` y2 ` ¨ ¨ ¨ ` yn´1, (1.18)
x1 ` x2 ` ¨ ¨ ¨ ` xn “ y1 ` y2 ` ¨ ¨ ¨ ` yn. (1.19)

Theorem 1.1. Let I be an interval and let x1, . . . , xn, y1, . . . , yn in I satisfy (1.15).
Then the following are equivalent:

(1) For every convex function f : I Ñ R, we have

n
ÿ

j“1

fpyjq ĺ

n
ÿ

j“1

fpxjq. (1.20)

(2) px1, . . . , xnq majorizes py1, . . . , ynq.

(3) There exists a doubly stochastic matrix A “ pajkq1ĺj,kĺn such that

yj “

n
ÿ

k“1

ajkxk, @ j. (1.21)

Moreover, the condition (1.15) can be relaxed to

y1 ĺ y2 ĺ ¨ ¨ ¨ ĺ yn. (1.22)

8



Petru Mironescu Inequalities and other stories

Remark 1.2. In the implication “p3q ñ p1q”, the assumptions x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn

and y1 ĺ y2 ĺ ¨ ¨ ¨ ĺ yn are not used. Therefore, the valid inequalities of the form
(1.20) are characterized by doubly stochastic matrices, which are magic squares
with sum 1. It is thus interesting to know how to build magic squares. There
actually exists a “recipe” to cook all magic squares. See Theorem 3.1.

Remark 1.3. The implication “p2q ñ p1q” is known as the Karamata theorem [9].

In the proof of Theorem 1.1, two of the implications are easy.

Problem 1.13. Prove the implications “p1q ñ p2q” and “p3q ñ p1q”. Hint for the
first implication: use linear functions and functions of the form x ÞÑ px ´ aq´.

Problem 1.14. Prove that, indeed, in Theorem 1.1, the assumption (1.15) can be
replaced with the weaker assumption (1.22).

The remaining implication required to complete the proof of the theorem,
“p2q ñ p3q”, is more difficult to obtain. We present below a rather natural proof.

Proof of “p2q ñ p3q”. The proof is by induction on n ľ 2, the case n “ 2 being essentially
already settled in Problem 1.12.

Step 0. Proof when n “ 2. Since

2y1 ĺ y1 ` y2 “ x1 ` x2 ĺ 2x2,

we have y1 ĺ x2. By assumption, we also have x1 ĺ y1, and thus x1 ĺ y1 ĺ x2. Therefore,
there exists some λ P r0, 1s such that y1 “ p1 ´ λqx1 ` λx2. Since

y2 “ x1 ` x2 ´ y1 “ x1 ` x2 ´ rp1 ´ λqx1 ` λx2s “ λx1 ` p1 ´ λqx2,

we find that (1.21) holds for the DS matrix A –

ˆ

1 ´ λ λ
λ 1 ´ λ

˙

.

Next, assume that n ľ 3 and that “p2q ñ p3q” holds for n ´ 1.

We prove in four steps that “p2q ñ p3q” holds for n. Step 1 is a preliminary reduction
to the special case yn “ 0. We appeal to the induction assumption in Step 2; to be able to
do so, we rely on the assumption yn “ 0. The key step is Step 3: it consists of constructing
the first pn ´ 1q lines of the DS matrix that we want to find; this is the heart of the proof,
and the assumption yn “ 0 will again be used. In Step 4, we complete the DS matrix.

Step 1. We may assume that yn “ 0. Indeed, if x1, . . . , xn, y1, . . . , yn satisfy (1.15)–(1.19),
then so do x1 ´ c, . . . , xn ´ c, y1 ´ c, . . . , yn ´ c, @ c P R, and it clearly suffices to prove
item (3) for these new numbers. Choosing c – yn, we may thus assume that yn “ 0.
Subtracting (1.18) from (1.19), we find that xn ľ yn “ 0.

Step 2. Use of the induction assumption. The systems of numbers x1, . . . , xn´2, xn´1 `xn,
respectively y1, . . . , yn´2, yn´1, satisfy the assumptions (1.15)–(1.19) (with n replaced with

9



Basic methods and inequalities 1.4 Majorization

n ´ 1). Indeed, the condition xn´2 ĺ xn´1 ` xn holds since xn´2 ĺ xn´1 and xn ľ 0, and
all the other conditions are clearly satisfied. By the induction assumption, there exists a
DS matrix B “ pbjkq1ĺj,kĺn´1 such that

yj “

n´1
ÿ

k“1

bjkxk ` bjpn´1qxn, @ 1 ĺ j ĺ n ´ 1. (1.23)

In a matrix form, (1.23) reads
¨

˚

˚

˚

˝

y1
y2
...

yn´1

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

b11 b12 . . . b1pn´1q b1pn´1q

b21 b22 . . . b2pn´1q b2pn´1q

...
...

...
...

bpn´1q1 bpn´1q2 . . . bpn´1qpn´1q bpn´1qpn´1q

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

x1
x2
...
xn

˛

‹

‹

‹

‚

. (1.24)

Let us denote by C “ pcjkq1ĺjĺn´1,1ĺkĺn the matrix in (1.24). Unfortunately, C does
not look like the first part of a DS matrix, since the sum of the entries on the line j is
1 ` bjpn´1q, and in general this sum is ą 1. Now comes the key argument: it is possible
to replace, in (1.24), C with a matrix with smaller coefficients, such that the sum of the
entries on each line is exactly 1. This is the done in the next step.

Step 3. There exist numbers ajk, 1 ĺ j ĺ n ´ 1, 1 ĺ k ĺ n, such that

0 ĺ ajk ĺ cjk, @ j, @ k, , (1.25)
n
ÿ

k“1

ajk “ 1, @ j, (1.26)

yj “

n
ÿ

k“1

ajkxk, @ j. (1.27)

Here is the heuristics. There are two obvious ways to replace the entries cjk with
smaller entries with the sum on each line equal to 1. A first one consists of replacing the
last entry on each line, bjpn´1q, with 0. The second one consists of dividing the entries
of the line j with 1 ` bjpn´1q, which is the sum of the entries of that line. While both
procedures lead to entries satisfying (1.25) and (1.26), there is no reason that any of them
will lead to entries satisfying (1.27). However, an appropriate combination of them will do it.

We now proceed to the rigorous argument. Set, for 1 ĺ j ĺ n ´ 1 and 1 ĺ k ĺ n,

djk –

#

bjk, if 1 ĺ k ĺ n ´ 1

0, if k “ n
, (1.28)

ejk –
cjk

1 ` bjpn´1q

, (1.29)

sj –

n
ÿ

k“1

djkxk “ yj ´ bjpn´1qxn, (1.30)

tj –

n
ÿ

k“1

ejkxk “
1

1 ` bjpn´1q

yj . (1.31)

10
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Using (1.28) and (1.29), we see that the following hold for 1 ĺ j ĺ n´1 and 1 ĺ k ĺ n:

0 ĺ djk, ejk ĺ cjk, @ j, @ k, (1.32)
n
ÿ

k“1

cjk “

n
ÿ

k“1

djk “ 1, @ j. (1.33)

Now comes the key argument, valid thanks to our special choice yn “ 0. Since yj ĺ 0
(recall that yj ĺ yn “ 0) and xn ľ 0, (1.30) and (1.31) imply that

sj ĺ yj ĺ tj , @ j. (1.34)

Therefore, there exists some λj P r0, 1s satisfying yj “ p1 ´ λjqsj ` λjtj . We then set

ajk – p1 ´ λjqdjk ` λjejk, @ j, k. (1.35)

Using (1.32)–(1.35), it is straightforward to see that (1.25)–(1.27) hold.

Step 4. Completion of the matrix pajkq1ĺjĺn´1,1ĺkĺn to a DS matrix. Set ank – 1 ´
n´1
ÿ

j“1

ajk,@ k. In view of (1.25), of the definition of ank, and of the fact that
n´1
ÿ

j“1

bjk “ 1

(since B is doubly stochastic), we have ank ľ 0, @ k. Using (1.25)–(1.27) and (1.19), we
find that A – pajkq1ĺj,kĺn is doubly stochastic and that (1.21) holds. QED

Now comes the final bouquet of this section, and one of the most useful re-
sults in this chapter. We will find necessary and sufficient conditions for the va-
lidity of the following natural generalization of (1.20): given an interval I , points
x1, . . . , xn, y1, . . . , ym P I and constants α1, . . . , αn, β1, . . . , βm ą 0, we want the
inequality

m
ÿ

j“1

βjfpyjq ĺ

n
ÿ

k“1

αkfpxkq (1.36)

to hold for each convex function f : I Ñ R.

Without loss of generality, we may assume that

x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn, y1 ĺ y2 ĺ ¨ ¨ ¨ ĺ ym. (1.37)

Les us first note that, by taking f ” 1 and f ” ´1, we find the necessary
condition for the validity of (1.36):

S –

n
ÿ

k“1

αk “

m
ÿ

j“1

βj. (1.38)

We consider, on r0, Ss, two auxiliary functions that, as we will see below, “en-
code” the analogues of (1.16)–(1.19).

11



Basic methods and inequalities 1.4 Majorization

We associate, with x1, . . . , xn, α1, . . . , αn, the (only) function g : r0, Ss Ñ R`

with the following properties: (i) gp0q “ 0; (ii) on r0, α1s, g is affine, with slope
x1; (iii) on rα1, α1 ` α2s, g is affine with slope x2; etc. (Thus, on the last interval,
rα1 ` ¨ ¨ ¨ ` αn´1, Ss, g is affine with slope xn.) Equivalently: (j) on r0, α1s, g varies
with constant slope from 0 to α1x1; (jj) on rα1, α2s, g varies with constant slope
from α1x1 to α1x1 ` α2x2; etc.

We associate, using the same recipe, with y1, . . . , ym, β1, . . . , βm, a function h :
r0, Ss Ñ R`.

The next problem will provide us some insight about the role of g and h.

Problem 1.15. Note that, in the setting of (1.20), we have m “ n, α1 “ ¨ ¨ ¨ “ αn “

β1 “ ¨ ¨ ¨ “ βn “ 1, S “ n.

Prove that

r(1.16) ´ (1.19)s ô rgptq ĺ hptq, @ t P r0, Ss, and gpSq “ hpSqs.

We have the following far-reaching generalization of Theorem 1.1.

Theorem 1.2. Let I be an interval and let x1, . . . , xn, y1, . . . , ym P I satisfy (1.37).
Let α1, . . . , αn, β1, . . . , βm ą 0 satisfy (1.38). Then the following are equivalent:

(1) For every convex function f : I Ñ R, (1.36) holds.

(2) We have

gptq ĺ hptq, @ t P r0, Ss, and gpSq “ hpSq. (1.39)

(3) There exists a matrix A “ pajkq1ĺjĺm,1ĺkĺn such that:

ajk ľ 0, @ j, @ k, (1.40)
n
ÿ

k“1

ajk “ 1, @ j, (1.41)

m
ÿ

j“1

βjajk “ αk, @ k, (1.42)

yj “

n
ÿ

k“1

ajkxk, @ j. (1.43)

Remark 1.4. The equivalence “p1q ô p2q” in Theorem 1.2 appears implicitly in
Karamata [9].

The following is obvious.

12
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Problem 1.16. In the setting of Theorem 1.2, we have “p3q ñ p1q”, even without
assuming (1.37).

Remark 1.5. In practice, the implication “p3q ñ p1q” is the most useful one. In
order to prove (1.36), it suffices to “cook” the matrix A.

In both Theorems 1.1 and 1.2, the most difficult part is “p2q ñ p3q”. Though
conceptually important, this implication has little applications in basic problems.

In a special case (already very useful!), we are now in position to give a full
proof of Theorem 1.2.

Problem 1.17. Prove Theorem 1.2 when the scalars α1, . . . , αn, β1, . . . , βm are ratio-
nal. Hint: reduce first the problem to the case of integer scalars. Next prove that
this can be seen as a special case of Theorem 1.1.

We now turn to the general case. The proof of Theorem 1.2 is based on the
following simple scheme:

Theorem 1.1ñ(Problem 1.17) Theorem 1.2 for rational scalars α1, . . . , βm

ñ(by approximation) Theorem 1.2 for real scalars α1, . . . , βm.

The second part of the proof is slightly long, and we do not give all details.
However, an advanced reader should be able to fill in the blanks.

Sketch of proof ofTheorem 1.2 using Problems 1.16 and 1.17. Step 1. Testing (1.36) on particular func-
tions. First, by letting, in (1.36), fpxq ” x and fpxq ” ´x, we find that

T –

m
ÿ

k“1

αkxk “

n
ÿ

j“1

βjyj . (1.44)

Note that this is the same as

gpSq “ hpSq. (1.45)

Next, let, for z P R, fpxq ” px ´ zq´. Testing (1.36) for this f , we find that

upzq –

n
ÿ

k“1

αkpxk ´ zq´ ľ vpzq –

m
ÿ

j“1

βjpyj ´ zq´, @ z P R. (1.46)

It turns out that u can be explicitly calculated:

upzq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0, if z ĺ x1

α1z ´ α1x1, if x1 ĺ z ĺ x2

pα1 ` α2qz ´ pα1x1 ` α2x2q, if x2 ĺ z ĺ x3
...
Sz ´ T, if z ľ xn

, (1.47)
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where the last line relies on (1.38) and (1.44). A similar formula holds for v.

Step 2. “p1q ñ p2q” We prove here that (1.46), (1.47), and the analogue of (1.47) for v,
imply item (2). Here it will seem that we use some magic, but the idea comes from
more advanced mathematics (the use of the Legendre transform). Let t P r0, Ss. Since
upzq ľ vpzq, @ z P R, we have

tz ´ upzq ĺ tz ´ vpzq, @ z P R,

and thus

maxttz ´ upzq; z P Ru ĺ maxttz ´ vpzq; z P Ru, @ 0 ĺ t ĺ S. (1.48)

We will see that the left-hand side, respectively right-hand side, of (1.48) equals gptq,
respectively hptq. (This will complete Step 2.) Indeed, using (1.47) we find that

tz ´ upzq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

tz, if z ĺ x1

pt ´ α1qz ` α1x1, if x1 ĺ z ĺ x2

pt ´ pα1 ` α2qqz ` pα1x1 ` α2x2q, if x2 ĺ z ĺ x3
...
pt ´ Sqz ` T, if z ľ xn

, (1.49)

and thus maxptz ´ upzqq is achieved: (i) when z “ x1, if 0 ĺ t ĺ α1; (ii) when z “ x2,
if α1 ĺ t ĺ α1 ` α2, etc. Calculating the value of this maximum, one sees that, indeed,
(1.48) is the same as gptq ĺ hptq, @ 0 ĺ t ĺ S.

Step 3. From real scalars α1, . . . , βm to rational scalars. This is the part of the proof that
we do not rigorously prove or state; however, the argument we present may be easily
made rigorous. First, by multiplying all the scalars with the same positive constant, we
may assume that S is rational. We now note that (1.39) asserts that the graphs of g and
h, which are piecewise affine functions, touch at the end points, and are one below the
other. By “slightly” decreasing x1 and “slightly” increasing xn (make a picture!), we may
assume that the two graphs do not to touch in p0, Sq. We may now “slightly” change
the scalars such that the graphs still do not touch except at the endpoints, and the new
scalars are rational.

To summarize, given ε ą 0, there are new points xk, yj , and new rational scalars αk,
βj , all depending on ε, such that |xk ´ xk| ă ε, @ k, etc., and the corresponding functions
g and h satisfy (1.39).

Step 4. Use of Problem 1.17 to prove “p2q ñ p3q”. Consider a matrix (depending on ε)
A “ pajkq1ĺjĺm, 1ĺkĺn satisfying the analogues of (1.40)–(1.43) for x1, . . . , ym, α1, . . . , βm.
By (1.40) and (1.41), all the coefficients of the matrix are between 0 and 1. Recalling that
a bounded sequence of real numbers contains a convergent subsequence, we obtain that,
when ε Ñ 0 and possibly up to passing to a subsequence, we have ajk Ñ ajk, and the
matrix A – pajkq1ĺjĺm, 1ĺkĺn has all the required properties.

Finally, “p3q ñ p1q” is the content of Problem 1.16. QED
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Problem 1.18. Prove, without using Theorem 1.2, that

(1.36) ñ x1 ĺ y1 and xn ľ ym.

1.5 Rearrangement

In this section, whose presentation is inspired by the expository text (on statis-
tics!) of Block et al. [2], we prove the rearrangement inequalities (R) and (C). By
broadening the perspective, we will see them as special cases of more general
inequalities. The main result here is the following.

Theorem 1.3. Let σ, τ P Sn. Then the following are equivalent:

(1) For each ordered lists a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ an and b1 ĺ b2 ĺ ¨ ¨ ¨ ĺ bn, we have

Sσ –

n
ÿ

j“1

ajbσpjq ĺ Sτ –

n
ÿ

j“1

ajbτpjq. (1.50)

(2) For each 2 ĺ k, ℓ ĺ n, we have

Card tj ľ k; σpjq ľ ℓu ĺ Card tj ľ k; τpjq ľ ℓu. (1.51)

When the lists are ordered a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ an and b1 ľ b2 ľ ¨ ¨ ¨ ľ bn, the
validity of (1.50) is equivalent to

Card tj ľ k; σpjq ľ ℓu ľ Card tj ľ k; τpjq ľ ℓu, @ 2 ĺ k, ℓ ĺ n. (1.52)

Problem 1.19. Prove Theorem 1.3 by expressing (1.50) in terms of the quantities
xj – aj ´ aj´1 and yj – bj ´ bj´1, 2 ĺ j ĺ n.

Problem 1.20. Prove that (R) is a special case of Theorem 1.3.

Next, a definition.

Definition 1.8. The lists a1, . . . , an and b1, . . . , bn are identically ordered if

paj ´ akqpbj ´ bkq ľ 0, @ j, k, (1.53)

respectively oppositely ordered if

paj ´ akqpbj ´ bkq ĺ 0, @ j, k.

It turns out that, up to a permutation, identically ordered lists are ordered
lists.

15



Basic methods and inequalities 1.5 Rearrangement

Problem 1.21. Assume that a1, . . . , an and b1, . . . , bn are identically ordered. Prove
that there exists a permutation σ P Sn such that aσp1q ĺ aσp2q ĺ ¨ ¨ ¨ ĺ aσpnq and
bσp1q ĺ bσp2q ĺ ¨ ¨ ¨ ĺ bσpnq.

Similar result if the lists are oppositely ordered.

Problem 1.22. Prove the following generalization of (C): if the lists a1, . . . , an and
b1, . . . , bn are identically ordered, then we have the general(ized) Chebyshev in-
equality (GC)

n
ÿ

j“1

ajbj ľ
1

n

n
ÿ

j“1

aj

n
ÿ

j“1

bj. (GC)

If the lists are oppositely ordered, then the inequality is reversed.

Hint: find n permutations σ1, . . . , σn P Sn such that

n
ÿ

j“1

aj

n
ÿ

k“1

bk “

n
ÿ

j“1

n
ÿ

k“1

ajbσkpjq.

Finally, a worked beautiful inequality, whose solution combines rearrange-
ment and convexity. Its starting point is the following natural would-be inequal-
ity: given n ľ 3 and x1, . . . , xn ą 0, is it true that

n
ÿ

j“1

xj

xj`1 ` xj`2

ľ
n

2
(1.54)

(with the convention xn`1 “ x1, xn`2 “ x2)?

We will discuss special cases of this inequality in Problem 2.19. This inequality
holds true for n “ 3, . . . , 13, but is wrong when n ľ 24. (For the full picture
concerning its validity and the methods used in proving or disproving it, see the
expository text of Clausing [4].) The next result, due to Drinfeld [6], shows that
(1.54) is “not far from being true” for every n.

Problem 1.23. Let f : R Ñ R be a convex function such that

fpxq ĺ min

ˆ

2

ex ` ex{2
,
1

ex

˙

, @x P R. (1.55)

Then

n
ÿ

j“1

xj

xj`1 ` xj`2

ľ fp0q
n

2
, @n ľ 3, @x1, . . . , xn ą 0. (1.56)
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Proof. In all the proof, we use the convetions xn`1 “ x1, yn`2 “ y2, etc.

Step 1. Change of unknowns. This step ressembles arguing by homogeneity. Set yj –
xj`1

xj
, so

that
n
ÿ

j“1

xj
xj`1 ` xj`2

“

n
ÿ

j“1

1

xj`1{xj ` xj`2{xj
“

n
ÿ

j“1

1

yjp1 ` yj`1q
,

n
ź

j“1

yj “ 1.

Step 2. Use of (R). The numbers y1, . . . , yn need not be ordered. Consider a permutation σ P Sn

such that yσp1q ľ ¨ ¨ ¨ ľ yσpnq. Then

1

yσp1q

ĺ ¨ ¨ ¨ ĺ
1

yσpnq

and
1

1 ` yσp1q

ĺ ¨ ¨ ¨ ĺ
1

1 ` yσpnq

. (1.57)

Set zj – yσpjq, @ j. From (1.57) and the first inequality in (R), we find that

n
ÿ

j“1

xj
xj`1 ` xj`2

ľ

n
ÿ

j“1

1

yσpjq

`

1 ` yσpn`1´jq

˘ “

n
ÿ

j“1

1

zjp1 ` zn`1´jq
.

Therefore, it suffices to prove the following
«

z1, . . . , zn ą 0,
n
ź

j“1

zj “ 1

ff

ñ

n
ÿ

j“1

1

zjp1 ` zn`1´jq
ľ fp0q

n

2
. (1.58)

(The fact that z1 ĺ ¨ ¨ ¨ ĺ zn will not be used in the proof of (1.58).)

Step 3. Use of calculus. Consider the sum

Sj –
1

zjp1 ` zn`1´jq
`

1

zn`1´jp1 ` zjq
.

Set tj – zjzn`1´j, so that
śn

j“1 tj “ 1. When tj is fixed, the sum Sj, considered as a

function of zj : (i) is constant 1when tj “ 1; (ii) has a maximum equal to
2

tj `
?
tj
when tj ă 1;

(iii) has an infimum equal to
1

tj
when tj ą 1. We find that, in any case, we have

n
ÿ

j“1

1

zjp1 ` zn`1´jq
“

1

2

n
ÿ

j“1

Sj ľ
1

2

n
ÿ

j“1

min

ˆ

2

tj `
?
tj
,
1

tj

˙

. (1.59)

Step 4. Use of (GJ). Write tj “ euj , so that
řn

j“1 uj “ 0. Then (1.59) reads

n
ÿ

j“1

1

zjp1 ` zn`1´jq
ľ

1

2

n
ÿ

j“1

min

ˆ

2

euj ` euj{2
,
1

euj

˙

ľ
1

2

n
ÿ

j“1

fpujq, (1.60)
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where the last inequality uses (1.55). Combining (1.60)with (GJ) (here, we need the convexity of
f ), we find that

n
ÿ

j“1

xj
xj`1 ` xj`2

ľ

n
ÿ

j“1

1

zjp1 ` zn`1´jq
ľ

1

2

n
ÿ

j“1

fpujq ľ
n

2
f

˜

n
ÿ

j“1

uj
n

¸

“ fp0q
n

2
. QED

Remark 1.6. It is not clear why (1.56) implies that (1.54) is “not far from being
true”. It turns out that one may construct f satisfying (1.55) such that fp0q “

0.989133 . . . Thus, although (1.54) is wrong, we have

n
ÿ

j“1

xj

xj`1 ` xj`2

ľ 0.989133
n

2
, @n ľ 2, @x1, . . . , xn ą 0.

1.6 Quadratic trinomials and forms

This section is more about tricks than methods, in the sense that the applications,
though spectacular, are limited. The common theme is that we consider quadratic
trinomials or quadratic forms, i.e., expressions of the form

Qpx1, . . . , xnq “

n
ÿ

j,k“1

aj,kxjxk.

A first direction consists of considering the discriminant of a quadratic trino-
mial. The flagship of this approach is the following.

Problem 1.24. Prove the (CS) formula, including the equality case, by considering
the sign of the quadratic trinomial

T pxq –

n
ÿ

j“1

pajx ´ bjq
2, @x P R. (1.61)

Here is an even more spectacular result. To motivate it, we start from (CS),
in which we have equality iff the vectors pajq1ĺjĺn and pbjq1ĺjĺn are proportional.
Intuitively, one expects that, if these vectors are “almost proportional”, and in
particular “almost equal”, then we have “almost equality” in (CS). This is quan-
tified by the following inequality, due to Pólya and Szegö. (This is not the famous
Pólya-Szegö inequality.) If α ą 1, then

„

a1, . . . , an, b1, . . . , bn ą 0,
1

α
ĺ

aj
bj

ĺ α, @ j

ȷ

ñ

˜

n
ÿ

j“1

ajbj

¸2

ľ
4α2

pα2 ` 1q
2

n
ÿ

j“1

a2j

n
ÿ

j“1

b2j .

(1.62)

18



Petru Mironescu Inequalities and other stories

Note that, when α “ 1, we have
4α2

pα2 ` 1q
2 “ 1, and we recover the equality in

(CS).

Problem 1.25. Let a1, . . . , an, b1, . . . bn and α be as in (1.62). Consider

fptq –

n
ÿ

j“1

ˆ

a2j t
2

´ 2ajbjt `
4α2

pα2 ` 1q
2 b

2
j

˙

, @ t P R.

Derive (1.62) by determining the sign of f
ˆ

2α

α2 ` 1

˙

.

We next informally discuss the Gauss method from the limited perspective of
deciding whether a quadratic form is non-negative. Here is a worked example.
Consider the inequality

ab ` bc ` ca ĺ a2 ` b2 ` c2, @ a, b, c P R. (1.63)

Proof of (1.63) via the Gauss method. We will form squares of linear forms as follows

`

a2 ` b2 ` c2
˘

´ pab ` bc ` caq “
`

a2 ´ ab ´ ac
˘

`
`

b2 ` c2 ´ bc
˘

“

ˆ

a ´
1

2
b ´

1

2
c

˙2

`

ˆ

3

4
b2 `

3

4
c2 ´

3

2
bc

˙

“

ˆ

a ´
1

2
b ´

1

2
c

˙2

`
3

2
pb ´ cq2 ľ 0.

QED

As a side remark, (1.63) can be obtained by other means.

Problem 1.26. Prove (1.63) using (CS) or (R).

The interest of the Gauss method lies mainly in its generality, and in the fact
that it can also decide whether a quadratic form is not always ľ 0. Here is an
example.

Problem 1.27. Consider, for n ľ 3, the inequality

n
n
ÿ

j“1

xjpxj`1 ` xj`2q ĺ 2

˜

n
ÿ

j“1

xj

¸2

, @x1, . . . , xn ľ 0 (1.64)

(with the convention xn`1 “ x1, xn`2 “ x2). Prove that (1.64) holds iff n ĺ 6.
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1.7 Calculus

One can get useful information by studying the variations of a function. Two
basic examples: (i) if f is non-decreasing on ra, bs, then fpaq ĺ fpxq ĺ fpbq, @x P

ra, bs; (ii) if f is convex on ra, bs, then fpxq ĺ max pfpaq, fpbqq, @x P ra, bs; (iii)
similarly, if f is strictly convex on ra, bs and fpaq “ fpbq, then fpxq ă fpaq, @x P

pa, bq.

A textbook example is the following.

Problem 1.28. Let 1 ă p, q ă 8 be conjugated exponents. Prove the Young in-
equality (Y)

ab ĺ
ap

p
`

bq

q
, @ a, b ľ 0, (Y)

by studying the function

r0,8q Q a ÞÑ
ap

p
`

bq

q
´ ab.

(Another textbook proof of (Y) relies on (J).)

We now present a more involved worked example, generalizing the Pólya-
Szegö inequality (1.62) and quantifying the “almost equality” case in the Hölder
inequality (H).

Problem 1.29. Let 1 ă p, q ă 8 be conjugate exponents. Let α ą 1. Define

C “ Cα,p –
ppα2p´2pα2p´2 ´ 1q

p´1
pα2 ´ 1q

pp ´ 1q
p´1

pα2p ´ 1q
p . (1.65)

Then
«

a1, . . . , an, b1, . . . , bn ą 0,
1

α
ĺ

aj

bq´1
j

ĺ α, @ j

ff

ñ

˜

n
ÿ

j“1

ajbj

¸p

ľ C
n
ÿ

j“1

apj

˜

n
ÿ

j“1

bqj

¸p´1

.

(1.66)

Noting that, when p “ 2, we have q “ 2 and Cα,2 “
4α2

pα2 ` 1q
2 , we see that,

indeed, (1.66) generalizes (1.62).
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Proof. Step1. Reduction toaminimizationproblem. Byhomogeneity,wemayassumethat
řn

j“1 b
q
j “

1. Let λj – bqj and xj –
aj

bq´1
j

, @ j. Since ajbj “ λjxj and a
p
j “ λjx

p
j , (1.66) amounts to

«

λ1, . . . , λn ą 0,
n
ÿ

j“1

λj “ 1,
1

α
ĺ xj ĺ α,@ j

ff

ñ

´

řn
j“1 λjxj

¯p

řn
j“1 λjx

p
j

ľ C. (1.67)

Step 2. A calculus part. Set

fpx1, . . . , xnq –

´

řn
j“1 λjxj

¯p

řn
j“1 λjx

p
j

. (1.68)

We study the variations of f in the variable xj, the other ones being fixed. With no loss of
generality, we take j “ 1, and let S –

řn
j“2 λjxj, T –

ř2
j“2 λjx

p
j , so that

fpx1, . . . , xnq “
pλ1x1 ` Sq

p

λ1x
p
1 ` T

.

The derivative of f with respect to x1 is

gpx1, . . . , xnq –
pλ1x

p´1
1

pλ1x
p
1 ` T q

2

«

ˆ

λ1 `
S

x1

˙p´1

´ 1

ff

,
1

α
ĺ x1 ĺ α.

We deduce that the following can happen: (i) if λ1 `
S

α
ľ 1, then g ľ 0, f increases with x1,

and its minimum is achieved when x1 “
1

α
; (ii) if λ1 ` αS ĺ 1, then g ĺ 0, f decreases with

x1, and its minimum is achieved when x1 “ α; (iii) in the remaining case, g has exactly one zero
x0 P p1{α, αq, f increases on r1{α, x0s, decreases on rx0, αs, and achieves its minimum when
either x1 “ 1{α, or x1 “ α. In all cases, f is minimal when either x1 “ 1{α, or x1 “ α.

Iterating theaboveargument,wesee that, for every list px1 . . . , xnq, there exists a list py1, . . . , ynq P

t1{α, αu
n such that fpx1, . . . , xnq ľ fpy1, . . . , ynq. We have thus reduced the initial problem to

the following:

fpy1, . . . , ynq ľ C, @ y1, . . . , yn P t1{α, αu. (1.69)

Step 3. A second calculus part. Let, for py1, . . . , ynq P t1{α, αu
n, a –

ř

yj“α λj, so that

fpy1, . . . , ynq “
paα ` p1 ´ aq{αq

p

aαp ` p1 ´ aq{αp
“

“`

α2 ´ 1
˘

a ` 1
‰p

pα2p ´ 1qa ` 1
.

In view of (1.68), (1.69) amounts to

hpaq –

“`

α2 ´ 1
˘

a ` 1
‰p

pα2p ´ 1qa ` 1
ľ C, @ a P r0, 1s. (1.70)
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By studying the variation of h, one finds that h has a minimum at

a0 –

`

α2p ´ 1
˘

´ p
`

α2 ´ 1
˘

pp ´ 1qpα2p ´ 1qpα2 ´ 1q
,

and we have hpa0q “ C. QED

We have just met, in Step 3, a “proof by intimidation” or “tedious proof”,
relying on a bunch of long calculations that, most likely, you will not check. To
inspire you second thoughts: complex calculations may lead to new ideas and,
more importantly, the mastery of analysis requires the one of calculations.

Another worked example. The idea of this inequality is due to Panaitopol. Its
proof relies on a classical textbook inequality, the Bernoulli inequality

p1 ` xq
α

ľ 1 ` αx, @α ľ 1, @x ľ ´1. (B)

Problem 1.30. Let α ą 1 and n ľ 1. Prove that

r1 ĺ xj ĺ α, @ 1 ĺ j ĺ ns ñ

˜

n
ÿ

j“1

xj

¸˜

n
ÿ

j“1

1

xj

¸α

ĺ nα`1. (1.71)

Proof. The case n “ 1 is clear, so let n ľ 2.

Step 1. Reduction to the comparison of two values. We study the variation of the left-hand side of
(1.71) as a function of, say, xn, with x1, . . . , xn´1 fixed. In order to simplify the calculations, we
write x instead of xn, and denote

A –

n´1
ÿ

j“1

xj , B –

n´1
ÿ

j“1

1

xj
, fpxq – pA ` xq

ˆ

B `
1

x

˙α

,

so that our inequality becomes fpxq ĺ nα`1, @ 1 ĺ x ĺ α. Now

f 1pxq “

ˆ

B `
1

x

˙α

´
α

x2
pA ` xq

ˆ

B `
1

x

˙α´1

“
1

x2

ˆ

B `
1

x

˙α´1
`

Bx2 ´ pα ´ 1qx ´ αA
˘

loooooooooooooomoooooooooooooon

Qpxq

.
(1.72)

Let us note thatQp1q ă 0 (sinceB ĺ n, whileA ľ n). SinceQ is a quadratic trinomial, we
find that one the two happens: (i) f decreases on r1, αs; (ii) there exists some 1 ă x0 ă α such
that f decreases on r1, x0s and increases on rx0, αs. In both cases, f achieves itsmaximumeither
at x “ 1, or at x “ α.

Step 2.We have fp1q ą fpαq. This amounts to
ˆ

B ` 1

B ` 1{α

˙α

ą
A ` α

A ` 1
. (1.73)
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To prove (1.73), we rely on (B), which implies
ˆ

B ` 1

B ` 1{α

˙α

“

ˆ

1 `
1 ´ 1{α

B ` 1{α

˙α

ľ 1 `
α ´ 1

B ` 1{α
ą 1 `

α ´ 1

A ` 1
“

A ` α

A ` 1
,

where the last inequality uses the fact thatB ĺ n ĺ A.

Step 3. Conclusion. The above analysis shows that fpxq ă fp1q, @x ą 1. By symmetry of the
expression we investigate, we find that

˜

n
ÿ

j“1

xj

¸˜

n
ÿ

j“1

1

xj

¸α

ĺ

˜

n
ÿ

j“1

1

¸˜

n
ÿ

j“1

1

1

¸α

“ nα`1,

with equality iff xj “ 1, @ j. QED

Finally, a more involved worked example. Its starting point is the following
standard calculus fact. If α P R and |x| ă 1, then we have the power series
expansion

p1 ` xq
α

“ 1 `
α

1!
x `

αpα ´ 1q

2!
x2

`
αpα ´ 1qα ´ 2

3!
x3

` ¨ ¨ ¨ . (1.74)

Problem 1.31. Let 1 ĺ p ĺ 2. Prove that

p1 ` xq
p

` p1 ´ xq
p

ĺ 2 ` p2p ´ 2qx2, @ ´ 1 ĺ x ĺ 1. (1.75)

Proof. (1.75) holds with equality when x “ ˘1 or when p P t1, 2u. We may therefore assume
that |x| ă 1 and 1 ă p ă 2. Using (1.74), we find that

p1 ` xq
p

` p1 ´ xq
p

“ 2

«

1 `
ppp ´ 1q

2!
x2 `

ÿ

kľ2

ppp ´ 1qp2 ´ pq ¨ ¨ ¨ p2k ´ 1 ´ pq

p2kq!
x2k

ff

.
(1.76)

Now comes the key observation. Under the assumption 1 ă p ă 2, the coefficient in front of
x2k is positive, @ k. Fix some integerK ľ 2. Then (by positivity of the coefficients when k ą K)

ppp ´ 1q

2!
x2 `

K
ÿ

k“2

ppp ´ 1qp2 ´ pq ¨ ¨ ¨ p2k ´ 1 ´ pq

p2kq!
x2k

ĺ
p1 ` xq

p
` p1 ´ xq

p

2
´ 1.

(1.77)

Letting x Õ 1 in (1.77), we find that

ppp ´ 1q

2!
`

K
ÿ

k“2

ppp ´ 1qp2 ´ pq ¨ ¨ ¨ p2k ´ 1 ´ pq

p2kq!
ĺ 2p´1 ´ 1, @K ľ 2. (1.78)
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From (1.76) and (1.78), we find that

p1 ` xq
p

` p1 ´ xq
p

“ lim
KÑ8

2

«

1 `
ppp ´ 1q

2!
x2 `

K
ÿ

k“2

ppp ´ 1qp2 ´ pq ¨ ¨ ¨ p2k ´ 1 ´ pq

p2kq!
x2k

ff

ĺ lim
KÑ8

2

«

1 `
ppp ´ 1q

2!
x2 `

K
ÿ

k“2

ppp ´ 1qp2 ´ pq ¨ ¨ ¨ p2k ´ 1 ´ pq

p2kq!
x2

ff

ĺ 2 ` p2p ´ 2qx2.

QED

We will see in more depth, in Section 3.3, how textbook calculus methods can
be successfully used to prove rather difficult inequalities.

1.8 Optimization

A more adapted title of this section would be “constrained optimization”. I will
be very informal on the calculus part, which can be found in elementary calcu-
lus courses, and will not precisely define important notions as compact sets or
continuous or differentiable functions.

To start with, we explain this approach on the familiar (AM-GM) inequality

n
?
x1 ¨ ¨ ¨ xn ĺ

x1 ` ¨ ¨ ¨ ` xn

n
, @x1, . . . , xn ą 0,

which, in view of its homogeneity, can be restated as

fpx1, . . . , xnq – n
?
x1 ¨ ¨ ¨ xn ĺ 1, @x1, . . . , xn ą 0 s.t. x1 ` ¨ ¨ ¨ ` xn “ n. (1.79)

In turn, proving (1.79) amounts to finding max f under the constraints

x1, . . . , xn ą 0, x1 ` ¨ ¨ ¨ ` xn “ n.

Treating such problems relies on two calculus results: (i) existence of a point
of constrained maximum/minimum; (ii) an equation (“Fritz John conditions”)
satisfied at such points, for which the Wikipedia executive summary [14] is suffi-
cient as a first reading.

To start with, let us consider the existence of a constrained maximum of f . For
this purpose, it is more convenient to replace (1.79) with the seemingly stronger
result

fpx1, . . . , xnq ĺ 1, @x1, . . . , xn ľ 0 s.t. x1 ` ¨ ¨ ¨ ` xn “ n. (1.80)
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Petru Mironescu Inequalities and other stories

The advantage of this formulation is that max f under the constraints in (1.80)
is attained. This comes from the calculus fact that “a continuous function on a
compact set has a maximum point and a minimum point”. As a user’s guide, a
set of the form

K – tx P Rn; fℓpxq ľ 0, ℓ “ 1, . . . ,mu

is compact provided: (i) each fℓ is continuous; (ii) there exists some constant M
such that

x “ px1, . . . , xnq P K ñ r|xj| ĺ M, j “ 1, . . . , ns. (1.81)

(In our case, (1.81) holds with M “ n.)

For further use, let us note that, for our specific f , a maximum point x “

px1, . . . , xnq necessarily satisfies xj ą 0, @ j.

Let us now broaden the perspective and consider a constrained optimization
problem in its general form

maximizefpxq, with x “ px1, . . . , xnq, under the constraints
g1pxq “ 0, . . . , gℓpxq “ 0, h1pxq ľ 0, . . . , hmpxq ľ 0.

(1.82)

Assume that x solves (1.82) and that, at x, we have

h1pxq “ 0, . . . , hppxq “ 0, while hp`1pxq ą 0, . . . , hmpxq ą 0. (1.83)

(In the optimization jargon, the constraints h1, . . . hp are active, while the con-
straints hp`1, . . . hn are inactive.)

Let us define the gradient of a function f of x “ px1, . . . , xnq as

∇fpxq –

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Bf

Bx1

pxq

Bf

Bx2

pxq

...
Bf

Bxn

pxq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(aka “nabla f”), where
Bf

Bxj

pxq stands for the derivative of f with respect to xj ,

the other variables being fixed. For example, if fpx, yq – xy2, then ∇fpx, yq “
ˆ

y2

2xy

˙

.

We have the following important result.
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Theorem 1.4 (Fritz John conditions). Assume that x solves (1.82) and that (1.83)
holds. Then there exist scalars λj, j “ 0, . . . , ℓ, and µk, k “ 1, . . . , p, not all zero,
such that

λ0∇fpxq “

ℓ
ÿ

j“1

λj∇gjpxq `

p
ÿ

k“1

µk∇hkpxq. (1.84)

In many practical cases, one may prove that λ0 ‰ 0 and then, by homogeneity,
we may assume that λ0 “ 1.

With this important tool in our pocket, let us come back to the proof of (1.80).
Since at a maximum point x we have xj ą 0, @ j, (1.84) reads that there exist λ0, λ1,
not both zero, such that

1

n
λ0

fpxq

xj

“ λ1, @ j.

We find first that λ0 ‰ 0 (since otherwise λ1 “ 0), and next that all the xj’s are
equal. Finally, the constraint x1 ` ¨ ¨ ¨ ` xn “ n implies that x “ p1, . . . , 1q, and we
find that the maximum is indeed 1.

Let us now work a more involved example, taken, as many problems in this
text, from the Kvant magazine [16].

Problem 1.32. We have

px1 ` ¨ ¨ ¨ ` xnq
2

ĺ pn ´ 1q
`

x2
1 ` ¨ ¨ ¨ ` x2

n

˘

` n n

b

x2
1 ¨ ¨ ¨ x2

n,

@x1, . . . , xn ą 0.
(1.85)

Proof. By homogeneity, (1.85) amounts to proving thatm ľ 1, where

m – min fpxq, fpxq – pn ´ 1q
`

x21 ` ¨ ¨ ¨ ` x2n
˘

` n n

b

x21 ¨ ¨ ¨x2n,

under the constraints x1, . . . , xn ľ 0, x1 ` ¨ ¨ ¨ ` xn “ 1.

If x “ px1, . . . , xnq achieves m, then: either (i) there exists some j such that xj “ 0; or
xj ą 0, @ j. If (i) occurs, wemay assume that xn “ 0, and then (1.85) amounts to

px1 ` ¨ ¨ ¨ ` xn´1q
2

ĺ pn ´ 1q
`

x21 ` ¨ ¨ ¨ ` x2n´1

˘

,

which is a special case of (CS).

More interesting is (ii). In this case,Theorem 1.4 asserts that there exist λ0, λ1, not both zero,
such that, with P – n

?
x1 ¨ ¨ ¨xn, we have

λ0

ˆ

2pn ´ 1qxj ` 2
P 2

xj

˙

“ 2λ1, @ j. (1.86)

26



Petru Mironescu Inequalities and other stories

We cannot have λ0 “ 0, and thus wemay assume λ0 “ 1. Then (1.86) implies that

pn ´ 1qx2j ´ λ1xj ` P 2 “ 0,@ j.

Since the equation pn ´ 1qX2 ´ λ1X ` P 2 “ 0 has at most two distinct roots, we find that
the coordinates of x can take at most two distinct values: say ℓ of them equal a, and n ´ ℓ equal
b. We are thus led to the following simpler problem, involving two coordinates instead of n: prove
that, for each integer 0 ĺ ℓ ĺ n, we have

pℓa ` pn ´ ℓqbq2 ĺ pn ´ 1q
`

ℓa2 ` pn ´ ℓqb2
˘

` na2ℓ{nb2pn´ℓq{n, @ a, b ą 0. (1.87)

This inequality is clear when ℓ “ 0 or ℓ “ n. Assuming that 1 ĺ ℓ ĺ n ´ 1, (1.87) reads

ab ĺ
ℓpn ´ ℓ ´ 1q

2ℓpn ´ ℓq
a2 `

pn ´ ℓqpℓ ´ 1q

2ℓpn ´ ℓq
b2 `

n

2ℓpn ´ ℓq
a2ℓ{nb2pn´ℓq{n, @ a, b ą 0. (1.88)

In turn, (1.88) amounts to a convexity inequality. Indeed, by homogeneity we may assume
that a “ 1 and then, with kpxq – bx, (1.88) reads

kp1q ĺ
ℓpn ´ ℓ ´ 1q

2ℓpn ´ ℓq
kp0q `

pn ´ ℓqpℓ ´ 1q

2ℓpn ´ ℓq
kp2q `

n

2ℓpn ´ ℓq
a2ℓ{nk

ˆ

2pn ´ ℓq

n

˙

,

which is a special case of (GJ) for the convex function k. QED
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Chapter 2

Worked inequalities

Overview. Unlike in real life, the problems in this chapter come with a hint. A
first hint is provided by the name of the section.

2.1 Induction

Problem 2.1. Prove by induction the general Chebyshev inequality (GC).

2.2 Convexity. Majorization

Problem 2.2. Let p ą 1 and a ľ b ą 0. Prove that

pap ´ pap ´ bpqtpq
1{p

ľ a ´ pa ´ bqt, @ 0 ĺ t ĺ 1. (2.1)

Hint: if f : rα, βs Ñ R is convex and fpαq “ fpβq, then fptq ĺ fpαq, @α ĺ t ĺ b.

Definition 2.1. A norm on Rn is a function N : Rn Ñ r0,8q such that

Nptxq “ |t|Npxq, @x P Rn, @ t P R, (2.2)
Npxq “ 0 ñ x “ 0, (2.3)
Npx ` yq ĺ Npxq ` Npyq, @x, y P Rn. (2.4)

Similar definition when Rn is replaced by a real or complex vector space.

Problem 2.3. Let φ : R Ñ p0,8q be a convex even function such that

p0,8q Q t ÞÑ
φptq

t
is non-increasing and lim

tÑ8

φptq

t
– ℓ ą 0. (2.5)
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(1) Prove that φ is non-decreasing on r0,8q.

(2) Set, for every pu, vq P R2,

Φ2pu, vq –

$

&

%

|v|φ

ˆ

|u|

|v|

˙

, if v ‰ 0

ℓ|u|, if v “ 0
.

Prove that Φ2 is a norm on R2.

(3) Let n ľ 3. Let N : Rn´1 Ñ r0,8q be a norm. Hint: a convex function on R is
continuous. Set

Φnpx1, . . . , xnq – Φ2pNpx1, . . . , xn´1q, xnq, @x1, . . . , xn P R.

Prove that Φn is a norm on Rn.

(4) Derive (again) the Minkowski inequality (M).

Problem 2.4.

(1) Let a, a1, . . . , ak P R. Prove the equivalence between:

(a) There exist

λ1, . . . , λk such that λj P r0, 1s, @ j,
k
ÿ

j“1

λj “ 1, (2.6)

xa
ĺ

k
ÿ

j“1

λjx
aj , @x ą 0. (2.7)

(b) We have, for the above λj’s,

a “

k
ÿ

j“1

λjaj. (2.8)

(2) Given x “ px1, . . . , xnq P p0,8qn and α “ pα1, . . . , αnq P Rn, set

xα – xα1

1 ¨ ¨ ¨ xαn

n .

Let α, α1, . . . , αk P Rn. Prove the equivalence between:

(a) There exist

λ1, . . . , λk such that λj P r0, 1s, @ j,
k
ÿ

j“1

λj “ 1, (2.9)

xα
ĺ

k
ÿ

j“1

λjx
αj , @x P p0,8q

n. (2.10)
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(b) We have, for the above λj’s,

α “

k
ÿ

j“1

λjαj. (2.11)

Hints: (i) the function α ÞÑ xα is convex (what this could mean)?; (ii) find a
minimum point for x ÞÑ

řk
j“1 λjx

αj ´ xα.

Problem 2.5. Let I Ă R be an interval, f : I Ñ R be a convex function, and
a, b, c P I be such that a ĺ b ĺ c. Prove that

pc ´ bqfpaq ` pa ´ cqfpbq ` pb ´ aqfpcq ľ 0. (2.12)

Problem 2.6. Let I Ă R be an interval, f : I Ñ R be a convex function, and
x1, . . . , xn P I be such that x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn. Set xn`1 – x1. Prove that

n
ÿ

j“1

xjfpxj`1q ľ

n
ÿ

j“1

xj`1fpxjq. (2.13)

Hint: induction.

Problem 2.7. Let f : r0,8q Ñ p0,8q be a convex, continuous, non-decreasing
function such that fpxq ą 0, @x ą 0. Find the best lower bound of the form

1
n
ÿ

j“1

1

fpxj ` 1q

´
1

n
ÿ

j“1

1

fpxjq

ľ Cn, @x1, . . . , xn ą 0. (2.14)

Same question if we only assume f non-decreasing and such that fpxq ą 0,
@x ą 0.

Hints: (i) the Karamata theorem; (ii) the Chebyshev inequality.

Next, a very popular inequality.

Problem 2.8. Let λ1, . . . , λn P r0, 1s, µ1, . . . , µn P r0, 1s be such that
řn

j“1 λj “
řn

j“1 µj “ 1 and pλ1, . . . , λnq majorizes pµ1, . . . , µnq.

Given n numbers x1, . . . , xn and σ P Sn, set

yσ –

n
ÿ

j“1

λjxσpjq, zσ –

n
ÿ

j“1

µjxσpjq.

If f : I Ñ R is convex and x1, . . . , xn P I , prove the Muirhead inequality
ÿ

σPSn

fpzσq ĺ
ÿ

σPSn

fpyσq. (2.15)

Hints: start with the case where the µk’s are permutations of the λj’s. Then
use the Birkhoff-von Neumann Theorem 3.1.
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Problem 2.9. Let n ľ 3. Find

max

#

n
ÿ

j“1

x3
j ;xj P r0, 1s,

n
ÿ

j“1

xj “ 0

+

. (2.16)

(Take for granted the fact that max is achieved in (2.16).) Hints: (i) the function
x ÞÑ x3 is strictly convex on r0,8q, strictly concave on p´8, 0s; (ii) Problem 1.12.

Problem 2.10. If 0 ă a1 ĺ ¨ ¨ ¨ ĺ an and σ P Sn, prove that

pa1 ` a1qpa2 ` a2q ¨ ¨ ¨ pan ` anq

ĺ
`

a1 ` aσp1q

˘`

a2 ` aσp2q

˘

¨ ¨ ¨
`

an ` aσpnq

˘

ĺ pa1 ` anqpa2 ` an´1q ¨ ¨ ¨ pan ` a1q.

(2.17)

Hint: broaden the perspective and try to prove a (much more) general result. Life
will be easier!

Problem 2.11. Broaden the perspective in order to prove the inequality

1

a
`

1

b
`

1

c
`

9

a ` b ` c
ľ

4

a ` b
`

4

b ` c
`

4

c ` a
, @ a, b, c ą 0. (2.18)

Problem 2.12. Broaden the perspective in order to prove and improve the follow-
ing inequality due to Drimbe.

n
ÿ

j“1

b

ajcj ´ b2j ĺ

g

f

f

e

˜

n
ÿ

j“1

aj

¸˜

n
ÿ

j“1

cj

¸

´

˜

n
ÿ

j“1

bj

¸2

if aj ą 0, cj ą 0, ajcj ą b2j , @ j.

(2.19)

The following inequality is due to Drimbe. The idea of the proof is from [5].

Problem 2.13. If f : I Ñ R is such that f and f 1 are convex, then

fpaq ` fpbq ` fpcq ` 3f

ˆ

a ` b ` c

3

˙

ľf

ˆ

2a ` b

3

˙

` f

ˆ

2b ` a

3

˙

` f

ˆ

2a ` c

3

˙

` f

ˆ

2c ` a

3

˙

` f

ˆ

2b ` c

3

˙

` f

ˆ

2c ` b

3

˙

, @ a, b, c P I.

(2.20)

Hints. Assume that a ĺ b ĺ c. Use the convexity of f to prove that

fpaq ` f

ˆ

a ` b ` c

3

˙

ľ f

ˆ

2a ` b

3

˙

` f

ˆ

2a ` c

3

˙

. (2.21)

Then use the convexity of f 1 to complete (2.21) to (2.20).

Problem 2.14. Broaden the perspective in order to prove the following result.
If b1 ľ b2 ľ ¨ ¨ ¨ ľ bn ą 0, a1 ľ b1, a1a2 ľ b1b2, . . . , a1 ¨ ¨ ¨ an ľ b1 ¨ ¨ ¨ bn, then
řn

j“1 aj ľ
řn

j“1 bj .
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2.3 Rearrangement

Problem 2.15. Formulate and prove the analogues of (R) for identically ordered,
respectively oppositely ordered lists.

The following beautiful problem is taken from Drimbe [5].

Problem 2.16. Prove the (AM-GM) inequality using rearrangement inequalities.
Hint: consider appropriate oppositely ordered lists a1, . . . , an and b1 . . . , bn such
that ajbj “ G, @ j.

2.4 Quadratic trinomials and forms

Problem 2.17. Assume that a21 ą a22 ` ¨ ¨ ¨ a2n. Prove the Aczél inequality

pa1b1 ´ a2b2 ´ ¨ ¨ ¨ ´ anbnq
2

ľ
`

a21 ´ a22 ´ ¨ ¨ ¨ ´ a2n
˘`

b21 ´ b22 ´ ¨ ¨ ¨ ´ b2n
˘

,

@ b1, . . . , bn P R,
(2.22)

and find the equality case.

Problem 2.18. Let 0 ă a ă A and 0 ă b ă B. Assume that

a ĺ aj ĺ A, b ĺ bj ĺ B, @ 1 ĺ j ĺ n. (2.23)

(1) Prove the Pólya-Szegö inequality
˜

n
ÿ

j“1

ajbj

¸2

ľ
4abAB

pab ` ABq
2

n
ÿ

j“1

a2j

n
ÿ

j“1

b2j . (2.24)

(2) Prove that the constant
4abAB

pab ` ABq
2 is optimal.

Problem 2.19. Let 3 ĺ n ĺ 6. Prove the inequality
n
ÿ

j“1

xj

xj`1 ` xj`2

ľ
n

2
, @x1, . . . , xn ą 0, (2.25)

with the convention xn`1 “ x1 and xn`2 “ x2. Hints: (i) Problem 1.27; (ii) (CS).

(The case n “ 3 is known as the Nesbitt inequality. The case n “ 6 and the method
of proof suggested above are due to Mordell.)

Problem 2.20. Prove that

a2 ` b2 ` c2 ` ab ` bc ` ca ` a ` b ` c ľ ´
3

8
, @ a, b, c P R, (2.26)

and find the equality case.
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2.5 Calculus

Problem 2.21. Prove that

1

a3 ` b3 ` abc
`

1

b3 ` c3 ` abc
`

1

c3 ` a3 ` abc
ĺ

1

abc
, @ a, b, c ą 0, (2.27)

and characterize the equality case. Hints: (i) reduce, by homogeneity, (2.27) to the
special case where ab “ 1 and c ľ 1; (ii) study the sum of the last two-terms on
the left-hand side under the constraint ab “ 1; (iii) using exponentials may help.

Bonus: a tricky solution.

Problem 2.22. Prove that

pa ` b ` c ` dq
2

ą 8pac ` bdq, @ a ă b ă c ă d. (2.28)

Problem 2.23. For n ľ 2, find

m – min

#

n
ÿ

j“1

xn´2
j

1 ´ xn´1
j

; 0 ă xj ă 1,
n
ÿ

j“1

xn´1
j “ 1

+

.

Problem 2.24.

(1) Let 0 ă x ă 1. Prove that

p0,8q Q t ÞÑ fptq –
1 ´ xt

t

is decreasing. Hint: take for granted the inequality ey ą 1 ` y, @ y ‰ 0.

(2) Let 1 ă p ă 2 and let q be the conjugate of p. Use the previous item to prove
that

ppp ´ 1q

2kp2k ´ pq
´

p ´ 1

2k ´ p
xp2k´1qq´2k

`
p ´ 1

2k
x2kq´2k

ą 0, @ k ľ 1, @ 0 ă x ă 1. (2.29)

(3) Let 1 ă p ă 2 and let q be the conjugate of p. Prove the Clarkson inequality

p1 ` xq
p

` p1 ´ xq
p

ľ 2p1 ` xq
q
p´1, @ 0 ĺ x ĺ 1. (2.30)

Hints: (i) formula (1.74); (ii) the previous item.
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Problem 2.25. This problem echoes Problem 1.29, dealing with the “almost equal-
ity” case in (H). Let 1 ă p, q ă 8 be conjugate exponents. By symmetry, we
assume that p ľ 2. Let a1, . . . , an, b1 . . . , bn ą 0, α ľ 1, and assume that

1

α
ĺ

aj

bq´1
j

ĺ α, @ j. (2.31)

If α “ 1, then (1.4) and (2.31) yield

1

p

n
ÿ

j“1

apj `
1

q

n
ÿ

j“1

bqj “

n
ÿ

j“1

ajbj. (2.32)

On the other hand, (Y) shows that we always have “ľ” in (2.32). We quantify
below how much we deviate from (2.32) under the assumption (2.31). Let

fpaq –
1

a

ˆ

1

p
ap `

1

q

˙

, @ a ą 0.

(1) When p “ 2, prove that

max
1{αĺaĺα

fpaq “
1

2

ˆ

α `
1

α

˙

. (2.33)

(2) Derive the Diaz-Metcalf inequality

n
ÿ

j“1

a2j `

n
ÿ

j“1

b2j ĺ

ˆ

α `
1

α

˙ n
ÿ

j“1

ajbj if a1, . . . , bn ą 0 and
1

α
ĺ

aj
bj

ĺ α, @ j.

(3) When p ą 2, write a “ ex and set gpxq – fpaq “ fpexq, @x P R. Prove that
gpxq ą gp´xq, @x ą 0. Hint:

ey “ 1 `
y

1!
`

y2

2!
` ¨ ¨ ¨ , @ y P R.

(4) Derive the inequality

1

p

n
ÿ

j“1

apj `
1

q

n
ÿ

j“1

bqj ĺ
1

α

ˆ

1

p
αp

`
1

q

˙ n
ÿ

j“1

ajbj

if p ľ 2, a1, . . . , bn ą 0, and
1

α
ĺ

aj

bq´1
j

ĺ α, @ j.

(2.34)

(5) Equality cases in (2.34)?
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2.6 Optimisation

Problem 2.26.

(1) Let 0 ă x ă 1 and 1{2 ă α ă 1. Prove that

p1 ` xq
α

` p1 ´ xq
α

ą p1 ` xq
1´α

` p1 ´ xq
1´α. (2.35)

Hint: formula (1.74).

(2) Let 1 ă p ă 2. Prove that

pa ` bqp ĺ ap ` bp ` p2p ´ 2qpabqp{2, @ a, b ą 0. (2.36)

Hint: consider a constrained minimization problem.

(3) Prove that (2.36) improves both the following special case of (J)
ˆ

a ` b

2

˙p

ĺ
1

2
ap `

1

2
bp, @ a, b ą 0, (2.37)

and, for x sufficiently close to 0, the Clarkson inequality (2.30).

Hint: use the calculus inequality

p1 ` xq
α

ĺ 1 ` αx, @ 0 ă α ă 1, @x ľ ´1. (2.38)

Problem 2.27. Solve the system
#

2x ` 2y “ 3

x2 ` y2 “ 1
. (2.39)

Problem 2.28. Let n ľ 3. Prove that

n
ź

j“1

aj

n
ÿ

j“1

1

aj
ĺ

1

npn´3q{2

˜

n
ÿ

j“1

a2j

¸pn´1q{2

, @ a1, . . . , an ą 0. (2.40)

Hint: we have
ˆ

1 `
1

k

˙k

ă e “ 2.71828..., @ k ľ 1.

Problem 2.29. Broaden the perspective of (2.40). Rewrite (2.40) as

Mn
0 ĺ M´1M

n´1
2 , @ a1, . . . , an ą 0 (2.41)

(with notation as in (1.7)–(1.8)). “Embed” (2.41) into a family of inequalities in-
volving M0, M´r, and Ms, with r, s ą 0.
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Problem 2.30. To motivate this problem, we start from the inequality

?
a1a2 `

a

b1b2 ĺ
a

pa1 ` a2qpb1 ` b2q, @ a1, a2, b1, b2 ą 0, (2.42)

which can be easily proved by taking squares and using (AM-GM).

Given 0 ă p ă 8 and an integer n ľ 2, consider the following potential
generalization of (2.42).

˜

n
ź

j“1

aj

¸1{p

`

˜

n
ź

j“1

bj

¸1{p

ĺ

˜

n
ź

j“1

paj ` bjq

¸1{p

,

@ a1, . . . , an, b1 . . . , bn ą 0,

(2.43)

which, after setting aj “ xp
j , bj “ ypj , is equivalent to

˜

n
ź

j“1

xj `

n
ź

j“1

yj

¸p

ĺ

n
ź

j“1

`

xp
j ` ypj

˘

, @x1, . . . , xn, y1 . . . , yn ą 0. (2.44)

Prove that (2.44) (and thus (2.43)) holds iff p ĺ n. Hint: take for granted
the existence of a minimizer of a constrained minimization problem naturally
associated with (2.44).

When p “ n, (2.43) is known as the Huygens inequality.

2.7 Conditional inequalities

The common theme here is the study of inequalities valid for numbers satisfying
typical conditions such as being ordered, being side lengths of a triangle, etc. A
basic question will be: how to translate such assumptions into more tractable
ones?

Problem 2.31. Let I Ă R be an interval, f : I Ñ r0,8q be a monotonic function,
and a, b, c P I . Prove the Schur inequality

pa ´ bqpa ´ cqfpaq ` pb ´ cqpb ´ aqfpbq ` pc ´ aqpc ´ bqfpcq ľ 0. (2.45)

The following is a must-know property.

Problem 2.32. Let a, b, c ą 0. Prove that a, b, c are the side lengths of a triangle iff
there exist numbers u, v, w ą 0 such that

a “ u ` v, b “ v ` w, c “ w ` u. (2.46)
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Problem 2.33. If a, b, c are the side lengths of a triangle, then

a3 ` b3 ` c3 ľ apb ´ cq2 ` bpc ´ aq
2

` cpa ´ bq2 ` 3abc. (2.47)

Hint: Problems 2.32 and 2.4.

Though inequality (2.49) below looks quite simple, I do not know any “obvi-
ous” proof of it. The proof below is from Drimbe [5].

Problem 2.34. (1) If a, b, c are the side lengths of an acute triangle, prove that
`

a2 ` b2 ´ c2
˘`

b2 ` c2 ´ a2
˘

ĺ pa ` b ´ cq2pb ` c ´ aq
2. (2.48)

(2) If a, b, c ą 0, prove that
`

a2 ` b2 ´ c2
˘`

b2 ` c2 ´ a2
˘`

c2 ` a2 ´ b2
˘

ĺ pa ` b ´ cq2pb ` c ´ aq
2
pc ` a ´ bq2.

(2.49)

The following was already noticed in the proof of Theorem 1.3; see the solu-
tion of Problem 1.19.

Problem 2.35. A (finite or infinite) sequence a1, a2, a3, . . . , is non-decreasing iff
there exist non-negative numbers x2, . . . , such that a2 “ a1 ` x2, a3 “ a1 ` x2 `

x3, . . .

Problem 2.36. By definition, a (finite or infinite) sequence a1, a2, a3, . . . , is convex

iff aj ĺ
aj´1 ` aj`1

2
for each j ľ 2 for which this inequality makes sense.

Reformulate the convexity property in terms of non-negative numbers.

Problem 2.37. Prove the following analogue of Theorem 1.3.

Let n ľ 3 and σ, τ P Sn. Then the following are equivalent:

(1) For each convex lists a1, . . . , an and b1, . . . , bn, we have

Sσ –

n
ÿ

j“1

ajbσpjq ĺ Sτ –

n
ÿ

j“1

ajbτpjq. (2.50)

(2) We have σp1q “ τp1q, σ´1p1q “ τ´1p1q, and, for each 3 ĺ k, ℓ ĺ n,

Card tj ľ k; σpjq ľ ℓu ĺ Card tj ľ k; τpjq ľ ℓu. (2.51)

Problem 2.38. (1) Prove that

1

p1 ` aq2
`

1

p1 ` bq2
ľ

1

1 ` ab
, @ a, b ą 0. (2.52)

Case of equality?
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(2) If ab ľ
1

4
, improve the above inequality to

1

p1 ` aq2
`

1

p1 ` bq2
ľ

2

p1 `
?
abq2

. (2.53)

Case of equality?

Hint: work with S – a ` b and P – ab, and use the fact that these quantities
are not independent.

Problem 2.39. Prove that

a2 ` b2 ` c2 ´ ab ´ bc ´ ca ĺ a2b ` b2c ` c2a ´ 3abc, @ a, b, c ľ 1. (2.54)

Problem 2.40. If a, b, c, d are the side lengths of a quadrilateral, prove that

pa ` b ` c ´ dqp´a ` b ` c ` dqpa ´ b ` c ` dqpa ` b ´ c ` dq

ĺ pa ` bqpb ` cqpc ` dqpd ` aq.
(2.55)

Problem 2.41. If a, b, c, d ą 0 are such that 2a ą b, 2b ą c, 2c ą d, and 2d ą a,
prove that

p2a ´ bqp2b ´ cqp2c ´ dqp2d ´ aq ĺ abcd. (2.56)
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Chapter 3

More on inequalities

3.1 Magic squares

Definition 3.1. A square matrix P “ ppjkq1ĺj,kĺn is a permutation matrix iff on each
line and column, exactly one entry is 1, the other ones being 0.

Equivalently, there exists a permutation σ P Sn such that pjk “

#

1, if k “ σpjq

0, if k ‰ σpjq
.

The matrix is then denoted Pσ.

Theorem 3.1 (Birkhoff-von Neumann theorem). A matrix A is doubly stochastic
iff: there exist λσ P r0, 1s, @σ P Sn, such that

ř

σPSn
λσ “ 1 and A “

ř

σPSn
λσPσ.

Moreover, when n ľ 4 we may choose the coefficients λσ such that at most
n2 ` 1 of them are non-zero.

In other words, when n ľ 4, the magic squares of sum 1 are precisely the
(convex) combinations of at most n2 ` 1 permutation matrices.

Remark 3.1. Despite what its name suggests, this result was first obtained by
König [10].

Problems 3.1–3.4, leading to the constructive proof of the first part of Theorem
3.1 we propose below, are inspired by Hurlbert [8].

Problem 3.1. Prove that a matrix as in Theorem 3.1 is doubly stochastic.

Problem 3.2. (1) A DS matrix has at least n non-zero entries.

(2) A DS matrix with exactly n non-zero entries is a permutation matrix.
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Problem 3.3. Let A be a DS matrix. A cycle (of length 2ℓ) in A is a sequence of
mutually distinct entries aj1k1 , aj1k2 , aj2k2 , aj2k3 , . . . , ajℓk1 , all different of 0 and 1.
(Thus: the first two entries are on the same line, the second and the third on the
same column, the third and the fourth on the same line,..., the last one and the
first one on the same column.)

Prove that, if A is a DS matrix which is not a permutation matrix, then it
contains a cycle.

Problem 3.4. (1) Let A be a DS matrix which is not a permutation matrix, and
consider a cycle aj1k1 , aj1k2 , aj2k2 , aj2k3 , . . . , ajℓk1 as above. By replacing the
cycle with aj1k1 ´ α, aj1k2 ` α, aj2k2 ´ α, aj2k3 ` α, . . . , ajℓk1 ` α, respectively
aj1k1 ` β, aj1k2 ´ β, aj2k2 ` β, aj2k3 ´ β, . . . , ajℓk1 ´ β, for appropriate α, β ą 0,
write A “ p1 ´ tqB ` tC, where 0 ă t ă 1, where B, C are DS, and have more
zero entries than A.

(2) Prove Theorem 3.1 by backward induction on the number of zero entries of
A.

At this stage, we know that Theorem 3.1 holds, but in principle we need as
many scalars λσ as permutation matrices, i.e., n!. To reduce this number, we use
the following result.

Theorem 3.2 (Steinitz lemma). Let V be a vector space of dimension k. Let m ľ

k ` 1 and x1, . . . , xm P V . If x is a convex combination of x1, . . . , xm, then there
exist xj1 , . . . , xjk`1

such that x is a convex combination of xj1 , . . . , xjk`1
.

For example, a convex combination of ten points in the plane is a convex com-
bination of three of them.

Problem 3.5. Prove that the Steinitz lemma implies the second part of Theorem
3.1.

We next present a proof of the Steinitz lemma, relying only on the following
textbook fact. Given m ľ k ` 1 vectors in a vector space of dimension k, one of
them is a linear combination of the others.

Proof of Theorem 3.2. We prove that, if m ą k ` 1, one may select at most pm ´ 1q

points among x1, . . . , xm such that x still is a convex combination of the remaining
points.

By subtracting x1 from all the xj’s and from x, we may assume that x1 “ 0.
By the fact recalled above, one of the vectors x2, . . . , xm is a linear combination of
the remaining ones. With no loss of generality, we may assume that there exist
scalars µj such that

xm “

m´1
ÿ

j“2

µjxj. (3.1)
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On the other hand, by assumption we may write

x “

m
ÿ

j“1

λjxj, where λj ľ 0, @ j, and
m
ÿ

j“1

λj “ 1. (3.2)

We may assume that λj ą 0, @ j, for otherwise we may remove xj from the
convex combination.

For every t P R, we have (using (3.1), (3.2), and the assumption x1 “ 0)

x “

˜

λ1 ´

m´1
ÿ

j“2

tµj ` t

¸

x1 `

m´1
ÿ

j“2

pλj ` tµjqxj ` pλm ´ tqxm. (3.3)

We note that the coefficients were chosen such that their sum is 1.

Now comes the key argument. For small t ą 0, all the coefficients in (3.3) are
positive (since each λj is ą 0). On the other hand, for t ą λm the last coefficient is
negative. Therefore, the set

M – tt ą 0; all the coefficients in (3.3) are positiveu

is non-empty and bounded. If we take t – supA, it is routine that all the co-
efficients in (3.3) are ľ 0, and for at least one j the coefficient in front of xj

vanishes. Thus, for this t and j, (3.3) represents x as a convex combination of
x1, . . . , xj´1, xj`1, . . . , xm. QED

Finally, we propose an improvement of the second part of Theorem 3.1.

Problem 3.6. Prove that a DS matrix A can be written as A “
ř

σPSn
λσPσ, where

λσ P r0, 1s, @σ P Sn,
ř

σPSn
λσ “ 1, and at most pn ´ 1q

2
` 1 of the coefficients λσ

are non-zero. Hint: identify the set of DS matrices with a part of a vector space of
dimension pn ´ 1q

2.

3.2 Equal variables method

The method we explain in this section was devised by Cîrtoaje [3]. Since it leads
to a very large number of possible statements, we rather focus on the method and
the heuristics, and present only one statement and one application. Many others
can be found in [3] and the references therein.
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A typical problem to which the method applies is

maximize
n
ÿ

j“1

fpxjq, under the constraints

a ă xj ă b, @ j,
n
ÿ

j“1

gpxjq “ S,
n
ÿ

j“1

hpxjq “ T.

(3.4)

Here, n ľ 3, and f, g, h : pa, bq Ñ R are smooth functions. In order to simplify
the presentation, we consider the special case where h “ id, but the method can
be adapted to the case of a general h. From now, we thus consider the following
special case of (3.4)

maximize
n
ÿ

j“1

fpxjq, under the constraints

a ă xj ă b, @ j,
n
ÿ

j“1

gpxjq “ S,
n
ÿ

j“1

xj “ T.

(3.5)

Assume that X “ px1, . . . , xnq solves (3.5), and thus in particular that the set of
competitors in (3.5) is non-empty. With no loss of generality, we may assume that
x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn. The equal variables method consists of finding conditions on
f and g such that, at a maximum point in (3.5), we must have

x1 ĺ x2 “ ¨ ¨ ¨ “ xn. (3.6)

(As a variant, we may want to have x1 “ ¨ ¨ ¨ “ xn´1 ĺ xn.) When the method
can be successfully implemented, it thus reduces the study of an inequality for n
variables, x1, . . . , xn, to the study of one for two variables, x1 and x2.

The approach is by contradiction: we assume that (3.6) does not hold, and
obtain that X does not solve (3.5). Since (3.6) does not hold, there exists some j
such that xj ĺ xj`1 ă xj`2. Set

Y – pxj, xj`1, xj`2q, S – gpxjq ` gpxj`1q ` gpxj`2q, T – xj ` xj`1 ` xj`2.

Since X solves (3.5), we find that Y solves

maximize pfpxq ` fpyq ` fpzqq, under the constraints

a ă x, y, z ă b, gpxq ` gpyq ` gpzq “ S, x ` y ` z “ T .
(3.7)

Consider now the system
#

gpxq ` gpzq “ S ´ gpyq

x ` z “ T ´ y
. (3.8)
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When y “ xj`1, the system has the solution px, zq “ pxj, xj`2q, with x ĺ y ă z.
We will now impose a condition ensuring that, for y “close” to xj`1, the system
has a solution px, zq “close” to pxj, xj`2q. This relies on an advanced calculus
theorem (the inverse function theorem), about which the Wikipedia executive
summary [15] provides some insight. More specifically, we have the following
consequence of the inverse function theorem. Consider the system

#

Gpx, zq “ kpyq

Hpx, zq “ ℓpyq
,

where all the functions are smooth. If: (i) for y “ y, the system has a solution
px, zq; (ii) the determinant∣∣∣∣∣∣∣∣∣

BG

Bx
px, zq

BG

Bz
px, zq

BH

Bx
px, zq

BH

Bz
px, zq

∣∣∣∣∣∣∣∣∣ “
BG

Bx
px, zq ˆ

BH

Bz
px, zq ´

BG

Bz
px, zq ˆ

BH

Bx
px, zq

(known as “Jacobian determinant”) is different from 0, then: for y close to y, the
system has a smooth solution pxpyq, zpyqq such that xpyq “ x and zpyq “ z.

In the case of (3.8), the Jacobian determinant at is∣∣∣∣g1pxq g1pzq

1 1

∣∣∣∣ “ g1
pxq ´ g1

pzq,

and thus a natural condition on g in order to apply the above is to assume that
g1 is strictly monotonic. Since the discussion below depends on the monotonicity
of g1 and we want just to consider a single illustration of the method, we assume,
e.g., that

g1 is (strictly) decreasing (3.9)

(which, in particular, implies that g is strictly concave). Under this assumption,
the inverse function theorem applies (with y “ xj`1, kpxq “ S ´ gpxq, and ℓpxq “

T ´ x), and thus xpyq and zpyq as above exist.

Consider, for y close to xj`1, the quantity

F pyq – fpxpyqq ` fpyq ` fpzpyqq,

whose maximum is achieved when y “ xj`1 (since Y solves (3.7) and pxpyq, y, zpyqq

is a competitor in (3.7)).

In order to contradict this fact (and thus achieve the implementation of the
method), we will calculate F 1pyq and impose conditions ensuring that F does not
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have a maximum at y “ xj`1. For this purpose, we start from the system (3.8),
which yields

#

gpxpyqq ` gpzpyqq “ S ´ gpyq

xpyq ` zpyq “ T ´ x
,

and therefore we have
#

g1pxpyqqx1pyq ` g1pzpyqqz1pyq “ ´g1pyq

x1pyq ` z1pyq “ ´1
. (3.10)

When y is sufficiently close to xj`1, we have y ă zpyq and xpyq ă zpyq (since
xj`1 ă zpxj`1q “ xj`2 and xpxj`1q “ xj ă zpxj`1q “ xj`2). Thanks to (3.9), for
such y we thus have g1pxpyqq ą g1pzpyqq. Using this information, we may solve
(3.10) and find that

$

’

’

&

’

’

%

x1
pyq “ ´

g1pyq ´ g1pzpyqq

g1pxpyqq ´ g1pzpyqq
ă 0

z1
pyq “ ´

g1pxpyqq ´ g1pyq

g1pxpyqq ´ g1pzpyqq

. (3.11)

Therefore, we have (writing, for simplicity, x “ xpyq, z “ zpyq)

F 1
pyq “f 1

pxqx1
pyq ` f 1

pyq ` f 1
pzqz1

pyq

“f 1
pyq ´

g1pyq ´ g1pzq

g1pxq ´ g1pzq
f 1

pxq ´
g1pxq ´ g1pyq

g1pxq ´ g1pzq
f 1

pzq.
(3.12)

Using the above and (3.9), we find that F 1pyq and Kpxpyq, y, zpyqq have the
same sign, where

Kpx, y, zq – f 1
pyq ´

g1pyq ´ g1pzq

g1pxq ´ g1pzq
f 1

pxq ´
g1pxq ´ g1pyq

g1pxq ´ g1pzq
f 1

pzq. (3.13)

In turn, the expression of K has the flavor of the Jensen inequality. In order
to make this more obvious, we express K differently. By assumption (3.9), g1 :
pa, bq Ñ g1ppa, bqq is invertible. Set k – pg1q´1 and r – f 1 ˝ k. Let a ă x, y ă z ă b.
Then, with α – g1pxq, β – g1pyq, γ – g1pzq, we have α, β ą γ and

Kpx, y, zq “rpβq ´
β ´ γ

α ´ γ
rpαq ´

α ´ β

α ´ γ
rpγq

“r

ˆ

β ´ γ

α ´ γ
α `

α ´ β

α ´ γ
γ

˙

´
β ´ γ

α ´ γ
rpαq ´

α ´ β

α ´ γ
rpγq,

so that

F 1
pyq “ r

ˆ

β ´ γ

α ´ γ
α `

α ´ β

α ´ γ
γ

˙

´
β ´ γ

α ´ γ
rpαq ´

α ´ β

α ´ γ
rpγq. (3.14)
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(In (3.14), we have α “ αpyq “ g1pxpyqq, β “ βpyq “ g1pyq, γ “ γpyq “ g1pzpyqq, and
α, β ą γ.)

This suggests the following statement [3].

Theorem 3.3 (Equal variables theorem). Consider the maximization problem (3.5).
Assume that: (i) g1 is strictly decreasing; (ii) f 1 ˝ ppg1q´1q is strictly concave.

Let n ľ 3. If X “ px1, . . . , xnq, with x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn, solves (3.5), then
x1 ĺ x2 “ ¨ ¨ ¨ “ xn.

Proof. We use the same notation as above. If xj ă xj`1, then αpxj`1q ą βpxj`1q ą γpxj`1q.
Therefore, (3.14), the assumption (ii), and (J) imply that F 1pxj`1q ą 0, and this contradicts the
fact that F achieves its maximum at y “ xj`1.

Consider now the case where xj “ xj`1, and thus xpxj`1q “ xj`1 andαpxj`1q “ βpxj`1q.
By the first equation in (3.11), we have x1pxj`1q ă 0, and thus, for y ą xj`1 close to xj, we have
xpyq ă xpyj`1q “ xj`1 ă y and therefore αpyq ą βpyq. For such y, we have, arguing as above,
F 1pyq ą 0. This is again a contradiction. QED

Problem 3.7. Prove the following version of the equal variable theorem. Assume
that: (i’) g1 is strictly monotonic; (ii) f 1 ˝ ppg1q´1q is strictly concave.

Let n ľ 3. If X “ px1, . . . , xnq, with x1 ĺ x2 ĺ ¨ ¨ ¨ ĺ xn, solves (3.5), then
x1 ĺ x2 “ ¨ ¨ ¨ “ xn.

A very quick worked application.

Problem 3.8. Let n “ 3 or 4. Prove that
˜

n
ÿ

j“1

xj

¸n

ĺ pn ´ 1q
n´1

n
ÿ

j“1

xn
j ` n

`

nn´1
´ pn ´ 1q

n´1
˘

n
ź

j“1

xj,

@x1, . . . , xn ą 0.

(3.15)

Bonus. Prove that (3.15) still holds for n “ 5, 6, . . .

Proof. Step 1. Use of the equal variables method. Set yj – xnj , gpxq – lnx, and fpxq – x1{n.
Then (3.15) amounts to

«

yj ą 0, @ j,
n
ÿ

j“1

gpyjq “ S,
n
ÿ

j“1

yj “ T

ff

ñ

n
ÿ

j“1

fpyjq ĺ

´

pn ´ 1q
n´1T ` n

´

nn´1 ´ pn ´ 1q
n´1

¯

eS{n
¯1{n

.

(3.16)

Clearly, the assumptions of Theorem 3.3 are satisfied. Moreover, using the “a continuous
function on a compact set has a maximum point” argument, we see that, if the set of competi-
tors in (3.16) is non-empty, then the maximum of

řn
j“1 fpyjq is achieved. We find that, if Y “
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py1, . . . , ynq, with y1 ĺ y2 ĺ ¨ ¨ ¨ ĺ yn, maximizes
řn

j“1 fpyjq in (3.16), thenwe have y1 ĺ y2 “

¨ ¨ ¨ “ yn. Therefore, it suffices to check the validity of (3.16) when y1 ĺ y2 “ ¨ ¨ ¨ “ yn. Going
back to (3.15), we find that it suffices to check its validity when x1 ĺ x2 “ ¨ ¨ ¨ “ xn. Moreover,
with no loss of generality, we may assume, by a homogeneity argument, that xn “ 1.

Step 2. Proof of (3.15). We have reduced (3.15) to proving that

ppn ´ 1q ` xq
n

ĺ pn ´ 1q
n

` pn ´ 1q
n´1xn ` n

´

nn´1 ´ pn ´ 1q
n´1

¯

x,

@ 0 ă x ĺ 1.
(3.17)

When n “ 3, (3.17) amounts to xpx ´ 1q
2

ľ 0. On the other hand, when n “ 4, (3.17)
amounts to xp13x ` 20qpx ´ 1q

2
ľ 0.

Step 3. Hint for the bonus. By (J), we have

xj ĺ
j ´ 1

n ´ 1
xn `

n ´ j

n ´ 1
x, @ 1 ĺ j ĺ n.

Therefore, we have

ppn ´ 1q ` xq
n

ĺ pn ´ 1q
n

`

n
ÿ

j“1

ˆ

n

j

˙

pn ´ 1q
n´j

„

j ´ 1

n ´ 1
xn `

n ´ j

n ´ 1
x

ȷ

. (3.18)

To conclude, it suffices to check (using basing combinatorics) that the right-hand sides of
(3.17) and (3.18) coincide. QED

3.3 Refined means inequalities

The general theme of this section is the following: given r´1 ă r0 ă r1, “refine”
the (MI) inequality Mr0 ĺ Mr1 to an “optimal” inequality involving also Mr´1 . To
make this more concrete, we start with a very simple example.

Problem 3.9. (1) If x, y ą 0, prove that their means satisfy

G ĺ
1

2
A `

1

2
H. (3.19)

(2) Prove that (3.19) is “optimal”, in the sense that, if

G ĺ θA ` p1 ´ θqH, @x, y ą 0, (3.20)

then θ ľ
1

2
and (3.20) is a consequence of (3.19).
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Before proceeding further, let us note that, since

1

2
A `

1

2
H ĺ

1

2
A `

1

2
G,

(3.19) is indeed stronger than G ĺ A.

Compared to the general theme stated at the beginning of the section, in Prob-
lem 3.9 we have r´1 “ ´1, r0 “ 0, r1 “ 1, and the refinement of M0 ĺ M1 is (3.19),

which reads M0 ĺ
1

2
M´1 `

1

2
M1.

We already have at our disposal another result in the same vein, Problem 3.8,
since (3.15) can be rewritten as

Mn
1 ĺ θMn

n ` p1 ´ θqMn
0 , @x1, . . . , xn ą 0, with θ “

ˆ

n ´ 1

n

˙n´1

. (3.21)

Yet another example is provided by Problem 1.32: (1.85) can be rewritten as

M2
1 ĺ θM2

2 ` p1 ´ θqM2
0 , @x1, . . . , xn ą 0, with θ “

n ´ 1

n
. (3.22)

The next problem addresses the matter of the optimality of the two above
estimates.

Problem 3.10. Prove that (3.21) is optimal, in the sense that, if (3.21) holds for

some θ, then θ ľ

ˆ

n ´ 1

n

˙n´1

.

Same question for (3.22).

We next consider similar inequalities, and use calculus, as well as the equal
variables method from the previous section, to tackle them. As we will see, the
answers depend not only on the form of the inequality we are looking for, but
also on the relation between the rj’, n, and possibly another parameter, q. As a
warning: these are some of the very few instances where the optimal answer is
known. (Some others can be found in [11].) However, in general, the answer is
widely open. While one can usually prove the existence of an optimal θ, and even
to characterize the optimal θ as the maximal value of a numeric function (see the
solution to Problem 3.18), its precise value can be difficult to find.

In Problems 3.11–3.17, we let n “ 2. In this case, we denote x “ x1, y “ x2.
The case n ľ 3, which is more difficult, is more superficially tackled in Problems
3.18–3.22. To start with, a simple inequality.

Problem 3.11. If 0 ă r, q ă 8 and x, y ą 0, prove the inequality

M q
0 ĺ

1

2
M q

r `
1

2
M q

´r, (3.23)

and establish its optimality.
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Next, a more involved example.

Problem 3.12. If r ą 0 and x, y ą 0, prove the inequality

M r
0 ĺ

1

r ` 1
M r

r `
r

r ` 1
M r

´1 “
1

r ` 1
M r

r `

ˆ

1 ´
1

r ` 1

˙

M r
´1, (3.24)

and establish its optimality. Hints: (i) take x “ et, with t ą 0, and y “ 1{x; (ii) for
this choice, prove that the right-hand side of (3.24) increases with t; (iii) it may be
useful to use the textbook power series expansions

sinh s “
s1

1!
`

s3

3!
`

s5

5!
` ¨ ¨ ¨ , @ s P R, (3.25)

cosh s “
s0

0!
`

s2

2!
`

s4

4!
` ¨ ¨ ¨ , @ s P R. (3.26)

Problem 3.13. Let 0 ă r ĺ 1, q ą 0, and x, y ą 0. Prove the inequality

M q
0 ĺ

1

r ` 1
M q

r `
r

r ` 1
M q

´1, (3.27)

and establish its optimality. A possible strategy is the following. (1) Reduce the
problem to the case where x ą 1 and y “ 1{x. (2) Reduce the problem to a case
where q “ 0, and use calculus.

Bonus. Prove that the above result does not hold when r ą 1.

Here is a similar result.

Problem 3.14. Let 1 ă r ĺ 2, q ľ 1, and x, y ą 0. Prove the inequality

M q
0 ĺ

1

r ` 1
M q

r `
r

r ` 1
M q

´1, (3.28)

and establish its optimality. Hints: (i) reduce the problem to the case where x “

et ą 1, y “ e´t, and q “ 1; (ii) prove that sinhprtq ą r sinhptq when r ą 1 and t ą 0;
(iii) use the identity coshp2sq “ 2 cosh2 s ´ 1, combined with the fact that r ĺ 2.

Bonus. Prove that (3.28) does not hold for p “ 3 and q “ 1. Hint: let y “ 1{x and

express (3.28) in terms of z – x `
1

x
.

Next, a more tricky inequality.

Problem 3.15. Let 1 ĺ r ĺ 2 and x, y ą 0. Prove the inequality

M r
1 ĺ

1

2r´1
M r

r `
2r´1 ´ 1

2r´1
M r

0 “
1

2r´1
M r

r `

ˆ

1 ´
1

2r´1

˙

M r
0 , (3.29)

and establish its optimality.
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Proof. Step 1. Initial reductions. When r “ 1 or r “ 2, (3.29) becomes an identity. We may
therefore assume that 1 ă r ă 2. By homogeneity and symmetry, we may assume that x ľ y
and x`y “ 2. Writing x “ 1` t, 1 “ 1´ t, we have to prove that fptq ľ 2r, @ 0 ĺ t ĺ 1, where

fptq – p1 ` tqr ` p1 ´ tqr ` αP ptq, α – 2r ´ 2, P ptq –
`

1 ´ t2
˘r{2

.

Step 2. Heuristics. Since fp0q “ fp1q “ 2r, f cannot be monotonic. In order to conclude, one
option is to prove that f is strictly concave. (This, combinedwith the fact that fp0q “ fp1q, would
imply that fptq ą fp0q, @ 0 ă t ă 1, and allow us to conclude.) We will take a different route,
that we now explain. Since “a continuous function on a compact set has a maximum point and a
minimum point”, f achieves its minimum at some point t in r0, 1s. If t “ 0 or t “ 1, then we are
done. We will prove by contradiction that t cannot be in p0, 1q. For, otherwise, we have f 1ptq “ 0
andm – fptq ĺ fp0q “ 2r, i.e.,

$

&

%

rp1 ` tqr´1
´ rp1 ´ tqr´1

“ αrt
P ptq

1 ´ t2

p1 ` tqr ` p1 ´ tqr “ m ´ αP ptq
. (3.30)

Multiplying by
1 ´ t2

r
the first equality in (3.30) and treating the two equalities as a system

with the unknowns p1 ` tqr and p1 ´ tqr, we successively find
#

p1 ´ tqp1 ` tqr ´ p1 ` tqp1 ´ tqr “ αtP ptq

p1 ` tqr ` p1 ´ tqr “ m ´ αP ptq
,

$

’

&

’

%

p1 ` tqr “
mp1 ` tq ´ αP ptq

2

p1 ´ tqr “
mp1 ´ tq ´ αP ptq

2

,

p1 ` tqr ´ p1 ´ tqr “ mt ĺ 2rt.

In order to obtain a contradiction, it suffices to prove that gptq ą 0, @ 0 ă t ă 1, where

gptq – p1 ` tqr ´ p1 ´ tqr ´ 2rt.

Step 3. Conclusion. Since 1 ă r ă 2, we have

g2ptq “ rpr ´ 1q

”

p1 ` tqr´2
´ p1 ´ tqr´2

ı

ă 0, @ 0 ă t ă 1,

and thus g is strictly concave. Since gp0q “ gp1q “ 0, we find that gptq ą 0, @ 0 ă t ă 1.

Step 4. Optimality. Let θ be such that

M r
1 ĺ θM r

r ` p1 ´ θqM r
0 , @x, y ą 0. (3.31)

Testing (3.31)with x “ 2, y “ 0, we find that θ ľ 1{2r´1. QED

The above approach can be also successfully used when r ą 2.
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Problem 3.16. Let r ą 2 and x, y ą 0. Prove the inequality

M r
1 ĺ

1

r
M r

r `
r ´ 1

r
M r

0 “
1

r
M r

r `

ˆ

1 ´
1

r

˙

M r
0 , (3.32)

and establish its optimality.

An easy consequence of (3.29).

Problem 3.17. Let 1 ĺ r ĺ 2, 0 ă q ĺ r, and x, y ą 0. Prove the inequality

M q
1 ĺ

1

2q´q{r
M q

r `

ˆ

1 ´
1

2q´q{r

˙

M q
0 , (3.33)

and establish its optimality. Hint: Problem 2.2.

Remark 3.2. One may apply the method in Problem 3.17 to the case where r ą

2 (relying on Problem 3.16 instead of Problem 3.15), and obtain the following
counterpart of (3.33) with r ą 2 and 0 ă q ĺ r:

M q
1 ĺ

1

rq{r
M q

r `

ˆ

1 ´
1

rq{r

˙

M q
0 . (3.34)

However, in general, (3.34), though true, is not optimal. For example, when
q “ 1, one has the (optimal) inequality [11]

M q
1 ĺ

1

21´1{r
M q

r `

ˆ

1 ´
1

21´1{r

˙

M q
0 . (3.35)

Since 21´1{r ą r1{r when r ą 2 (this amounts to 2r ´2r ą 0 for r ą 2, which can
be easily proved by calculus), (3.35) is an improvement of (3.34). The optimality
of (3.35) can be proved as in Problem 3.17.

We next briefly illustrate the case where n ľ 3. Here, the equal variables
method explained in the previous section will play an important role.

Problem 3.18. Let n “ 3. Prove that the optimal constant θ in the inequality

M0 ĺ θM1 ` p1 ´ θqM´1 (3.36)

is given by

θ –
3

2
max
xą0

x2px ` 2q

px2 ` x ` 1q
2 . (3.37)

(Numerically, we have θ “ 0.5260499 . . .)
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Proof. Step 1. Use of the equal variablesmethod. Let gpxq – 1{x, fpxq – lnx. Then (3.36) reads

«

x1, x2, x3 ą 0,
3
ÿ

j“1

gpxjq “ S,
3
ÿ

j“1

xj “ T

ff

ñ

3
ÿ

j“1

fpxjq ĺ 3 ln

„

θT ` p1 ´ θq
3

S

ȷ

.

(3.38)

By Problem 3.7, (3.38) holds provided it holds when x1 ĺ x2 “ x3. Turning back to (3.36),
we find that it holds iff it holds when x1 ĺ x2 “ x3.

Step 2. Reduction to the study of a real function. Since, by homogeneity, we may further assume
thatM0 “ 1 (and then, with x – x2, we have x1 “ 1{x2 and x2 “ x3 “ x), we find that (3.36)
holds iff

1 ĺ θM1 ` p1 ´ θqM´1 “ θ
1{x2 ` 2x

3
` p1 ´ θq

3

x2 ` 2{x
, @x ą 0. (3.39)

Since (3.39) clearly holds when x “ 1, we may assume that x ‰ 1, and then (3.39) is equiva-
lent to

θ ľ
1 ´ M´1

M1 ´ M´1
“

3x2
`

x3 ´ 3x ` 2
˘

p2x3 ` 1qp2 ` x3q ´ 9x3
, @x ą 0, x ‰ 1.

Using the fact that, for x ą 0, x ‰ 1, we have (by intimidation and after simplification with
px ´ 1q

2)

3x2
`

x3 ´ 3x ` 2
˘

p2x3 ` 1qp2 ` x3q ´ 9x3
“

3

2

x2px ` 2q

px2 ` x ` 1q
2 ,

we find that the smallest θ satisfying (3.36) is indeed given by (3.37). Numerically, one finds that
equality in (3.36) is obtained for x0 “ 1.3614687 . . ., with θ “ 0.5260499 . . .

Note that there exists an explicit formula for θ. Indeed, setting

fpxq –
x2px ` 2q

px2 ` x ` 1q
2 ,

the equation f 1pxq “ 0 amounts to a fourth order equation that it it possible to solve explicitly.
This gives first the value of x0, then the optimal θ. QED

Now comes the final bouquet of this section: a result that encompasses Prob-
lem 3.8 and Problem 1.32. We consider here only the case where n ľ 3. However,
since the case where n “ 2 was treated in Problem 3.15, the result below still
holds when n “ 2.
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Problem 3.19. Let n ľ 3 and 1 ă r ĺ n. Prove the inequality

M r
1 ĺ θM r

r ` p1 ´ θqM r
0 , with θ “

ˆ

n ´ 1

n

˙r´1

, (3.40)

and establish its optimality.

Proof. Step 1. Use of the equal variables method. Arguing as in Step 1 in Problem 3.8 (with, this
time, yj – xrj , gptq – ln t, and fpxq – x1{r), we see that it suffices to prove (3.40) when
x1 ĺ x2 “ ¨ ¨ ¨ “ xn.

Step 2. Further reductions. By homogeneity, we may assume that
ř

xj “ n, and then, by Step 1,
it suffices to prove that (3.40) holds when

x1 “ 1 ´ pn ´ 1qx, x2 “ ¨ ¨ ¨ “ xn “ 1 ` x, with 0 ĺ x ĺ
1

n ´ 1
. (3.41)

Step 3. Strategy of the proof. Let us denoteMtpxq the value ofMt for xj as in (3.41). We have to
prove that

F pxq – θM r
r pxq ` p1 ´ θqM r

0 pxq ľ 1, @ 0 ĺ x ĺ
1

n ´ 1
. (3.42)

Since (3.42)holdswhenx “ 0 (for any θ) andwhenx “
1

n ´ 1
(for this special θ), it suffices to

prove that (3.42) holds when 0 ă x ă
1

n ´ 1
. Assume by contradiction that this is not the case.

Since “a continuous function on a compact set has a maximum point and a minimum point”,

there exists thus some 0 ă x ă
1

n ´ 1
such that F pxq ă 1 and F 1pxq “ 0. We will obtain a

contradiction by proving that

„

0 ă x ă
1

n ´ 1
, F 1pxq “ 0

ȷ

ùñ rm – F pxq ą 1s (3.43)

(which is stronger than needed for a contradiction, sincem ľ 1would suffice for that purpose).

Step 4. A convenient formula for F 1pxq. We have, slightly by intimidation,

rM r
r s

1
pxq “r

n ´ 1

n

”

p1 ` xq
r´1

´ p1 ´ pn ´ 1qxq
r´1

ı

“r
n ´ 1

n

p1 ´ pn ´ 1qxqp1 ` xq
r

´ p1 ` xqp1 ´ pn ´ 1qxq
r

p1 ` xqp1 ´ pn ´ 1qxq

“r
n ´ 1

n

"

p1 ` xq
r

´ p1 ´ pn ´ 1qxq
r

p1 ` xqp1 ´ pn ´ 1qxq
´

nM r
r pxq

p1 ` xqp1 ´ pn ´ 1qxq

*

“r
n ´ 1

n

p1 ` xq
r

´ p1 ´ pn ´ 1qxq
r

p1 ` xqp1 ´ pn ´ 1qxq
´ rpn ´ 1qx

M r
r pxq

p1 ` xqp1 ´ pn ´ 1qxq
.
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On the other hand, we have

rM r
0 s

1
pxq “r

n ´ 1

n
p1 ` xq

rpn´1q{n´1
p1 ´ pn ´ 1qxq

r{n

´ r
n ´ 1

n
p1 ` xq

rpn´1q{n
p1 ´ pn ´ 1qxq

r{n´1

“r
n ´ 1

n
M r

0 pxq

„

1

1 ` x
´

1

1 ´ pn ´ 1qx

ȷ

“ ´ rpn ´ 1qx
M r

0 pxq

p1 ` xqp1 ´ pn ´ 1qxq
.

Substituting these formulas into theexpressionofF 1pxqwefindthat, at apointwhereF 1pxq “

0, we have

θ
1

n
rp1 ` xq

r
´ p1 ´ pn ´ 1qxq

r
s “ θxM r

r pxq ` p1 ´ θqxM r
0 pxq “ mx.

(withm “ F pxq). This is equivalent to

p1 ` xq
r

´ p1 ´ pn ´ 1qxq
r

“nθxM r
r pxq ` np1 ´ θqxM r

0 pxq

“
nm

θ
x “

nr

pn ´ 1q
r´1mx.

Since we want to prove thatm ą 1, it suffices to prove that

Gpxq – p1 ` xq
r

´ p1 ´ pn ´ 1qxq
r

´
nr

pn ´ 1q
r´1x ą 0, @ 0 ă x ă

1

n ´ 1
. (3.44)

Step 5. Proof of (3.44)when 1 ă r ĺ 2. We have (using the facts that n ´ 1 ą 1 and r ´ 2 ĺ 0)

G2pxq “ rpr ´ 1q

”

p1 ` xq
r´2

´ pn ´ 1q
2
p1 ´ pn ´ 1qxq

r´2
ı

ă 0, @ 0 ă x ă
1

n ´ 1
,

and thusG is strictly concave. SinceGp0q “ Gp1{pn ´ 1qq “ 0, we find that (3.44) holds.

Step 6. Proof of (3.44)when 2 ă r ĺ n. We have

G3pxq “ rpr ´ 1qpr ´ 2q

”

p1 ` xq
r´3

` pn ´ 1q
3
p1 ´ pn ´ 1qxq

r´3
ı

ą 0,

@ 0 ă x ă
1

n ´ 1
.

Since, on the other hand,G2p0q ă 0 (here, we use n ľ 3) andG2p1{pn ´ 1qq ą 0, we find

that there exists some 0 ă a ă
1

n ´ 1
such that

G2pxq ă 0 if 0 ĺ x ă a and G2pxq ą 0 if a ă x ĺ
1

n ´ 1
. (3.45)

Now comes the key point: since r ĺ n (assumption that was not used up to now), we have

G1p1{pn ´ 1qq “ r

ˆ

n

n ´ 1

˙r´1

´
nr

pn ´ 1q
r´1 “ pr ´ nq

ˆ

n

n ´ 1

˙r´1

ĺ 0. (3.46)
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From (3.45) and (3.46), we find thatG is (strictly) decreasing on ra, 1{pn ´ 1qs. Since (by our
choice of θ)Gp1{pn ´ 1qq “ 0, we find thatGpxq ą 0, @ a ĺ x ă 1{pn ´ 1q. Finally, since: (i)
G is strictly concave on r0, as; (ii)Gp0q “ 0; (iii)Gpaq ą 0, we obtain, from (J), thatGpxq ą 0,
@ 0 ă x ĺ a.

Step 7. The optimality of θ is obtained by taking x1 “ ε ą 0, x2 “ ¨ ¨ ¨ “ xn “ 1 and letting
ε Ñ 0. QED

Problem 3.20. Prove that (3.40) does not hold when r ą n. Hint: test (3.40) with
x1 Ñ 0 and x2 “ ¨ ¨ ¨ “ xn “ 1.

Problem 3.21. Let n ľ 3, 1 ă r ĺ n, and 0 ă q ĺ r. Prove the inequality

M q
1 ĺ

ˆ

n ´ 1

n

˙q´q{r

M q
r `

˜

1 ´

ˆ

n ´ 1

n

˙q´q{r
¸

M q
0 , (3.47)

and establish its optimality. Hint: Problem 3.17.

We end this section with an application of some of the above inequalities. The
following function

Npxq – x lnx, @x ą 0,

is used in information theory and is known as the (negative) Shannon entropy.
For an executive summary concerning the entropy ´N , see Wikipedia [13]. It is
easy to see that N is convex. Therefore, (GJ) with λj “ 1{n, @ j, yields

n
ÿ

j“1

xj lnxj ľ

n
ÿ

j“1

xj ln

˜

n
ÿ

k“1

xk{n

¸

“

n
ÿ

j“1

xj

˜

ln

˜

n
ÿ

k“1

xk

¸

´ lnn

¸

,

@x1, . . . , xn ą 0.

(3.48)

We have the following improvement of (3.48).

Problem 3.22. Prove that

n
ÿ

j“1

xj lnxj ľ

n
ÿ

j“1

xj

˜

ln

˜

n
ÿ

k“1

xk

¸

´ lnn

¸

` npM1 ´ M0q ln

ˆ

n

n ´ 1

˙

, @x1, . . . , xn ą 0.

(3.49)

Hints: (i) start from (3.33) or (3.47) with q “ 1; (ii) what happens when r “ 1?
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3.4 The Farkas lemma

Assume that x, y P R satisfy
#

x ` y ĺ 0

2x ´ 3y ĺ 0
. (3.50)

What inferences can one derive starting from (3.50)? For example, that

4x ´ y “ 2px ` yq ` p2x ´ 3yq ĺ 0,

or any other inequality obtained as a linear combination with non-negative coef-
ficients of the two lines in (3.50). Anything else? The answer is negative, for (3.50)
and for any general system of the form (3.50). This is the content of the Farkas
lemma [7].

Theorem 3.4 (Farkas lemma). Let n ľ 1 and m ľ 1. Consider m ` 1 linear
inequalities, ℓjpxq ĺ 0, j “ 1, . . . ,m, ℓpxq ĺ 0, where x “ px1, . . . , xnq P Rn and,
with aj “ paj1, . . . , a

j
nq, a “ pa1, . . . , anq P Rnzt0u,

ℓjpxq – aj ¨ x “

n
ÿ

k“1

ajkxk, ℓpxq – a ¨ x “

n
ÿ

k“1

akxk, @x P Rn, @ 1 ĺ j ĺ m.

If

@x P Rn, rℓjpxq ĺ 0, @ 1 ĺ j ĺ ms ñ ℓpxq ĺ 0, (3.51)

then there exist non-negative scalars λ1, . . . , λm such that

α “

m
ÿ

j“1

λjα
j. (3.52)

(Equivalently, ℓ “
řm

j“1 λjℓj .)

The proof below is due to Bartl [1].

Proof. The proof is by induction onm.

Step 1. Proof whenm “ 1. Write α “ λ1α1 ` ξ, with λ1 P R and ξ K α1. Testing (3.51) with
x – ξ, we find that ξ ¨ ξ ĺ 0, and thus ξ “ 0. Testing next (3.51) with x – ´ξ, we find that
λ1 ľ 0.

Step 2.The induction process. Assume that the result holds form ´ 1. Then one of the two holds:
(i) the implication

@x P Rn, rℓjpxq ĺ 0, @ 1 ĺ j ĺ m ´ 1s ñ ℓpxq ĺ 0 (3.53)
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holds true. In this case, by the induction assumption, there exist λj ľ 0, 1 ĺ j ĺ m ´ 1, such
thatα “

řm´1
j“1 λjα

j “
řm

j“1 λjα
j, where we have setλm “ 0. In this case, we are done. (ii)The

implication (3.53) does not hold, and thus

D z P Rn such that ℓjpzq ĺ 0, @ j “ 1, . . . ,m ´ 1, ℓpzq ą 0. (3.54)

By assumption (3.51), in this case we also have

ℓmpzq ą 0. (3.55)

By replacing z with
1

ℓmpzq
z, we may assume that ℓmpzq “ 1.

Step 3.The reduction step. Let

φpyq – y ´ ℓmpyq z, @ y P Rn, (3.56)

so that ℓm ˝ φ “ 0. From this and (3.51) (with x – φpyq), it follows that

@ y P Rn, rℓj ˝ φpyq ĺ 0, j “ 1, . . . ,m ´ 1s

ñ rℓj ˝ φpyq ĺ 0, j “ 1, . . . ,ms ñ ℓ ˝ φpyq ĺ 0.
(3.57)

From (3.57) and the induction assumption, there exist λ1, . . . , λm´1 ľ 0 such that

ℓ ˝ φ “ λ1 ℓ1 ˝ φ ` ¨ ¨ ¨ ` λm´1 ℓm´1 ˝ φ. (3.58)

Inserting (3.56) in (3.58), andusing (3.54),wefind thatλ “
řm

j“1 λjℓj,whereλ1, . . . , λm´1 ľ

0 are as in (3.58) and

λm :“ ℓpzq ´ λ1ℓ1pzq ´ ¨ ¨ ¨ ´ λm´1ℓ´1pzq ą 0. QED
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Chapter 4

Problems on inequalities

Overview. A selected list of inequalities that I find funny or relevant. Many of
them are taken from the book of Drimbe [5], but the perspective is often different.
Some are very easy. Like in real life, no hint this time.

Problem 4.1. Let n ľ 3. Then
x1

x1 ` x2

`
x2

x2 ` x3

` ¨ ¨ ¨ `
xn

xn ` x1

ă n ´ 1, (4.1)

and the constant n ´ 1 is optimal.

Problem 4.2. Prove the (AM-GM) inequality, including the equality case, by es-
tablishing the inequality

a1 ` ¨ ¨ ¨ ` an
n

´ n
?
a1 ¨ ¨ ¨ an ľ

2

n2pn ´ 1q

ÿ

1ĺjăkĺn

`?
aj ´

?
ak
˘2

,

@n ľ 2, @ a1, . . . , an ą 0.

(4.2)

Problem 4.3. If 0 ă a1, . . . , an ă T and a1 ` ¨ ¨ ¨ ` an “ S, then
n
ÿ

j“1

aj
T ´ aj

ľ
nS

nT ´ S
. (4.3)

Problem 4.4. If 0 ă c ă a and 0 ă c ă b, prove that
a

cpa ´ cq `
a

cpb ´ cq ĺ
?
ab. (4.4)

Problem 4.5. We have

aα

bα
`

bα

cα
`

cα

aα
ľ

a

c
`

b

a
`

c

b
, @ a, b, c ą 0, @α ľ 2. (4.5)

Problem 4.6. Given r, s ą 0 and 0 ă α ĺ β, find

max
␣

ar`s
` br`s

` cr`s
´ arbs ´ brcs ´ cras; α ĺ a, b, c ĺ β

(

. (4.6)
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Problem 4.7. Prove that

1

p4x ` yq
2 `

1

p4y ` zq
2 `

1

p4z ` xq
2

ľ
1

p2x ` 2y ` zq
2 `

1

p2y ` 2z ` xq
2 `

1

p2z ` 2x ` yq
2 , @x, y, z ą 0.

(4.7)

Problem 4.8. Prove that

a3

a2 ` ab ` b2
`

b3

b2 ` bc ` c2
`

c3

c2 ` ca ` a2
ľ

a ` b ` c

3
, @ a, b, c ą 0. (4.8)

Problem 4.9. If r ą 0, a, b ą 0, and a ‰ b, prove that
`

a2r`1
` b2r`1

˘

ą arbrpa ` bq.

Problem 4.10. Improve the conclusion of Problem 2.33 to

a3 ` b3 ` c3 ľ apb ´ cq2 ` bpc ´ aq
2

` cpa ´ bq2 ` 3abc, @ a, b, c ą 0. (4.9)

The next problem is from Kvant.

Problem 4.11. Prove that

a4 ` b4 ` c4 ` d4 ` 2abcd

ľ a2b2 ` a2c2 ` a2d2 ` b2c2 ` b2d2 ` c2d2, @ a, b, c, d ľ 0.
(4.10)

Problem 4.12. Prove that

a

1 ` bc
`

b

1 ` ca
`

c

1 ` ab
ĺ 2, @ 0 ĺ a, b, c ĺ 1. (4.11)

Problem 4.13. Prove that
ˆ

a1 `
1

a2

˙ˆ

a2 `
1

a3

˙

¨ ¨ ¨

ˆ

an `
1

a1

˙

ĺ

ˆ

a1 `
1

a1

˙ˆ

a2 `
1

a2

˙

¨ ¨ ¨

ˆ

an `
1

an

˙

, @ a1, . . . , an ą 0.

(4.12)

Problem 4.14. Prove that, for n ľ 2, and 0 ă a1, a2, . . . , an ă 1, we have

p1 ´ a1a2 ¨ ¨ ¨ anq
n

ľ p1 ´ an1 qp1 ´ an2 q ¨ ¨ ¨ p1 ´ annq. (4.13)

Problem 4.15. Let α ľ 1. Find

max

"

pa ` bqpb ` cqpc ` aq

abc
;
1

α
ĺ a, b, c ĺ α

*

. (4.14)
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Problem 4.16. Let k ľ 1, n ľ 3 be integers. Prove that

n´1
ÿ

j“1

xj ´ xj`1

xk
j ` xk´1

j xj`1 ` ¨ ¨ ¨ ` xjx
k´1
j`1 ` xk

j`1

ľ
x1 ´ xn

xk
1 ` xk´1

1 xn ` ¨ ¨ ¨ ` x1xk´1
n ` xk

n

, @x1 ľ x2 ľ ¨ ¨ ¨ ľ xn ą 0

(4.15)

(with the convention xn`1 “ x1).

Problem 4.17. Let k ľ 1, n ľ 3 be integers. Prove that

n´1
ÿ

j“1

xk`1
j

xk
j ` xk´1

j xj`1 ` ¨ ¨ ¨ ` xjx
k´1
j`1 ` xk

j`1

ľ
1

k ` 1

n
ÿ

j“1

xj, @x1, x2, . . . , xn ą 0

(4.16)

(with the convention xn`1 “ x1).

Problem 4.18. If α ą 1, prove that

1

aα ` bα ` 2α ´ 2
`

1

bα ` cα ` 2α ´ 2
`

1

cα ` aα ` 2α ´ 2

ĺ
1

2α

ˆ

1

a
`

1

b
`

1

c

˙

, @ a, b, c ą 0.
(4.17)

Problem 4.19. If a1 ľ a2 ľ ¨ ¨ ¨ ľ an ľ 0, b1 ľ 0, b1 ` b2 ľ 0, . . . , b1 ` ¨ ¨ ¨ ` bn ľ 0,
prove that a1b1 ` ¨ ¨ ¨ ` anbn ľ 0.

61





Chapter 5

Solutions

5.1 Basic methods and inequalities

Problem 1.2. Taking squares of the both sides of (M) (with p “ 2), we see that (M) is
equivalent to

n
ÿ

j“1

ajbj ĺ

˜

n
ÿ

j“1

a2j

¸1{2˜ n
ÿ

j“1

b2j

¸1{2

, (5.1)

which follows from (CS). Conversely, if (5.1) holds, replacing, in (5.1), bj with ´bj , @ j,
we obtain

´

n
ÿ

j“1

ajbj ĺ

˜

n
ÿ

j“1

a2j

¸1{2˜ n
ÿ

j“1

b2j

¸1{2

. (5.2)

We obtain (CS) from (5.1) and (5.2). QED

Problem 1.3. We prove, e.g., item (2), the other ones being similar. Set S –
řn

j“1 |aj |
p,

respectively T –
řn

j“1 |bj |
q. If S “ 0, then aj “ 0, @ j, and (H) is clear. Similarly if T “ 0.

We may therefore assume that S ą 0 and T ą 0. Set a1
j –

aj

S1{p
and b1

j –
bj

T 1{q
. Then

řn
j“1

ˇ

ˇ

ˇ
a1
j

ˇ

ˇ

ˇ

p
“ 1 and

řn
j“1

ˇ

ˇ

ˇ
b1
j

ˇ

ˇ

ˇ

q
“ 1. By assumption, we have

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

a1
jb

1
j

ˇ

ˇ

ˇ

ˇ

ˇ

ĺ 1,

which implies (H). QED

Problem 1.4. When n “ 2, we have to prove that x1 ` x2 ľ 2
?
x1x2, which amounts to

p
?
x1 ´

?
x2q

2
ľ 0. Thus (AM-GM) holds when n “ 2, with equality iff x1 “ x2.
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Assuming (AM-GM) for n “ 2k, the case n “ 2k`1 (including the equality case)
follows from

2k`1
ÿ

j“1

xj “

2k
ÿ

j“1

xj `

2k`1
ÿ

j“2k`1

xj ľ 2k
2k
ź

j“1

x
1{2k

j ` 2k
2k`1
ź

j“2k`1

x
1{2k

j ľ 2k`1
2k`1
ź

j“1

x
1{2k`1

j ,

where the last inequality relies on the case n “ 2.

Finally, let n and k be integers such that 2k ą n. Applying (AM-GM) to the 2k num-
bers x1, . . . , xn, G,G, . . . , G

looooomooooon

2k´n

(with G “ Gpx1, . . . , xnq), we find that (with A “ Apx1, . . . , xnq)

nA ` p2k ´ nqG ľ 2kGn{2kGp2k´nq{2k “ 2kG,

with equality iff x1 “ ¨ ¨ ¨ “ xn “ G. This yields (AM-GM) for n, including the equality
case. QED

Problem 1.5. The case n “ 2 is treated as above. Assume that the inequality holds for n.
By homogeneity, we may assume that x1 ¨ ¨ ¨xnxn`1 “ 1. By the induction assumption,
we have

x1 ` x2 ` ¨ ¨ ¨ ` xn´1 ` xnxn`1 ľ n,

and thus

x1 ` x2 ` ¨ ¨ ¨ ` xn´1 ` xn ` xn`1 ľ n ´ xnxn`1 ` xn ` xn`1.

Therefore, it suffices to prove that

n ´ xnxn`1 ` xn ` xn`1 ľ n ` 1,

which amounts to p1´xnqp1´xn`1q ĺ 0. Now comes the key argument. Since x1 ¨ ¨ ¨xnxn`1 “

1, there exist i ‰ j such that xi ĺ 1 and xj ľ 1. By symmetry of (AM-GM), we may as-
sume that i “ n and j “ n ` 1, and then we are done. QED

Problem 1.6. When n “ 2, we have to prove that

pa1b1 ` a2b2q2 ĺ pa21 ` a22qpb21 ` b22q,

which amounts to pa1b2 ´ a2b1q2 ľ 0.

Assume that (CS) holds for n, and write it in the condensed form U2 ĺ ST . We have
to prove that

pU ` an`1bn`1q2 ĺ pS ` a2n`1qpT ` b2n`1q,

which is equivalent to

V – ST ` Sa2n`1 ` Tb2n`1 ´ U2 ´ 2Uan`1bn`1 ľ 0. (5.3)
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By the induction assumption, we have

Uan`1bn`1 ĺ |U ||an`1||bn`1| ĺ
?
ST |an`1||bn`1|,

and therefore the quantity V defined in (5.3) satisfies

V ľST ` Sa2n`1 ` Tb2n`1 ´ U2 ´ 2
?
ST |an`1||bn`1|

“ST ´ U2 `

´?
S|an`1| ´

?
T |bn`1|

¯2
ľ ST ´ U2 ľ 0,

where we have used again the induction assumption U2 ĺ ST . QED

Problem 1.7. (1) The case n “ 2 is (J) with t – λ1. Assume that (GJ) holds for some
n ľ 2 and consider x1, . . . , xn`1, λ1, . . . , λn`1 that satisfy the conditions of the statement.
If λj “ 0 for some j, then we are back the case n and we are done. Otherwise, set
µ – λn ` λn`1, and

x –
λn

µ
xn `

λn`1

µ
xn`1 P I.

By (J), we have

fpxq ĺ
λn

µ
fpxnq `

λn`1

µ
fpxn`1q. (5.4)

Using first (GJ) for x1, . . . , xn´1, x and λ1, . . . , λn´1, µ, then (5.4), we find that

f

˜

n`1
ÿ

j“1

λjxj

¸

“f

˜

n´1
ÿ

j“1

λjxj ` µx

¸

ĺ

n´1
ÿ

j“1

λj fpxjq ` µ fpxq

ĺ

n´1
ÿ

j“1

λj fpxjq ` µ

ˆ

λn

µ
fpxnq `

λn`1

µ
fpxn`1q

˙

“

n`1
ÿ

j“1

λj fpxjq.

(5.5)

(2) The proof is again by induction. The case n “ 2 follows from the definition of the strict
convexity. Assume that the conclusion holds for n. Equality in (GJ) amounts to equality
between the first and the last term in (5.5), so that, in (5.5), the inequalities are equalities.
This requires (by the induction assumption and the case n “ 2) that x1 “ . . . “ xn´1 “ x
and xn “ xn`1 “ x, whence the conclusion. QED

Problem 1.8. Write xj “ eyj , with yj P R. Let fpxq – ex. Then (AM-GM) can be rewrit-
ten as

n
ÿ

j“1

1

n
fpyjq ĺ f

˜

n
ÿ

j“1

1

n
yj

¸

, (5.6)

which is a special case of (GJ) for the convex function f . In addition, f being strictly
convex, equality in (5.6) (and thus in (AM-GM)) occurs iff y1 “ ¨ ¨ ¨ “ yn, and thus iff
x1 “ ¨ ¨ ¨ “ xn. QED
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Problem 1.9. (1) If bj “ 0, @ j, then (H) holds, with equality. On the other hand, if only
one bj is non-zero, then (H) holds, with equality iff ai “ 0 if i ‰ j.

We now investigate the remaining cases. We may assume, with no loss of generality,
that there exists some 1 ĺ m ĺ n such that bj ‰ 0 if j ĺ m, while bj “ 0 if m ` 1 ă j ĺ n.
Let, as in the solution of Problem 1.3,

T –

n
ÿ

j“1

|bj |
q

“

m
ÿ

j“1

|bj |
q.

Set, for 1 ĺ j ĺ m, λj –
|bj |

q

T
, so that 0 ă λj ă 1 and

řm
j“1 λj “ 1. Set fpxq –

|x|
p. Raising (H) to the power p and using the identity p{q “ p ´ 1, we find that (H) is

equivalent to

f

˜

m
ÿ

j“1

ajbj

¸

ĺ T p´1
n
ÿ

j“1

fpajq. (5.7)

Given our choice of λj , and in order to write (5.7) as a special case of (GJ), we let

xj –
Tajbj
|bj |

q , @ 1 ĺ j ĺ m, (5.8)

so that ajbj “ λjxj and (5.7) becomes

f

˜

m
ÿ

j“1

λjxj

¸

ĺ T p´1
m
ÿ

j“1

fpajq ` T p´1
n
ÿ

j“m`1

fpajq. (5.9)

Using the identity pq “ p ` q, we see that the specific f we consider satisfies, for
1 ĺ j ĺ m,

T p´1fpajq “ λjfpxjq,

and thus (5.9) is equivalent to

f

˜

m
ÿ

j“1

λjxj

¸

ĺ

m
ÿ

j“1

λjfpxjq ` T p´1
n
ÿ

j“m`1

fpajq. (5.10)

By (GJ), the strict convexity of f , and the fact that fpxq ľ 0 with equality iff x “ 0,
we find that (5.10) (and thus (H)) holds. Moreover, in this case we have equality iff
x1 “ ¨ ¨ ¨ “ xm and aj “ 0 if j ą m.

(2) Assume first that (1.5) holds. This is equivalent to one the two following: (i) bj “ 0,
@ j, or (ii) there exists some constant t P R such that aj “ t sgn bj |bj |

q´1, @ j. Clearly, if (i)
holds, then we have equality in (H). If (ii) holds, then (H) becomes

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

t|bj |
q

ˇ

ˇ

ˇ

ˇ

ˇ

ĺ

˜

n
ÿ

j“1

|t|p|bj |
ppq´1q

¸1{p˜ n
ÿ

j“1

|bj |
q

¸1{q

. (5.11)
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Using the identities ppq ´ 1q “ q and 1{p ` 1{q “ 1, we find that (5.11) holds with
equality. In conclusion, if (1.5) holds, then equality holds in (H).

Conversely, by the analysis of item (1), equality occurs iff: (i) bj “ 0, @ j; or (ii) there
exists one j such that bj ‰ 0 and, for i ‰ j, ai “ 0 and bi “ 0; or (iii) up to a permutation
of indices, there exists 1 ĺ m ĺ n such that x1 “ ¨ ¨ ¨ “ xm (with xj as in (5.8)), aj “ 0,
and bj “ 0 if j ą m. Clearly, (1.5) holds in cases (i) and (ii). Assume next that (iii) holds.
Set C – x1. Then xj “ C, @ 1 ĺ j ĺ m, which is equivalent to

aj “
C|bj |

q

Tbj
“

C

T
sgn bj |bj |

q´1, @ 1 ĺ j ĺ m. (5.12)

Since, clearly, (5.12) still holds when j ą m, we find that (1.5) is valid. QED

Problem 1.10. (1) Since

M´rpx1, x2, . . . , xnq “
1

Mrp1{x1, 1{x2, . . . , 1{xnq
, (5.13)

if (MI) holds for every non-negative r1 and r2, then it holds for any r1 and r2. To see this,
take, for example, r1 ă 0 and r2 ą 0. By (MI) and (5.13), Mr1 ĺ M0 ĺ Mr2 , with equality
iff x1 “ x2 “ ¨ ¨ ¨ “ xn. The other cases are treated similarly.

(2) In this case, (MI) raised to the r2 power is nothing but (AM-GM) applied to the
numbers xr21 , xr22 , . . . , xr2n . Equality holds iff xr21 “ xr22 “ ¨ ¨ ¨ “ xr2n , which amounts to
x1 “ x2 “ ¨ ¨ ¨ “ xn.

(3) In this case, (MI) raised to the r2 power reads, with r – r2{r1 and fpxq – xr, @x ą 0,

f

˜

n
ÿ

j“1

1

n
xr1j

¸

ĺ

n
ÿ

j“1

1

n
f
´

xr1j

¯

, (5.14)

which is a special case of (GJ). By strict convexity of f , equality holds in (5.14) iff xr21 “

xr22 “ ¨ ¨ ¨ “ xr2n , i.e., x1 “ x2 “ ¨ ¨ ¨ “ xn. QED

Problem 1.11. (1) Assuming that (M) holds for n, we have

˜

n`1
ÿ

j“1

|aj ` bj |
p

¸1{p

ĺ

¨

˝

»

–

˜

n
ÿ

j“1

|aj |
p

¸1{p

`

˜

n
ÿ

j“1

|bj |
p

¸1{p
fi

fl

p

` |an`1 ` bn`1|
p

˛

‚

1{p

ĺ

˜

n`1
ÿ

j“1

|aj |
p

¸1{p

`

˜

n`1
ÿ

j“1

|bj |
p

¸1{p

,

where the last line uses the case n “ 2.

(2) If a1 “ 0 and b1 “ 0, (M) is clear. Assume that a1 ‰ 0 or b1 ‰ 0. Let t ‰ 0. Then (M)
holds for a1, . . . , b2 iff it holds for a1{t, . . . , b2{t. Letting t – |a1| ` |b1|, we have reduced
the problem to the study of the case where |a1| ` |b1| “ 1.
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(3) Let λ1 – |a1|, λ2 – |b1|, x1 –
|a2|

|a1|
, x2 –

|b2|

|b1|
. By (J), we have

p|a1|
p

` |a2|
p
q
1{p

` p|b1|
p

` |b2|
p
q
1{p

“λ1fpx1q ` λ2fpx2q

ľfpλ1x1 ` λ2x2q “ p1 ` p|a2| ` |b2|q
p
q
1{p.

(5.15)

We complete the proof by noting that

1 ` p|a2| ` |b2|q
p

“ p|a1| ` |b1|q
p

` p|a2| ` |b2|q
p

ľ |a1 ` b1|
p

` |a2 ` b2|
p. QED

Problem 1.12. (1) Since a ĺ c ĺ b, there exists some λ P r0, 1s such that c “ p1´λqa`λb.
On the other hand, we have

d “ a ` b ´ c “ a ` b ´ rp1 ´ λqa ` λbs “ λa ` p1 ´ λqb.

Using the above and (J) (twice), we find that

fpcq ` fpdq “fpp1 ´ λqa ` λbq ` fpλa ` p1 ´ λqbq

ĺp1 ´ λqfpaq ` λfpbq ` λfpaq ` p1 ´ λqfpbq “ fpaq ` fpbq.
(5.16)

Assume next that f is strictly convex and that equality holds in (5.16). If λ “ 0, then
a “ c and b “ d (and this is clearly an equality case). Similarly, if λ “ 1, we obtain the
equality case a “ d and b “ c. If 0 ă λ ă 1, equality in (5.16) implies that a “ b, and then
a “ b “ c “ d. To summarize, we have equality iff the sets ta, bu and tc, du coincide.

(2) This existence of x, y P I such that x`y “ S is equivalent to S P J – r2α, 2βs. Assume
that this condition is satisfied. Let γ – pα ` βq{2 be the midpoint of I .

The case where 2α ĺ S ĺ 2γ. Let a – α and b – 2S ´α. If the couple px, yq is a competitor
in the maximization problem, then, clearly x, y ľ a. Since, on the other hand, x`y “ a`b,
we have x, y ĺ b. By item (1), we have fpxq ` fpyq ĺ fpaq ` fpbq and, by the analysis of
the equality case in item (1), the unique solution (up to a permutation of points) is x “ α,
y “ 2S ´ α.

The case where 2γ ĺ S ĺ 2β. By a similar argument, the unique solution (up to a permu-
tation of points) is x “ 2S ´ β, y “ β.

The converse is clear since, when 2α ĺ S ă 2γ, respectively 2γ ă S ĺ 2β, the
endpoint has to be α, respectively β. When S “ α ` β, x and y have to be the two
endpoints. All these possibilities are consistent with the solutions found above.

(3) Assume again that S P J . Then, for every competing couple px, yq, we have

fpSq “ f

ˆ

1

2
x `

1

2
y

˙

ĺ
1

2
fpxq `

1

2
fpyq,

with equality iff x “ y. The unique solution is therefore x “ y “ S{2. QED
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Problem 1.13. “p3q ñ p1q” By and (1.21), (1.13), and Jensen’s inequality, we have
n
ÿ

j“1

fpyjq “

n
ÿ

j“1

f

˜

n
ÿ

k“1

ajkxk

¸

ĺ

n
ÿ

j“1

n
ÿ

k“1

ajkfpxkq “

n
ÿ

k“1

n
ÿ

j“1

ajkfpxkq “

n
ÿ

k“1

fpxkq,

where the last equality uses (1.14).

“p1q ñ p2q” Applying (1.14) to fpxq ” x and to fpxq ” ´x, we find that (1.19) holds.

We now prove (1.16)–(1.18). Let 1 ĺ k ĺ n ´ 1 and set fpxq – px ´ xk`1q´. Noting
that z´ ľ ´z, @ z P R, we have

n
ÿ

j“1

fpxjq “

k
ÿ

j“1

pxk`1 ´ xjq ľ

n
ÿ

j“1

fpyjq ľ

k
ÿ

j“1

fpyjq ľ

k
ÿ

j“1

p´yj ` xk`1q,

and thus
řk

j“1 xj ĺ
řk

j“1 yj , @ 1 ĺ k ĺ n ´ 1. QED

Problem 1.14. Assume that (1.22) and (1.16)–(1.19) hold. Let σ P Sn be such that xσp1q ĺ

xσp2q ĺ ¨ ¨ ¨ ĺ xσpnq. Then xσp1q is the smallest xj , and thus, in particular, xσp1q ĺ x1 ĺ y1.
Similarly, xσp1q and xσp2q are the two smallest xj ’s, and in particular xσp1q ` xσp2q ĺ x1 `

x2 ĺ y1 ` y2. Etc. Finally, xσp1q, . . . xσpnq, y1, . . . , yn satisfy (1.15)–(1.19). By “(1)ñ(2)” in
Theorem 1.1, for each convex f we have

n
ÿ

j“1

fpyjq ĺ

n
ÿ

j“1

fpxσpjqq “

n
ÿ

j“1

fpxjq,

so that, as claimed, “(1)ñ(2)” holds under the assumptions (1.22) and (1.16)–(1.19).

Finally, as already noticed in Remark 1.2, the order of the xj ’s and yj ’s plays no role
in “(3)ñ(1)”. QED

Problem 1.15. (1.16) is equivalent to gpnq “ hpnq. On the other hand, the functions g and
h being affine on each of the intervals r0, 1s, r1, 2s, . . . , rn ´ 1, ns, we have

rgptq ĺ hptq, @ t P r0, nss ô rgpkq ĺ hpkq, @ k “ 0, 1, . . . , ns. (5.17)

Since gp0q “ hp0q “ 0 and gpnq “ hpnq, (5.17) becomes

rgptq ĺ hptq, @ t P r0, nss ô

«

k
ÿ

j“1

xj ĺ

k
ÿ

j“1

yj , @ k “ 1, . . . , n ´ 1

ff

ô r(1.17) ´ (1.19)s.

QED

Problem 1.17. By multiplying the scalars α1, . . . , αn, β1, . . . , βm with the same suitable
integer, we may assume that they are all integers. Let S –

řn
k“1 αn “

řn
j“1 βj . Consider

the ordered lists pX1, . . . , XSq, pY1, . . . , YSq defined as follows:

pX1, . . . , XSq – px1, . . . , x1
loooomoooon

α1 times

, . . . , xn, . . . , xn
loooomoooon

αn times

q,

pY1, . . . , YSq – py1, . . . , y1
loooomoooon

β1 times

, . . . , ym, . . . , ym
looooomooooon

βm times

q.
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Then, clearly, X1 ĺ X2 ĺ ¨ ¨ ¨ ĺ XS , Y1 ĺ Y2 ĺ ¨ ¨ ¨ ĺ YS , Xj P I , Yj P I , @ j, and
inequality (1.36) is equivalent to

S
ÿ

j“1

fpYjq ĺ

S
ÿ

j“1

fpXjq. (5.18)

Let G and H be the auxiliary functions associated with the inequality (5.18) (as ex-
plained before the statement of Theorem 1.2). Theorem 1.1 and Problem 1.15 yield the
equivalence of (5.18) with each of the following properties:

Gptq ĺ Hptq, @ t P r0, Ss, and GpSq “ HpSq, (5.19)

there exists a DS matrix B “ pbjkq1ĺj,kĺS such that Yj “

S
ÿ

k“1

bjkXk,@ j. (5.20)

In order to complete the proof of Theorem 1.2 in this case, it suffices to prove that
“(1.39) ô (5.19)”, “(5.20) ñ (1.40) ´ (1.43)”, and “(1.40) ´ (1.43) ñ (1.36)”.

“(1.40) ´ (1.43) ñ (1.36)” We have
m
ÿ

j“1

βjfpyjq “

m
ÿ

j“1

βjf

˜

n
ÿ

k“1

ajkxk

¸

ĺ

m
ÿ

j“1

βj

n
ÿ

k“1

ajkfpxkq

“

n
ÿ

k“1

m
ÿ

j“1

βjajkfpxkq “

n
ÿ

k“1

αkfpxkq.

“(5.20) ñ (1.40) ´ (1.43)” The first β1 equalities in (5.20) read

y1 “

α1
ÿ

ℓ“1

bsℓx1 `

α2
ÿ

ℓ“α1`1

bsℓx2 ` ¨ ¨ ¨ `

T
ÿ

ℓ“α1`¨¨¨`α1
n´1

bsℓxn, @ 1 ĺ s ĺ β1. (5.21)

Thus y1 is the average of the first β1 equalities in (5.20). Similarly for the lines involv-
ing y2, . . . , ym. In view of the above, we set (with the conventions α0 “ 0 and β0 “ 0)

ajk –
1

βj

β1`¨¨¨`βj
ÿ

s“β1`βj´1`1

α1`¨¨¨`αk
ÿ

ℓ“α1`¨¨¨`αk´1`1

bsℓ. (5.22)

Property (1.43) is obvious. Property (1.41) follows from the fact that B is DS and the
identity

n
ÿ

k“1

ajk “
1

βj

β1`¨¨¨`βj
ÿ

s“β1`βj´1`1

S
ÿ

ℓ“1

bsℓ.

Finally, property (1.42) follows from the fact that B is DS and the identity

m
ÿ

j“1

βjajk “

α1`¨¨¨`αj
ÿ

ℓ“α1`¨¨¨`αj´1`1

S
ÿ

s“1

bsℓ.
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“(1.39) ô (5.19)” simply because g “ G and h “ H . QED

Problem 1.18. Testing (1.36) with fpxq ” px´x1q´, we find that py1 ´x1q´ “ 0, and thus
y1 ľ x1. Similarly, testing (1.36) with fpxq ” px ´ xnq`, we obtain pym ´ xnq` “ 0, and
thus ym ĺ xn. QED

Problem 1.19. We consider the case where the lists are ordered a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ an and
b1 ĺ b2 ĺ ¨ ¨ ¨ ĺ bn, the other case being similar.

Clearly, (1.50) holds for a1, . . . , an, b1, . . . , bn iff it holds for a1 ´ C, . . . an ´ C, b1 ´

D, . . . , bn ´ D. We may therefore assume that a1 ľ 0 and b1 ľ 0.

If aj´1 ĺ aj , @ 2 ĺ j ĺ n, then xj – aj ´ aj´1 ľ 0, @ 2 ĺ j ĺ n. Conversely, if xj ľ 0,
@ j, then

a1 ĺ a1 ` x2 “ a2 ĺ a1 ` x2 ` x3 “ a3 ĺ ¨ ¨ ¨ ĺ an.

Set, for notational convenience, x1 – a1, and y1 – b1, so that aj “
řj

k“1 xk, and
similarly for bj . From the above discussion, (1.50) is equivalent to

n
ÿ

j“1

j
ÿ

k“1

xk

σpjq
ÿ

ℓ“1

yℓ ĺ

n
ÿ

j“1

j
ÿ

k“1

xk

τpjq
ÿ

ℓ“1

yℓ,@x1, . . . , xn, y1, . . . , yn ľ 0. (5.23)

By counting the number of times a product xkyℓ appears in (5.23), we find that (5.23)is
equivalent to

n
ÿ

k“1

n
ÿ

ℓ“1

xkyℓCardSpk, ℓq ĺ

n
ÿ

k“1

n
ÿ

ℓ“1

xkyℓCardT pk, ℓq,

@x1, . . . , xn, y1, . . . , yn ľ 0,

(5.24)

where

Spk, ℓq – tj ľ k; σpjq ľ ℓu and T pk, ℓq – tj ľ k; τpjq ľ ℓu.

Next, clearly,

CardSpk, 1q “ CardT pk, 1q “ n ´ k ` 1,

CardSp1, ℓq “ CardT p1, ℓq “ n ´ ℓ ` 1,

and thus (5.24) amounts to
n
ÿ

k“2

n
ÿ

ℓ“2

xkyℓCardSpk, ℓq ĺ

n
ÿ

k“2

n
ÿ

ℓ“2

xkyℓCardT pk, ℓq,

@x2, . . . , xn, y2, . . . , yn ľ 0.

(5.25)

We are now in position to prove that (1.50)ô(1.51) (which is the content of the the-
orem). Indeed, in view of (5.25), (1.51)ñ(1.50). On the other hand, if (1.50) holds,
then, given 2 ĺ m, p ĺ n, the choice xk – δkm, yℓ – δℓp shows that CardSpm, pq ĺ

CardT pm, pq, and thus (1.51) holds. QED
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Problem 1.20. Set Ak – tj; j ľ ku and Bℓ – tj; σpjq ľ ℓu. Then: (i) CardAk “ n´k`1;
(ii) CardBℓ “ nℓ ` 1; (iii) Spk, ℓq “ Ak X Bℓ.

We first note that

CardSpk, ℓq ĺ min pCardAk,CardBℓq “ min pn ´ k ` 1, n ´ ℓ ` 1q.

This inequality becomes equality for σ “ id. In view of Theorem 1.3, this implies the
second inequality in (R).

We next note that, when k ` ℓ ĺ n ` 1, we have

CardSpk, ℓq “ CardAk ` CardBℓ ´ CardpAk Y Bℓq

ľ pn ´ k ` 1q ` pn ´ ℓ ` 1q ´ n “ n ´ pk ` ℓq ` 2,

while, when k ` ℓ ą n ` 1, CardSpk, ℓq ľ 0.

These inequalities become equalities when σ “

ˆ

1 2 . . . n
n n ´ 1 . . . 1

˙

. By Theorem 1.3,

this implies the first inequality in (R). QED

Problem 1.21. We define σpjq by induction on j. We explain how to define σp1q and σp2q.
The remaining part of the proof is routine.

Step 1. Choice and properties of σp1q. Let c1 – min1ĺjĺn aj . Consider the non-empty set
A1 – tk; ak “ c1u. Let d1 – minkPA1 bk. Consider the non-empty set B1 – tℓ P A1; bℓ “

d1u. To summarize, if ℓ P B1, then aℓ “ c1 ĺ aj , @ j, and bℓ ĺ bk, @ k P A1.

We fix some ℓ P B1. We claim that bℓ ĺ bj , @ j. Indeed, by definition of B1, this is true
if j P A1. If j R A1, then aℓ ă aj , and then (1.53) implies that bℓ ĺ bj . Since, on the other
hand, aℓ ĺ aj , @ j (since ℓ P A1), we find that, with σp1q – ℓ, we have aσp1q ĺ aj , @ j, and
bσp1q ĺ bj , @ j.

Step 2. Choice and properties of σp2q. Let c2 – minj‰σp1q aj , A2 – tk ‰ σp1q; ak “ c2u,
d2 – minkPA2 bk, B2 – tℓ P A2; bℓ “ d2u.

Let ℓ P B2 and set σp2q – ℓ. By repeating the argument in Step 1, we have aσp2q ĺ aj ,
@ j ‰ σp1q, and bσp2q ĺ bj , @ j ‰ σp1q. QED

Problem 1.22. We consider only the case of identically ordered lists; the case of oppo-
sitely ordered lists is treated similarly.

Step 1. Reduction to the case of ordered lists. Using Problem 1.21 and the facts that

n
ÿ

j“1

ajbj “

n
ÿ

j“1

aσpjqbσpjq,
n
ÿ

j“1

aj “

n
ÿ

j“1

aσpjq,
n
ÿ

j“1

bj “

n
ÿ

j“1

bσpjq, @σ P Sn,

we may assume that a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ an and b1 ĺ b2 ĺ ¨ ¨ ¨ ĺ bn.
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Step 2. Decomposition of the product of sums. Let

σ1 – id “

ˆ

1 2 . . . n ´ 1 n
1 2 . . . n ´ 1 n

˙

, σ2 –

ˆ

1 2 . . . n ´ 1 n
2 3 . . . n 1

˙

,

σ3 –

ˆ

1 2 . . . n ´ 1 n
3 4 . . . 1 2

˙

, . . . , σn –

ˆ

1 2 . . . n ´ 1 n
n 1 . . . n ´ 2 n ´ 1

˙

.

Then, for each 1 ĺ j ĺ n, the list σ1pjq, . . . , σnpjq is a permutation of the list 1, . . . , n.
We find that

n
ÿ

j“1

aj

n
ÿ

j“1

bj “

n
ÿ

j“1

n
ÿ

k“1

ajbk “

n
ÿ

j“1

n
ÿ

k“1

ajbσkpjq “

n
ÿ

k“1

n
ÿ

j“1

ajbσkpjq. (5.26)

Step 3. Conclusion. For each k, (R) yields
n
ÿ

j“1

ajbσkpjq ĺ

n
ÿ

j“1

ajbj . (5.27)

We obtain (C) (and thus (GC)) from (5.26) and (5.27). QED

Problem 1.24. Clearly, the quadratic trinomial in (1.61) satisfies fpxq ľ 0, @x P R, and
thus its discriminant ∆ is ĺ 0. Now,

T pxq “

˜

n
ÿ

j“1

a2j

¸

x2 ´ 2
n
ÿ

j“1

aj

n
ÿ

j“1

bjx `

n
ÿ

j“1

b2j ,

and thus

∆

4
“

˜

n
ÿ

j“1

bj

¸2

´

˜

n
ÿ

j“1

a2j

¸˜

n
ÿ

j“1

b2j

¸

ĺ 0. (5.28)

We have just obtained (CS). By (5.28), equality in (CS) amounts to ∆ “ 0, which
in turn amounts to the existence of some x P R such that fpxq “ 0. Finally, fpxq “ 0 is
equivalent to ajx “ bj , @ j, i.e., to the proportionality of pa1, . . . , anq and pb1, . . . , bnq. QED

Problem 1.25. We have

f

ˆ

2α

α2 ` 1

˙

“

n
ÿ

j“1

b2jgpxjq, (5.29)

where

gpxq –
4α2

pα2 ` 1q
2x

2 ´
4α

α2 ` 1
x `

4α2

pα2 ` 1q
2 , (5.30)

1

α
ĺ xj –

aj
bj

ĺ α. (5.31)

The roots of g are 1{α and α, and therefore (5.30) and (5.31) imply that gpxjq ĺ 0, @ j.
Inserting this into (5.29), we find that f

`

2α{
`

α2 ` 1
˘˘

ĺ 0. It follows that the discriminant
of f is ľ 0, which amounts to (1.62). QED
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Problem 1.26. (1) By (CS), we have

pab ` bc ` caq
2

ĺ
`

a2 ` b2 ` c2
˘`

b2 ` c2 ` a2
˘

,

whence (1.63).

(2) With no loss of generality, we may assume that a ĺ b ĺ c. Set a1 “ b1 – a, a2 “ b2 – b,

a3 “ b3 – c. Then (R) with σ –

ˆ

1 2 3
2 3 1

˙

yields

ab ` bc ` ca “ a1bσp1q ` a2bσp2q ` a3bσp3q ĺ a1b1 ` a2b2 ` a3b3 “ a2 ` b2 ` c2. QED

Problem 1.27. Step 1. (1.64) holds when 3 ĺ n ĺ 6. Denoting In the inequality we want
to prove, we find that

I3 ô2
`

x21 ` x22 ` x23 ´ x1x2 ´ x1x3 ´ x2x3
˘

ľ 0

ôpx1 ´ x2q
2

` px2 ´ x3q
2

` px3 ´ x1q
2

ľ 0,

I4 ô2
`

x21 ` x22 ` x23 ` x24 ´ 2x3x1 ´ 2x4x2
˘

ľ 0

ô2
”

px1 ´ x3q
2

` px2 ´ x4q
2
ı

ľ 0,

I5 ô2
5
ÿ

j“1

x2j ´
ÿ

1ĺjăkĺ5

xjxk ľ 0

ô
1

2

ÿ

1ĺjăkĺ5

pxj ´ xkq
2

ľ 0,

I6 ô2
6
ÿ

j“1

x2j ´ 2
ÿ

1ĺjăkĺ6,1ĺ|j´k|ĺ2

xjxk ` 4
ÿ

1ĺjĺ3

xjxj`3 ľ 0

ô
ÿ

1ĺjĺ3

pxj ´ xj`1 ` xj`3 ´ xj`4q
2

ľ 0.

When n ľ 7, one could provide directly a counterexample (see Step 4), but it is more
instructive to get first insight from the Gauss method.

Step 2. (1.64) does not hold when n ľ 9. Indeed, In is equivalent to

2x21 ´ pn ´ 4q
ÿ

j“2,3,n´1,n

x1xj ` 4
n´2
ÿ

j“4

x1xj ` 2
n
ÿ

j“2

x2j

´pn ´ 4qx4x5 ` R ľ 0,

(5.32)

where the reminder R contains none of the products xixj that precede it in (5.32). Using
the Gauss method, we complete the first part of the expression in (5.32) to a square, and
find that In is equivalent to

2

«

x1 ´
n ´ 4

4

ÿ

j“2,3,n´1,n

xj `

n´2
ÿ

j“4

xj

ff2

´ nx4x5 ` T ľ 0, (5.33)
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where T does not contain x1, x4x5, x
2
4 or x25. Therefore, the validity of In implies that

2px1 ` x4 ` x5q
2

´ nx4x5 ľ 0, @x1, x4, x5 ľ 0. (5.34)

However, (5.34) is wrong when x1 “ 0, x4 “ x5 “ 1.

Step 3. (1.64) does not hold when n “ 8. The argument is similar to the one in the previous
step. Instead of (5.32), we start from the form (recall that n “ 8)

2x21 ´ 4
ÿ

j“2,3,7,8

x1xj ` 4
6
ÿ

j“4

x1xj ` 2
8
ÿ

j“2

x2j

´4px4x5 ` x4x6 ` x5x6q ` R ľ 0,

(5.35)

where the reminder R contains none of the products xixj that precede it in (5.35). We
next rewrite (5.35) as

2

«

x1 ´
ÿ

j“2,3,7,8

xj `

6
ÿ

j“4

xj

ff2

´ 8px4x5 ` x4x6 ` x5x6q ` T ľ 0, (5.36)

where T does not contain x1, x4x5, x4x6, x5x6, x
2
4, x

2
5 or x26. Thus the validity of I8 implies

that

2px1 ` x4 ` x5 ` x6q
2

´ 8px4x5 ` x4x6 ` x5x6q ľ 0,@x1, x4, x5, x6 ľ 0, (5.37)

but this is wrong when x1 “ 0, x4 “ x5 “ x6 “ 1.

Step 4. (1.64) does not hold when n ľ 7. Inspired by Step 3, let us take x1 “ x2 “ x3 “ 1
and xj “ 0, @ 4 ĺ j ĺ 7. Then (1.64) for these values becomes 3n ĺ 18, and this does not
holds for n ľ 7. QED

Problem 1.28. Set

fpaq –
ap

p
`

bq

q
´ ab, @ a ľ 0.

Then f 1paq “ ap´1 ´ b, and thus f has a minimum at a0 – b1{pp´1q. Finally,

fpa0q “
bp{pp´1q

p
`

bq

q
´ bp{pp´1q “ bq

ˆ

1

p
`

1

q
´ 1

˙

“ 0. QED

5.2 Worked inequalities

Problem 2.1. We consider, e.g., the case of identically ordered lists. The validity of (GC)
when n “ 1 is obvious. Assume that (GC) holds for n ´ 1. Let C –

řn´1
j“1 ajbj , A –

řn´1
j“1 aj , B –

řn´1
j“1 bj . We want to prove that

npC ` anbnq ´ pA ` anqpB ` bnq ľ 0,
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knowing that

pn ´ 1qC ľ AB. (5.38)

Using (5.38), we obtain

npC ` anbnq ´ pA ` anqpB ` bnq ľC ` nanbn ` AB ´ pA ` anqpB ` bnq

“C ` pn ´ 1qanbn ´ anB ´ Abn

“

n´1
ÿ

j“1

pajbj ` anbn ´ anbj ´ ajbnq

“

n´1
ÿ

j“1

pan ´ ajqpbn ´ bjq ľ 0.

QED

Problem 2.2. (2.1) is equivalent to

fptq – pap ´ bpqtp ` ra ´ pa ´ bqtsp ĺ ap, @ 0 ĺ t ĺ 1. (5.39)

Finally, (5.39) holds since fp0q “ fp1q “ ap and f is convex. QED

Problem 2.3. (1) If 0 ĺ y ă x, let t P r0, 1s be such that y “ p1 ´ tqp´xq ` tx. By (J),

φpyq “ φpp1 ´ tqp´xq ` txq ĺ p1 ´ tqφp´xq ` tφpxq “ φpxq.

(2) Properties (2.2) and (2.3) of the norm are straightforward. We now prove that

Φ2pu ` u, v ` vq ĺ Φ2pu, vq ` Φ2pu, vq, @u, u, v, v P R. (5.40)

Using: (i) the textbook fact that a convex function on an open interval is continuous;
(ii) item (1), we find that

R Q v ÞÑ Φ2pu, vq is continuous, @u P R, (5.41)
r0,8q Q u ÞÑ Φ2pu, vq is non-decreasing, @ v P R. (5.42)

In view of (5.41), it suffices to prove (5.40) when v, v, v ` v ‰ 0. In this case, we have
(using (5.42), (2.5), and the convexity of φ):

Φ2pu ` u, v ` vq “ Φ2p|u ` u|, |v ` v|q ĺ Φ2p|u| ` |u|, |v ` v|q

ĺ Φ2p|u| ` |u|, |v| ` |v|q

“ p|v| ` |v|qφ

ˆ

|v|

|v| ` |v|

|u|

|v|
`

|v|

|v| ` |v|

|u|

|v|

˙

ĺ |v|φ

ˆ

|u|

|v|

˙

` |v|φ

ˆ

|u|

|v|

˙

“ Φ2pu, vq ` Φ2pu, vq.

(5.43)

(3) Repeat the argument in (5.43), using

Npx1 ` y1, . . . , xn´1 ` yn´1q ĺ Npx1, . . . , xn´1q ` Npy1, . . . , yn´1q,

@x1, . . . , xn´1, y1, . . . , yn´1 P R.
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(4) Set

Nnpx1, . . . , xnq –

˜

n
ÿ

j“1

|xj |
p

¸1{p

, @x1, . . . , xn P R,

φptq – p1 ` |t|pq
1{p , @ t P R.

Note that φ is convex, since φ1 is increasing (see (1.9) and Problem 1.11), even, satisfies
(2.5) with ℓ “ 1, and that Nn “ Φn, @n ľ 2.

Using the above and items (2) and (3), we find that Φn is a norm; this implies the
Minkowski inequality (M). QED

Problem 2.4. We note that item (1) is a special case of item (2). We therefore proceed
directly to the proof of item (2).

“[(2.9) and (2.10)] ñ(2.11)” Set

fpxq –

k
ÿ

j“1

λjx
αj ´ xα, @x P p0,8qn.

If (2.9) and (2.10) hold, then x0 – p1, 1, . . . , 1q is a point of minimum of f , and thus

Bf

Bxℓ
px0q “ 0, @ 1 ĺ ℓ ĺ n,

which amounts to (2.11).

“[(2.9) and (2.11)]ñ(2.10) ” Fix x ą 0 and set

g : Rn Ñ R, gpβq – xβ, @β P Rn.

Then g is clearly convex, in the sense that it satisfies (J), and thus also (GJ). Under the
assumption (2.11), we have

gpαq “ g

˜

k
ÿ

j“1

λjαj

¸

,

and thus, if (2.9) holds, (2.10) amounts to the Jensen inequality (GJ). QED

Problem 2.5. We may assume that a ă c. Then

fpbq “ f

ˆ

c ´ b

c ´ a
a `

b ´ a

c ´ a
c

˙

ĺ
c ´ b

c ´ a
fpaq `

b ´ a

c ´ a
fpcq,

and this inequality is equivalent to the one in the statement. QED
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Problem 2.6. Proof by induction on n, the case n “ 2 being clear. Let Snpx1, . . . , xnq,
respectively Tnpx1, . . . , xnq, denote the left-hand side, respectively the right-hand side, of
(2.13). Assume that (2.13) holds for n ´ 1. Noting that

Snpx1, . . . , xnq “ Sn´1px1, . . . , xn´1q ´ xn´1fpx1q ` xn´1fpxnq ` xnfpx1q,

Tnpx1, . . . , xnq “ Tn´1px1, . . . , xn´1q ´ x1fpxn´1q ` xnfpxn´1q ` x1fpxnq,

in view of the induction hypothesis it suffices to prove that

´xn´1fpx1q ` xn´1fpxnq ` xnfpx1q ľ ´x1fpxn´1q ` xnfpxn´1q ` x1fpxnq,

which is equivalent to

pxn ´ xn´1qfpx1q ` px1 ´ xnqfpxn´1q ` pxn´1 ´ x1qfpxnq ľ 0. (5.44)

In turn, (5.44) follows from Problem 2.5. QED

Problem 2.7. Testing the inequality with x1 “ ¨ ¨ ¨ “ xn “ 0, we find that Cn ĺ
fp1q ´ fp0q

n
.

We will actually prove that
fp1q ´ fp0q

n
is the optimal constant, which amounts to

1
n
ÿ

j“1

1

fpxj ` 1q

´
1

n
ÿ

j“1

1

fpxjq

ľ
fp1q ´ fp0q

n
, @x1, . . . , xn ľ 0. (5.45)

In turn, (5.45) is equivalent to

n
ÿ

j“1

fpxj ` 1q ´ fpxjq

fpxj ` 1qfpxjq
looooooooooooomooooooooooooon

–I

ľ
fp1q ´ fp0q

n

n
ÿ

j“1

1

fpxj ` 1q

n
ÿ

j“1

1

fpxjq
. (5.46)

Now, f being convex we have, by Problem 1.12,

fp0q ` fpxj ` 1q ľ fp1q ` fpxjq,

and thus

fpxj ` 1q ´ fpxjq ľ fp1q ´ fp0q ľ 0,

since f is non-decreasing.

We find that

I ľ rfp1q ´ fp0qs

n
ÿ

j“1

1

fpxj ` 1qfpxjq
ľ

fp1q ´ fp0q

n

n
ÿ

j“1

1

fpxj ` 1q

n
ÿ

j“1

1

fpxjq
,

the latter inequality following from the Chebyshev inequality (C) (using again the fact
that f is non-decreasing).
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Under the assumptions f non-decreasing and fpxq ą 0, @x ľ 0, we find, with essen-
tially the same proof, that

Cn “
1

n
inftfpx ` 1q ´ fpxq; x ľ 0u. QED

Problem 2.8. Let τ P Sn, and assume that µj “ λτpjq, @ j. Given σ P Sn, we have

zσ “

n
ÿ

j“1

µjxσpjq “

n
ÿ

j“1

λτpjqxσpjq “

n
ÿ

k“1

λkxσpτ´1pkqq “ yστ´1 .

Equivalently, set Λ –

¨

˚

˝

λ1
...
λn

˛

‹

‚

and M –

¨

˚

˝

µ1
...
µn

˛

‹

‚

. If M “ PτΛ, where Pτ is the permuta-

tion matrix associated with τ (see Theorem 3.1), then we have just proved that zσ “ yστ´1 ,
@σ P Sn.

Consider now the general case. By “(2)ñ(3)” in Theorem 1.1, and by Theorem 3.1,

there exist cτ P r0, 1s, τ P Sn, such that
ÿ

τPSn

cτ “ 1 and Λ “
ÿ

τPSn

cτPτM. (5.47)

By linearity and the first part of the proof, we have

zσ “
ÿ

τPSn

cτyστ´1 “
ÿ

τPSn

cτ´1σyτ . (5.48)

Set now bσ,τ – cτ´1σ. Then (5.48) reads

zσ “
ÿ

τPSn

bσ,τyτ , @σ P Sn. (5.49)

Using (5.47), it is straightforward that the matrix (of size n!) pbσ,τ qσ,τPSn is DS. Com-
bining this fact with (5.49) and the implication “(3)ñ(1)” in Theorem 1.1, we find that
(2.15) holds. QED

Problem 2.9. Let x1, . . . , xn achieve the maximum in (2.16). With no loss of generality,
we may assume that, for some 1 ĺ ℓ ă n, we have ´1 ĺ x1, . . . , xℓ ĺ 0, while 0 ă xℓ`1 ĺ

¨ ¨ ¨ ĺ xn ĺ 1.

We next note that, by the optimality of x1, . . . , xn, for each i ‰ j we have

rx, y P r´1, 1s, x ` y “ xi ` xjs ñ x3 ` y2 ĺ x3i ` x3j . (5.50)

Using (5.50), Problem (1.12), and the strict concavity of x ÞÑ x3 on r´1, 0s, we find
that x1 “ . . . “ xℓ ă 0. Using (5.50), Problem 1.12, and the strict convexity of x ÞÑ x3 on
r0, 1s, we find that xℓ`2 “ . . . “ xn “ 1. For further use, we note that no xi can be 0.
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Now comes the main step of the proof. We claim that xℓ “ 1. Indeed, we argue by
contradiction and assume that 0 ă xℓ ă 1. Two possibilities are to be considered.

Possibility 1. x1 ` xℓ ĺ 0. In this case, one may check x31 ` x3ℓ ĺ px1 ` xℓq
3, with equality

iff x1 ` xℓ “ 0. By optimality, this implies that x1 ` xℓ “ 0, and then the numbers
0, x2, . . . , xℓ, 0, 1, . . . , 1 are still optimal. This contradicts the first part of the analysis (no
xi can be 0).

Possibility 2. x1 ` xℓ ą 0. In particular, we have x1 ą ´1 and x21 ă x2ℓ . Consider the
function

z ÞÑ fpzq – px1 ´ zq3 ` pxℓ ` zq3 “ x31 ` x3ℓ ` 3zpx2ℓ ´ x21q ` 3z2pxℓ ` x1q.

Then fpzq ą fp0q,@ z ą 0 and, for small z, we have ´1 ă x1 ´ z ă xℓ ` z ă 1. This
contradicts the optimality of x1, . . . , xn.

To summarize, we know that there exists 1 ĺ ℓ ă n such that

x1 “ ¨ ¨ ¨ “ xℓ “ ´
n ´ ℓ

ℓ
and xℓ`1 “ ¨ ¨ ¨ “ xn “ 1.

Since 0 ą x1 ľ ´1, we have ℓ ą n{2. We find that the maximum in (2.16) is exactly

M – max

"

pn ´ ℓq ´
pn ´ ℓq3

ℓ2
;
n

2
ă ℓ ă n

*

. (5.51)

Let now

gpxq – 1 ´ x ´
p1 ´ xq

3

x2
, @x ą 0,

so that, with x – ℓ{n,

pn ´ ℓq ´
pn ´ ℓq3

ℓ2
“ ngpxq.

The function g increases on p0, 2{3s and decreases on r2{3,8q. We find that the max-
imum M is achieved by one of the ℓ’s for which the corresponding x is closest to 2{3.
Several possibilities occur.

Case 1. n “ 3k, with k integer. Then the optimal choice is ℓ “ 2k, leading to x “ 2{3. We

find that M “
3k

4
.

Case 2. n “ 3k ` 1, with k integer. In this case, we have two candidates: ℓ “ 2k and
ℓ “ 2k`1. After calculating gp2k{p3k`1qq and gpp2k`1q{p3k`1qq, we find that ℓ “ 2k`1

yields the maximum, which is M “
kpk ` 1qp3k ` 1q

p2k ` 1q
2 .

Case 3. n “ 3k ` 2, with k integer. Again, the candidates are ℓ “ 2k and ℓ “ 2k ` 1. The

maximum corresponds to ℓ “ 2k ` 1, and its value is M “
kpk ` 1qp3k ` 2q

p2k ` 1q
2 . QED
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Problem 2.10. We have to prove that

n
ÿ

j“1

ln paj ` ajq ĺ

n
ÿ

j“1

ln
`

aj ` aσpjq

˘

ĺ

n
ÿ

j“1

ln paj ` an´j`1q.

The function ln being concave, it seems natural to try to prove the following general-
ization of (2.17): if f : I “ pa, bq Ñ R is convex and aj , bj P I , @ j, satisfy a1 ĺ a2 ĺ ¨ ¨ ¨ ĺ

an, b1 ĺ b2 ĺ ¨ ¨ ¨ ĺ bn, then

n
ÿ

j“1

fpaj ` bjq ľ

n
ÿ

j“1

fpaj ` bσpjqq ľ

n
ÿ

j“1

fpaj ` bn´j`1q. (5.52)

Step 1. Proof of (5.52) in the special case where f is strictly convex, a1 ă a2 ă ¨ ¨ ¨ ă an,
and b1 ă b2 ă ¨ ¨ ¨ ă bn. We prove for example the first inequality; the proof of the second
one is similar. Consider a permutation σ P Sn that achieves the maximum of the middle
term in (5.52). We will prove, by contradiction, that σ “ id. For, otherwise, there exist
1 ĺ k ă ℓ ĺ n such that σpkq ą σpℓq. Then

ak ` bσpℓq ă aℓ ` bσpℓq, ak ` bσpkq ă aℓ ` bσpkq, (5.53)
`

ak ` bσpℓq

˘

`
`

aℓ ` bσpkq

˘

“
`

ak ` bσpkq

˘

`
`

aℓ ` bσpℓq

˘

. (5.54)

By (5.53)–(5.54) and the proof of the case n “ 2 in Theorem 1.1, we see that there exists
θ P p0, 1q such that

ˆ

ak ` bσpkq

aℓ ` bσpℓq

˙

“

ˆ

1 ´ θ θ
θ 1 ´ θ

˙ˆ

ak ` bσpℓq

aℓ ` bσpkq

˙

. (5.55)

Using (5.55) and the strict convexity of f , we find that

f
`

ak ` bσpkq

˘

` f
`

aℓ ` bσpℓq

˘

ă f
`

ak ` bσpℓq

˘

` f
`

aℓ ` bσpkq

˘

.

Therefore, the permutation τ P Sn, defined by τpjq –

$

’

&

’

%

σpjq, if j ‰ k, ℓ

σpℓq, if j “ k

σpkq, if j “ ℓ

, satisfies

n
ÿ

j“1

fpaj ` bτ pjqq ą

n
ÿ

j“1

f
`

aj ` bσpjq

˘

,

contradicting the maximality of σ.

Step 2. Proof in the general case. With ε ą 0 being sufficiently small, set aεj – a ` jε,
bεj – bj ` jε, @ j, and f εpxq – fpxq ` εx2, @x. Then aεj , bεj , and f ε satisfy the assumptions
of Step 1. We conclude by letting ε Ñ 0 and using the textbook fact that a convex function
on an open interval is continuous.
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Bonus (left without proof). Prove that, for every σ P Sn, there exist DS matrices A,B such
that

¨

˚

˚

˚

˝

a1 ` bσp1q

a2 ` bσp2q

...
an ` bσpnq

˛

‹

‹

‹

‚

“ A

¨

˚

˚

˚

˝

a1 ` b1
a2 ` b2

...
an ` bn

˛

‹

‹

‹

‚

and

¨

˚

˚

˚

˝

a1 ` bn
a2 ` bn´1

...
an ` b1

˛

‹

‹

‹

‚

“ B

¨

˚

˚

˚

˝

a1 ` bσp1q

a2 ` bσp2q

...
an ` bσpnq

˛

‹

‹

‹

‚

. QED

Problem 2.11. The proof will be conceptually very simple, but part by intimidation.

With fpxq –
1

x
, x P I – p0,8q, we want to prove that

fpaq ` fpbq ` fpcq ` 3f

ˆ

a ` b ` c

3

˙

ľ 2f

ˆ

a ` b

2

˙

` 2f

ˆ

b ` c

2

˙

` 2f

ˆ

c ` a

2

˙

, @ a, b, c P I.

(5.56)

Since f is convex, let us try to apply Theorem 1.2 in the case where the scalars are
rational. (In this approach, the fact that a, b, c ą 0 is irrelevant.) As we saw in the proof
of the theorem, this case reduces to Theorem 1.1. In order to check the conditions (1.16)–
(1.19), we have to check the condition (1.15). With no loss of generality, we may assume

that a ĺ b ĺ c, and then
a ` b

2
ĺ

a ` c

2
ĺ

b ` c

2
. However, we do not know how

a ` b ` c

3
compares to b. Therefore, we consider two cases.

Case 1.
a ` b ` c

3
ĺ b, or, equivalently a ´ 2b ` c ĺ 0. We then consider, in the setting of

Theorem 1.1, n “ 6 and

x1 “ a, x2 “ x3 “ x4 “
a ` b ` c

3
, x5 “ b, x6 “ c,

y1 “ y2 “
a ` b

2
, y3 “ y4 “

a ` c

2
, y5 “ y6 “

b ` c

2
.

Then (1.15) is satisfied, and clearly so is (1.19). It remains to check that

k
ÿ

j“1

xj ĺ

k
ÿ

j“1

yj , @ 1 ĺ k ĺ 5. (5.57)

This is the part by intimidation. It turns out that (5.57) indeed holds, and the proof
for various values of k uses a ĺ b, or b ĺ c, or a ´ 2b ` c ĺ 0.

Case 2.
a ` b ` c

3
ľ b, that is, a ´ 2b ` c ľ 0. The argument is similar. We let

x1 “ a, x2 “ b, x3 “ x4 “ x5 “
a ` b ` c

3
, x6 “ c,

y1 “ y2 “
a ` b

2
, y3 “ y4 “

a ` c

2
, y5 “ y6 “

b ` c

2
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and check the analogue of (5.57).

(5.56) is known as the Popoviciu inequality. QED

Problem 2.12. (2.19) looks like (GJ) applied to a concave function f . An educated guess
is fpxq –

a

1 ´ x2, |x| ă 1, which satisfies

f2pxq “ ´
1

p1 ´ x2q
3{2

ă 0,

and therefore is indeed strictly concave. Since
b

ajcj ´ b2j “
?
ajcj f

ˆ

bj
?
ajcj

˙

,

we make the assumption
n
ÿ

j“1

?
ajcj “ 1, (5.58)

which is compatible with the homogeneity of (2.19). Under this unrestrictive assumption,
we have

n
ÿ

j“1

b

ajcj ´ b2j “

n
ÿ

j“1

?
ajcj f

ˆ

bj
?
ajcj

˙

ĺ f

˜

n
ÿ

j“1

?
ajcj

bj
?
ajcj

¸

“

g

f

f

e1 ´

˜

n
ÿ

j“1

bj

¸2

“

g

f

f

e

˜

n
ÿ

j“1

?
ajcj

¸2

´

˜

n
ÿ

j“1

bj

¸2

.

(5.59)

The inequality we have obtained,

n
ÿ

j“1

b

ajcj ´ b2j ĺ

g

f

f

e

˜

n
ÿ

j“1

?
ajcj

¸2

´

˜

n
ÿ

j“1

bj

¸2

, (5.60)

is homogeneous and thus holds even without assuming (5.58). In addition, (5.60) is a
refinement of (2.19), since, by (CS),

˜

n
ÿ

j“1

?
ajcj

¸2

ĺ

˜

n
ÿ

j“1

aj

¸˜

n
ÿ

j“1

cj

¸

.

NB. Exactly the same proof (using, in the final step, (H) instead of (CS)) shows the fol-
lowing. Let 1 ă p ă 8 and α, β satisfy α ` β “ p. Then

n
ÿ

j“1

´

aαj c
β
j ´ bpj

¯1{p
ĺ

˜˜

n
ÿ

j“1

a
α{p
j c

β{p
j

¸p

´

˜

n
ÿ

j“1

bj

¸r¸1{p

ĺ

¨

˝

˜

n
ÿ

j“1

aαj

¸˜

n
ÿ

j“1

c
β{pp´1q

j

¸p´1

´

˜

n
ÿ

j“1

bj

¸p
˛

‚

1{p

if aj ą 0, bj , cj ą 0, aαj c
β
j ą bpj , @ j.

(5.61)
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The special choice α “ 1, β “ p ´ 1 gives

n
ÿ

j“1

´

ajc
p´1
j ´ bpj

¯1{p
ĺ

¨

˝

˜

n
ÿ

j“1

aj

¸˜

n
ÿ

j“1

cj

¸p´1

´

˜

n
ÿ

j“1

bj

¸p
˛

‚

1{p

if aj ą 0, bj , cj ą 0, ajc
p´1
j ą bpj , @ j.

(5.62)

Problem 2.13. Assuming a ĺ b ĺ c, the couple pa, pa ` b ` cq{3q majorizes the couple
pp2a ` bq{3, p2a ` cq{3q. By Theorem 1.1, we thus have (2.21).

In order to complete the proof, it suffices to show that

gpaq –fpbq ` fpcq ` 2f

ˆ

a ` b ` c

3

˙

´ f

ˆ

2b ` a

3

˙

´ f

ˆ

2c ` a

3

˙

´ f

ˆ

2b ` c

3

˙

´ f

ˆ

2c ` b

3

˙

ľ 0, @ a ĺ b ĺ c.

We have

g1paq “
2

3

„

f 1

ˆ

a ` b ` c

3

˙

´
1

2
f 1

ˆ

2b ` a

3

˙

´
1

2
f 1

ˆ

2c ` a

3

˙ȷ

ĺ 0,

where the inequality follows from (J) applied to the convex function f 1.

Therefore, gpaq ľ gpbq, @ a ĺ b, and in order to complet the proof it suffices to prove
that gpbq ľ 0. This follows from (J) applied to f , since

gpbq “ fpcq ` f

ˆ

2b ` c

3

˙

´ 2f

ˆ

2c ` b

3

˙

.

A straightforward modification of the proof shows that (2.20) still holds if f is convex
and f 1 is concave. (Start with c ĺ b ĺ a and repeat the above argument.) QED

Problem 2.14. The statement has a majorization flavor. To make this more clear, we first
note that it suffices to prove the desired inequality when a1 ¨ ¨ ¨ an “ b1 ¨ ¨ ¨ bn. Let xj –

ln aj , yj – ln bj ,@ j. The constraints are

y1 ľ y2 ľ ¨ ¨ ¨ ľ yn, x1 ľ y1, x1 ` x2 ľ y1 ` y2, . . . , x1 ` ¨ ¨ ¨ ` xn “ y1 ` ¨ ¨ ¨ ` yn,

which are the majorization conditions (1.22) and (1.16)–(1.19) stated “backwards”. Thus,
for every convex function f on R, we have

n
ÿ

j“1

fpln ajq ľ
ÿ

j“1

fpln bjq.

In the special case where fpxq “ ex, we obtain the conclusion of the problem. QED
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Problem 2.15. Assume that a1, . . . , an and b1, . . . , bn are identically ordered. Then we
claim that

n
ÿ

j“1

ajbσpjq ĺ

n
ÿ

j“1

ajbj , @σ P Sn. (5.63)

Indeed, let τ P Sn be such that aτp1q ĺ aτp2q ĺ ¨ ¨ ¨ ĺ aτpnq and bτp1q ĺ bτp2q ĺ ¨ ¨ ¨ ĺ

bτpnq (see Problem 1.21). By (R), we have

n
ÿ

j“1

ajbj “

n
ÿ

k“1

aτpkqbτpkq ľ

n
ÿ

k“1

aσ´1τpkqbτpkq “

n
ÿ

j“1

ajbσpjq,

whence (5.63).

Similarly, if a1, . . . , an and b1, . . . , bn are oppositely ordered, then

n
ÿ

j“1

ajbσpjq ľ

n
ÿ

j“1

ajbj , @σ P Sn. (5.64)

Problem 2.16. The lists a1 – x1, a2 –
x1x2
G

, . . . , an –
x1 ¨ ¨ ¨xn
Gn´1

and b1 –
G

x1
, b2 “

G2

x1x2
, . . . , bn –

Gn

x1 ¨ ¨ ¨xn
are oppositely ordered (since ajbj “ G, @ j). By (5.64), we have

nG “

n
ÿ

j“1

ajbj ĺ a2b1 ` a3b2 ` ¨ ¨ ¨ ` anbn´1 ` a1bn

“x2 ` x3 ` ¨ ¨ ¨ ` xn `
Gn

x1 ¨ ¨ ¨xn´1

“x2 ` x3 ` ¨ ¨ ¨ ` xn `
x1 ¨ ¨ ¨xn
x1 ¨ ¨ ¨xn´1

“

n
ÿ

j“1

xj “ nA.

QED

Problem 2.17. Consider the quadratic trinomial

T pxq – pa1x ´ b1q
2

´

n
ÿ

j“2

pajx ´ bjq
2.

Let x0 –
b1
a1

. Then

T px0q “ ´

n
ÿ

j“2

pajx0 ´ bjq
2

ĺ 0, (5.65)

and thus ∆{4 ľ 0, which is the same as the Aczél inequality.

If we have equality, then T pxq ľ 0, @x P R, and in particular T px0q ľ 0. Combining
this with (5.65), we find ajx0 “ bj , @ j “ 2, . . . , n, and this equality still holds when j “ 1.
Thus equality requires that pa1, . . . , anq and pb1, . . . , bnq are proportional. QED
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Problem 2.18. (1) By homogeneity, we may assume that a “ 1{A and b “ 1{B. Then

1

AB
ĺ

aj
bj

ĺ AB, @ j. (5.66)

We obtain (2.24) from (1.62) with α – AB.

(2) Assume that (2.24) holds for some constant C instead of
4abAB

pab ` ABq
2 . With ℓ,m inte-

gers to be determined later, let n – ℓ ` m, a1 “ ¨ ¨ ¨ “ aℓ – a, aℓ`1 “ ¨ ¨ ¨ “ an – A,
b1 “ ¨ ¨ ¨ “ bℓ – B, bℓ`1 “ ¨ ¨ ¨ “ bn – b. Then, with x “ xpℓ,mq – ℓ{m, (2.24) reads

C ĺ
paBx ` Abq2

pa2x ` A2qpB2x ` b2q
. (5.67)

Given any x ľ 0, we may choose ℓ,m Ñ 8 such that xpℓ,mq Ñ x. We find that (5.67)
holds for every x ľ 0. We now minimize, with respect to x, the right-hand side of (5.67).

This leads to the choice x –
bA

aB
. For this choice, (5.67) becomes

C ĺ
4abAB

pab ` ABq
2 ,

which implies item (2). QED

Problem 2.19. By (CS) and Problem 1.27, we have

n
ÿ

j“1

xj
xj`1 ` xj`2

n
ÿ

j“1

xjpxj`1 ` xj`2q ľ

˜

n
ÿ

j“1

xj

¸2

ľ
n

2

n
ÿ

j“1

xjpxj`1 ` xj`2q,

whence the conclusion. QED

Problem 2.20. Proof by intimidation. Using the Gauss method, we find that

a2 ` b2 ` c2 ` ab ` bc ` ca ` a ` b ` c `
3

8

“

ˆ

a `
1

2
b `

1

2
c `

1

2

˙2

`
3

4

ˆ

b `
1

3
c `

1

3

˙2

`
2

3

ˆ

c `
1

4

˙2

,

whence (2.26), with equality iff

a `
1

2
b `

1

2
c “ ´

1

2
, b `

1

3
c “ ´

1

3
, c “ ´

1

4
,

which amounts to a “ b “ c “ ´
1

4
. QED
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Problem 2.21. By homogeneity, we may assume that ab “ 1. By symmetry, we may
assume that c ľ a, b, and then c ľ 1. Write a “ ex{3, and then b “ e´x{3. We have to
prove that

1

ex ` e´x ` c
`

1

ex ` c3 ` c
`

1

e´x ` c3 ` c
ĺ

1

c
, @ c ľ 1. (5.68)

We have ex ` e´x ľ 2 (by (AM-GM)), and thus

1

ex ` e´x ` c
ĺ

1

2 ` c
. (5.69)

On the other hand, set y – c3 ` c ą 1. Then the function

x ÞÑ
1

ex ` y
`

1

e´x ` y

has a maximum at x “ 0, and thus

1

ex ` c3 ` c
`

1

e´x ` c3 ` c
ĺ

2

1 ` c3 ` c
. (5.70)

In view of (5.68)–(5.70), we are done if we prove that

1

2 ` c
`

2

1 ` c3 ` c
ĺ

1

c
,

which holds even without the assumption c ľ 1, since it amounts to pc ´ 1q
2
pc ` 1q ľ 0.

Under the assumptions c ľ a, b and ab “ 1, equality arises iff a “ b “ c “ 1. If we
restore symmetry, equality arises iff a “ b “ c.

Bonus (from [5]): we have

a3 ` b3 ľ a2b ` ab2, (5.71)

with equality iff a “ b. (This is an avatar of (R), but can also be seen directly, since it
amounts to pa ´ bq2pa ` bq ľ 0.) Using (5.71) and its variants obtained by permutations,
we find that

1

a3 ` b3 ` abc
`

1

b3 ` c3 ` abc
`

1

c3 ` a3 ` abc

ĺ
1

a2b ` ab2 ` abc
`

1

b2c ` c2b ` abc
`

1

c2a ` a2c ` abc

“
1

abpa ` b ` cq
`

1

bcpa ` b ` cq
`

1

capa ` b ` cq
“

1

abc
,

with equality iff a “ b “ c. QED

Problem 2.22. Set fpbq – pa ` b ` c ` dq
2

´ 8pac ` bdq. Then f 1pbq ă 0, @ a ă b ă c ă d,
and thus fpbq ą fpcq. Now fpcq “ r2c ´ pa ` dqs

2
ľ 0. QED
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Problem 2.23. The condition
řn

j“1 x
n´1
j “ 1 suggests taking the xn´1

j ’s as coefficients of
a convex combination. With this in mind, we write

n
ÿ

j“1

xn´2
j

1 ´ xn´1
j

“

n
ÿ

j“1

xn´1
j

1

xj ´ xnj
“

n
ÿ

j“1

xn´1
j fpxjq,

where

fpxq –
1

x ´ xn
, @ 0 ă x ă 1.

Noting that the minimum of f is achieved at x0 –
1

n1{pn´1q
and has the value fpx0q “

nn{pn´1q

n ´ 1
, we find that

n
ÿ

j“1

xn´1
j fpxjq ľ

n
ÿ

j“1

xn´1
j

nn{pn´1q

n ´ 1
“

nn{pn´1q

n ´ 1
,

with equality if xj “ x0, @ j. We find that m “
nn{pn´1q

n ´ 1
.

NB. Although the proof is inspired by (GJ), convexity was not used. QED

Problem 2.24. (1) Write x “ e´a, with a ą 0. Then fptq “
1 ´ e´at

t
and

f 1ptq “
ate´at ´ 1 ` e´at

t2
“

e´at

t2
pat ` 1 ´ eatq ă 0, @ t ą 0.

(2) Set tk – p2k ´ 1qq´2k, sk – 2kq´2k, k ľ 1. Since p ă 2, we have q ą 2 and therefore
t1 ą 0. Moreover, clearly 0 ă tk ă sk, @ k ľ 1.

Since

1

tk
“

p ´ 1

2k ´ p
,

1

sk
“

p ´ 1

2k
, and

1

tk
´

1

sk
“

p ´ 1

2k ´ p
´

p ´ 1

2k
“

ppp ´ 1q

2kp2k ´ pq
,

we find that

ppp ´ 1q

2kp2k ´ pq
´

p ´ 1

2k ´ p
xp2k´1qq´2k `

p ´ 1

2k
x2kq´2k

“
1

tk
´

1

sk
´

1

tk
xtk `

1

sk
xsk “ fptkq ´ fpskq ą 0.

(3) (Proof due to James S. Frame) The inequality is clear for x “ 0 and x “ 1. Therefore,
we may assume that 0 ă x ă 1. Let

gpxq – p1 ` xqp ` p1 ´ xqp ´ 2p1 ` xqqp´1, @ 0 ă x ă 1.
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Using (1.74) and item (2), we have, with f, tk, sk as in the previous items:

1

2
gpxq “

ÿ

kľ1

pp ´ 1q ¨ ¨ ¨ pp ´ 2k ` 1q

p2k ´ 1q!

„

p

2k
x2k ´ xp2k´1qq ´

p ´ 2k

2k
x2kq

ȷ

“p2 ´ pqx2
„

ppp ´ 1q

2p2 ´ pq
´

p ´ 1

2 ´ p
xq´2 `

p ´ 1

2
x2q´2

ȷ

`
ÿ

kľ2

p2 ´ pqp3 ´ pq ¨ ¨ ¨ p2k ´ pq

p2k ´ 1q!
x2k

ˆ

„

ppp ´ 1q

2kp2k ´ pq
´

p ´ 1

2k ´ p
xp2k´1qq´2k `

p ´ 1

2k
x2kq´2k

ȷ

“p2 ´ pqx2pfpt1q ´ fps1qq `
ÿ

kľ2

p2 ´ pqp3 ´ pq ¨ ¨ ¨ p2k ´ pq

p2k ´ 1q!
x2k

ˆ rfptkq ´ fpskqs ą 0.

QED

Problem 2.25. (1) We have

fpaq ĺ
1

2

ˆ

α `
1

α

˙

ô a2 ´

ˆ

α `
1

α

˙

a ` 1 ĺ 0 ô

ˆ

a ´
1

α

˙

pa ´ αq ĺ 0.

This holds when 1{α ĺ a ĺ α, with equality when a “ 1{α or a “ α, whence (2.33).

(2) By (2.33) and homogeneity, we have

a2j ` b2j ĺ

ˆ

α `
1

α

˙

ajbj , @ j. (5.72)

We obtain the desired result by taking, in (5.72), the sum over j. Equality holds iff
aj
bj

P

t1{α, αu, @ j.

(3) Using the hint, we have, for x ą 0,

gpxq ´ gp´xq “
1

p

´

epp´1qx ´ e´pp´1qx
¯

´
1

q

`

ex ´ e´x
˘

“2
ÿ

kľ0

x2k`1

p2k ` 1q!

„

1

p
pp ´ 1q

2k`1
´

1

q

ȷ

“2
ÿ

kľ1

x2k`1

p2k ` 1q!

„

1

p
pp ´ 1q

2k`1
´

1

q

ȷ

ą 0,

where we have used (1.4) for k “ 0, and the fact that

1

p
pp ´ 1q

2k`1
´

1

q
ą

1

p
pp ´ 1q ´

1

q
“ 0, @ k ľ 1

(since p ą 2).
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(4) The case where p “ 2 was treated above. Assume that p ą 2. Since (using (1.4))

f 1paq “
ap ´ 1

qa2
, @ a ą 0,

we find that f decreases on p0, 1s and increases on r1,8q, and in particular its maximum
on r1{α, αs is achieved either for a “ 1{α or for a “ α. By item (3), we have

fp1{αq “ gp´ lnαq ă gplnαq “ fpαq,

and thus

1

p
ap `

1

q
ĺ

1

α

ˆ

1

p
αp `

1

q

˙

a, @
1

α
ĺ a ĺ α. (5.73)

By (5.73) and homogeneity, we have

1

p
apj `

1

q
bqj ĺ

1

α

ˆ

1

p
αp `

1

q

˙

ajbj , if aj , bj ą 0 and
1

α
ĺ

aj
bqj

ĺ α. (5.74)

Summing (5.74) over j, we obtain (2.34). Equality holds iff aj “ αbq´1
j , @ j. QED

Problem 2.26. (1) We have

p1 ` xqα ` p1 ´ xqα ´ p1 ` xq1´α ´ p1 ´ xq1´α

“ 2αp1 ´ αq
ÿ

kľ2

pα ` 1q ¨ ¨ ¨ p2k ´ 2 ` αq ´ p2 ´ αq ¨ ¨ ¨ p2k ´ 1 ´ αq

p2kq!
x2k.

(5.75)

The assumption 1{2 ă α ă 1 implies that

α ą 0, 1 ´ α ą 0, α ` 1 ą 2 ´ α ą 0, . . . , 2k ´ 2 ` α ą 2k ´ 1 ´ α ą 0. (5.76)

We obtain (2.35) from (5.75) and (5.76).

(2) With no loss of generality, we may assume that a ` b “ 2. Set X – ap{2, Y – bp{2. We
have to prove that

m – min
!

X2 ` Y 2 ` p2p ´ 2qXY ; X ľ 0, Y ľ 0, X2{p ` Y 2{p “ 2
)

ľ 2p. (5.77)

Noting that (2.36) becomes an inequality when a “ b, we actually have m ĺ 2p, and
thus (5.77) amounts to m “ 2p.

Let pX,Y q achieve the minimum in (5.77). If X “ 0 or Y “ 0, then m “ 2p and we are
done. Otherwise, we have X ą 0, Y ą 0 and there exists some µ P R such that

2X ` p2p ´ 2qY “ µX2{p´1, (5.78)

2Y ` p2p ´ 2qX “ µY 2{p´1, (5.79)

X2{p ` Y 2{p “ 2, (5.80)

X2 ` Y 2 ` p2p ´ 2qXY “ m. (5.81)
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Multiplying (5.78) by X{2, (5.79) by Y {2, adding the results and comparing the total
with (5.81), we find that

µ “ m ĺ 2p. (5.82)

Inserting (5.82) into (5.78) and (5.79) and adding the two inequalities obtained, we
obtain

X ` Y ĺ X2{p´1 ` Y 2{p´1. (5.83)

Assuming, with no loss of generality, that X ľ Y , write X2{p “ 1 ` x, Y 2{p “ 1 ´ x,
with x P r0, 1q, and set α –

p

2
P p1{2, 1q. Then (5.83) becomes

p1 ` xqα ` p1 ´ xqα ĺ p1 ` xq1´α ` p1 ´ xq1´α. (5.84)

By item (1), (5.84) implies that x “ 0, and thus X “ Y “ 1 and m “ 2p.

(3) (2.36) improves (2.37). This amounts to

ap ` bp ` p2p ´ 2qpabqp{2 ĺ 2p´1pap ` bpq, @ a, b ą 0,

which in turn is equivalent to the straightforward inequality

ap ` bp ´ 2pabqp{2 “

´

ap{2 ´ bp{2
¯2

ľ 0, @ a, b ą 0.

(2.36) improves (2.30) for x sufficiently close to 0. If 0 ĺ x ĺ 1, then (2.36) yields

p1 ` xqp ` p1 ´ xqp ľ 2p ´ p2p ´ 2qp1 ´ x2qp{2.

Therefore, the desired conclusion amounts to the existence of some δ ą 0 such that

p2p ´ 2qp1 ´ x2qp{2 ` 2p1 ` xqqp´1 ĺ 2p, @ 0 ĺ x ĺ δ. (5.85)

Using (2.38) and the fact that 0 ă p{2 ă 1 and 0 ă p ´ 1 ă 1, we find that

p1 ´ x2qp{2 ĺ 1 ´
p

2
x2, @x P r0, 1s, (5.86)

p1 ` xqqp´1 ĺ 1 ` pp ´ 1qxq, @x P r0, 1s. (5.87)

Inserting (5.86)–(5.87) into (5.85), we find that

p2p ´ 2qp1 ´ x2qp{2 ` 2p1 ` xqqp´1 ĺ 2p ´
p

2
p2p ´ 2qx2 ` 2pp ´ 1qxq ĺ 2p, (5.88)

the latter inequality being valid for sufficiently small x ľ 0 (since q ą 2 and therefore
p

2
p2p ´ 2qx2 ą 2pp ´ 1qxq for sufficiently small x). QED
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Problem 2.27. The obvious solutions are px, yq “ p1, 0q and px, yq “ p0, 1q. Let us prove
that these are the only ones. Consider px, yq such that x2 ` y2 “ 1.

If y ă 0, then 2x ĺ 2 and 2y ă 1, so that px, yq does not solve (2.39). Similarly if x ă 0.

Next, let

m – min
␣

2x ` 2y; x, y ľ 0x2 ` y2 “ 1
(

ĺ 3.

We claim that m is achieved only for px, yq “ p1, 0q or p0, 1q. In view of the above
discussion, this completes the proof. Indeed, argue by contradiction. If px, yq P p0, 1q2

achieves m, then there exists some λ P R such that

2x ln 2 “ 2λx, (5.89)
2y ln 2 “ 2λy. (5.90)

Set fpxq –
2x

x
, where 0 ă x ĺ 1. Then

f 1pxq “
2x

x2
px ln 2 ´ 1q ĺ

2x

x2
pln 2 ´ 1q ă 0.

Since (5.89)–(5.90) imply that fpxq “ fpyq, we find that x “ y, and thus x “ y “
1

?
2

.

We obtain the contradiction

3 ľ m “ 21`1{
?
2 ą 21,7 ą 3. QED

Problem 2.28. When n “ 3, we recover the familiar inequality (1.63). Assume that n ľ 4.
We rewrite (2.40) in the more tractable form

¨

˝

n
ÿ

j“1

ź

k‰j

ak

˛

‚

2

ĺ
1

nn´3

˜

n
ÿ

j“1

a2j

¸n´1

, @ a1, . . . , an ą 0. (5.91)

By homogeneity, we may assume that
řn

j“1 a
2
j “ n. Since (5.91) becomes an equality

when a1 “ ¨ ¨ ¨ “ an, we find that (5.91) is equivalent to

max

$

&

%

n
ÿ

j“1

ź

k‰j

ak;
n
ÿ

j“1

a2j “ n, aj ą 0,@ j

,

.

-

“ n.

We will actually prove the seemingly stronger assertion

max

$

&

%

n
ÿ

j“1

ź

k‰j

ak;
n
ÿ

j“1

a2j “ n, aj ľ 0,@ j

,

.

-

“ n. (5.92)

(To see that max is achieved in (5.92), we argue as for (1.80).)
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Set

a – pa1 . . . , anq, fpaq –

n
ÿ

j“1

ź

k‰j

ak, hpaq –

n
ÿ

j“1

a2j ´ n,K – ta P r0,8qn;hpaq “ 0u.

We claim that, if a P K and aj “ 0 for some j, then fpaq ă n. Indeed, assuming, e.g.,
that an “ 0, we have

fpaq “ a1 ¨ ¨ ¨ an´1 “

b

a21 ¨ ¨ ¨ a2n´1 ĺ

ˆ

a21 ` ¨ ¨ ¨ ` a2n´1

n ´ 1

˙pn´1q{2

ĺ

ˆ

1 `
1

n ´ 1

˙pn´1q{2

ă

ˆ

1 `
1

n ´ 1

˙n´1

ă e1{2 ă n.

(5.93)

Therefore, at a maximum point a of f on K we have aj ą 0, @ j. Since ∇hpaq ‰ 0 for
such a, by Theorem 1.4 there exists some µ such that

∇fpaq “ µ∇hpaq. (5.94)

In order to have a tractable formula for ∇f , we come back to the original inequality
(2.40) and write

fpaq “ P paq

n
ÿ

j“1

1

aj
, with P “ P paq –

n
ź

j“1

aj .

We find that

Bf

Baℓ
“

BP

Baℓ

n
ÿ

j“1

1

aj
´ P

1

a2ℓ
“

P

aℓ

n
ÿ

j“1

1

aj
´ P

1

a2ℓ
“

P

aℓ

ÿ

j‰ℓ

1

aj
.

Therefore, (5.94) amounts to the system

P paq

aℓ

ÿ

j‰ℓ

1

aj
“ 2µaℓ, @ ℓ. (5.95)

In particular, (5.95) implies that µ ą 0. Subtracting the lines k and ℓ of (5.95), with
k ‰ ℓ, we find that

P paq
ÿ

j‰k,ℓ

1

aj

ˆ

1

ak
´

1

aℓ

˙

“ 2µpak ´ aℓq. (5.96)

If, say, ak ą aℓ, then the left-hand side of (5.96) is negative, while the right-hand one
is positive, a contradiction. Therefore, we have a1 “ ¨ ¨ ¨ “ an “ 1. It follows that max in
(5.92) is indeed n. QED
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Problem 2.29. By repeating the proof of (5.92), for every n ľ 3 and σ ľ 1 we have

max

$

&

%

n
ÿ

j“1

ź

k‰j

ak;
n
ÿ

j“1

aσj “ n, aj ľ 0,@ j

,

.

-

“ n. (5.97)

(Some care is needed in checking the validity of (5.93) when n “ 2.) Equivalently, if
σ ľ 1, we have

Mn
0 ĺ M´1M

n´1
σ , @ a1, . . . , an ą 0. (5.98)

Substituting, in (5.98), aj “ brj , and letting s – rσ ľ r, we find that

M0 ĺ M´rM
n´1
s , @ 0 ă r ĺ s, @ a1, . . . , an ą 0, (5.99)

which is the desired generalization of (2.41). QED

Problem 2.30. Testing (2.44) with xj “ yj “ 1, @ j, we find that 2p ĺ 2n, and thus the
condition p ĺ n is necessary.

From now on, we assume that 0 ă p ĺ n. By homogeneity, it suffices to prove that

min

#

n
ź

j“1

´

xpj ` ypj

¯

; xj , yj ą 0,
n
ź

j“1

xj `

n
ź

j“1

yj “ 1

+

– m ľ 1. (5.100)

Assume, as suggested, that m is achieved by some configuration px1, . . . , ynq. Set

Sj – xpj ` ypj , P –

n
ź

j“1

Sj , Q –

n
ź

j“1

xj , R –

n
ź

j“1

yj .

By Theorem 1.4, there exists some λ P R such that

pxp´1
j

P

Sj
“ λ

Q

xj
, @ j,

pyp´1
j

P

Sj
“ λ

R

yj
, @ j,

and therefore

ypj
xpj

“
Q

R
, @ j,

which implies that there exists some t ą 0 such that yj “ txj , @ j. Substituting this into
(5.100), we find that (2.44) amounts to

p1 ` tnq
p

ĺ p1 ` tpq
n, @ t ą 0, (5.101)

which is obvious for p “ n and we prove below for 0 ă p ă n.
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Set

fptq –
p1 ` tnq

p

p1 ` tpq
n , @ t ą 0.

Then

f 1ptq “ np
p1 ` tnq

p´1

p1 ` tpq
n`1

`

tn´1 ´ tp´1
˘

#

ă 0, if 0 ă t ă 1

ą 0, if t ą 1
.

We find that fptq ľ fp1q “ 1, which implies (5.101) and completes the proof.

Bonus. Sketch of the proof of the fact that m is achieved. This follows by combining two
observations.

Observation 1. We have m ĺ 1. To see this, consider the competitor xj “ yj “ 1, @ j.

Observation 2. We may replace any competitor with another competitor such that S1 “

S2 “ ¨ ¨ ¨ “ Sn. Indeed, let

gpx1, . . . , ynq –

n
ź

j“1

´

xpj ` ypj

¯

.

Given any competitor px1, . . . , ynq in (5.100), consider the positive numbers t1, . . . , tn
such that

t1 ¨ ¨ ¨ tn “ 1,

pt1x1q
p

` pt1y1q
p

“ pt2x2q
p

` pt2y2q
p

“ ¨ ¨ ¨ “ ptnxnq
p

` ptnynq
p.

Then pt1x1, . . . , tnynq is still a competitor in (5.100) such that

gpt1x1, . . . , tnynq “ gpx1, . . . , ynq

and, in addition,

´

xpj ` ypj

¯

“ rgpx1, . . . , ynqs
1{n, @ j.

Combining the two observations, we find that

m “ mintgpx1 . . . , ynq; 0 ĺ xj , yj ĺ 1,
n
ź

j“1

xj `

n
ź

j“1

yj “ 1u,

and then the fact that m is achieved amounts to the textbook argument “a continuous
function on a compact set has a maximum point and a minimum point”. QED
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Problem 2.31. By symmetry, we may assume that a ĺ b ĺ c. We consider the case where
f is non-decreasing, the other case being similar. Since f is non-decreasing and non-
negative, the numbers x – fpaq, y – fpbq ´ fpaq and z – fpcq ´ fpbq are non-negative
and satisfy fpaq “ x, fpbq “ x ` y, fpcq “ x ` y ` z. Then

pa ´ bqpa ´ cqfpaq ` pb ´ cqpb ´ aqfpbq ` pc ´ aqpc ´ bqfpcq

“rpa ´ bqpa ´ cq ` pb ´ cqpb ´ aq ` pc ´ aqpc ´ bqsx

` rpb ´ cqpb ´ aq ` pc ´ aqpc ´ bqs y ` pc ´ aqpc ´ bqz

“
“

pb ´ aq2 ` pc ´ aqpc ´ bq
‰

x ` pc ´ bq2y ` pc ´ aqpc ´ bqz ľ 0.

QED

Problem 2.32. Recall that a, b, c ą 0 are the side lengths of a triangle iff a ă b ` c, b ă

c ` a, c ă a ` b. This yields immediately the implication “ð”.

Conversely, set

u –
a ` c ´ b

2
ą 0, v –

b ` a ´ c

2
ą 0, w –

c ` b ´ a

2
ą 0.

Then, clearly, a “ u ` v, b “ v ` w, c “ w ` u. QED

Problem 2.33. Substituting a “ u ` v, etc., (2.47) is equivalent to

pu ` vq
3

` pv ` wq
3
`pw ` uq

3

ľpu ` vqpv ´ uq
2

` pv ` wqpw ´ vq
2

` pw ` uqpu ´ wq
2

` 3pu ` vqpv ` wqpw ` uq,

which can be rewritten, using the identities pu ` vq
3

´ pu ` vqpv ´ uq
2

“ 4uvpu ` vq, etc.,
as

4uvpu ` vq ` 4vwpv ` wq ` 4wupw ` uq ľ 3pu ` vqpv ` wqpw ` uq,

and, after simplifications, as

6uvw ĺ u2v ` uv2 ` v2w ` vw2 ` w2u ` wu2. (5.102)

In turn, (5.102) is a special case of (2.9)–(2.10), with

λj “ 1{6, α “ p1, 1, 1q, α1 “ p2, 1, 0q, α2 “ p1, 2, 0q, α3 “ p0, 2, 1q, etc. QED

Problem 2.34. (1) Noting that
`

a2 ` b2 ´ c2
˘`

b2 ` c2 ´ a2
˘

“
`

b2 `
`

a2 ´ c2
˘˘`

b2 ´
`

a2 ´ c2
˘˘

“b4 ´
`

a2 ´ c2
˘2

pa ` b ´ cqpb ` c ´ aq “ pb ` pa ´ cqqpb ´ pa ´ cqq “ b2 ´ pa ´ cq2,

and developing the expressions in (2.48), we find that (2.48) amounts to

2b2pc ´ aq
2`c2 ` a2 ´ b2

˘

ľ 0,
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which holds since, by assumption, c2 ` a2 ą b2.

(2) If a, b, c are the lengths of an acute triangle, then it suffices to use item (1) and multiply
the three inequalities of the type (2.48) (obtained by circular permutation).

Otherwise, we have, for example, a2 ľ b2 ` c2. But then a2 ` b2 ą c2 and a2 ` c2 ą b2,
so that the left-hand side of (2.48) is non-positive, and thus (2.49) holds. QED

Problem 2.36. Set, for each j ľ 2 for which this makes sense, αj – aj ´ aj´1. Then
convexity is equivalent to αj ĺ αj`1, whenever this inequality makes sense. By Problem
2.35, this is thus equivalent to the existence of non-negative numbers x3, . . . , such that:

a2 “ a1 ` α2, a3 “ a2 ` α3 “ a1 ` α2 ` x3, a4 “ a3 ` α4 “ a1 ` α2 ` x3 ` x4, . . . ,

that is, when j ľ 3, aj “ a1 ` α2 `
řj

ℓ“3 xℓ. QED

Problem 2.37. Step 1. Reformulation of (5.24). Let xj be as in the solution of Problem
2.36. Set x1 – a1, x2 – α2 “ a2 ´ a1. Define similarly yj . With the notation in the
solution of Problem 1.19, and by repeating the argument leading to (5.24), item (1) is
equivalent to

n
ÿ

k“1

n
ÿ

ℓ“1

xkyℓCardSpk, ℓq ĺ

n
ÿ

k“1

n
ÿ

ℓ“1

xkyℓCardT pk, ℓq,

@x1, x2, y1, y2, @x3, . . . , xn, y3, . . . , yn ľ 0.

(5.103)

As noticed there, CardSpk, 1q “ CardT pk, 1q, @ k, and CardSp1, ℓq “ CardT p1, ℓq, @ ℓ,
and thus (5.103) amounts to

n
ÿ

k“2

n
ÿ

ℓ“2

xkyℓCardSpk, ℓq ĺ

n
ÿ

k“2

n
ÿ

ℓ“2

xkyℓCardT pk, ℓq,

@x2, y2, @x3, . . . , xn, y3, . . . , yn ľ 0.

(5.104)

Step 2. Simple formulas for CardSpk, 2q and CardSp2, ℓq, and consequences. Since

Spk, 2q “ tk, k ` 1, . . . , nuztσ´1p1qu, @ k,

we have

CardSpk, 2q “

#

n ´ k ` 1, if k ą σ´1p1q

n ´ k, if k ĺ σ´1p1q,
, @ k,

and, in particular, CardSpk, 2q takes twice only the value n ´ σ´1p1q.

Similarly, we have

Sp2, ℓq “ tσ´1pℓq, σ´1pℓ ` 1q, . . . , σ´1pnquzt1u,@ ℓ,
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and

CardSp2, ℓq “

#

n ´ ℓ ` 1, if ℓ ą σp1q

n ´ ℓ, if ℓ ĺ σp1q,
, @ ℓ.

In particular, CardSp2, ℓq takes twice only the value n ´ σp1q.

From the above, we derive the following consequences:

rCardSpk, 2q “ CardT pk, 2q, @ k, and CardSp2, ℓq “ CardT p2, ℓq, @ ℓs

ô
“

σp1q “ τp1q and σ´1p1q “ τ´1p1q
‰

.
(5.105)

Step 3. “(2)ñ (1)” By “ð” in (5.105), we have CardSpk, 2q “ CardT pk, 2q, @ k, and
CardSp2, ℓq “ CardT p2, ℓq, @ ℓ. Therefore, (5.104) amounts to

n
ÿ

k“3

n
ÿ

ℓ“3

xkyℓCardSpk, ℓq ĺ

n
ÿ

k“3

n
ÿ

ℓ“3

xkyℓCardT pk, ℓq,

@x3, . . . , xn, y3, . . . , yn ľ 0.

(5.106)

In turn, (5.106) holds, thanks to the assumption (2.51) (which amounts to CardSpk, ℓq ĺ

CardT pk, ℓq, @ k, ℓ ľ 3).

Step 4. “(1)ñ (2)” Step 1. σp1q “ τp1q and σ´1p1q “ τ´1p1q. Fix m ľ 1 and let xk – δkm.
Letting first y2 “ 1, then y2 “ ´1 in (5.103), we find that CardSpm, 2q “ CardT pm, 2q,
@m, and similarly CardSp2, pq “ CardT p2, pq, @ p. By “ñ” in (5.105), this implies that
σp1q “ τp1q and σ´1p1q “ τ´1p1q.

Finally, let 3 ĺ m, p ĺ n. By letting xk – δkm and yℓ – δℓp, we find that CardSpm, pq ĺ

CardT pm, pq, i.e., (2.51) holds. QED

Problem 2.38. (1) Set S – a ` b and P – ab. Then (2.52) amounts to

S2P ´ 3P 2 ´ 2P ` 1 ľ 0.

Noting that S2 ľ 4P , we find that

S2P ´ 3P 2 ´ 2P ` 1 ľ pP ´ 1q2 ľ 0,

whence the conclusion. Equality occurs iff P “ 1 and S “ 4, i.e., a “ b “ 1.

(2) Set Q –
?
P ľ

1

2
. Since S ľ 2Q, we may write S “ 2Q ` x, with x ľ 0. (2.53) is

equivalent to
”

p1 ` Qq
2

´ 2
ı

loooooooomoooooooon

ľ1{4

x2 ` 2p1 ` Qq
2

p2Q ´ 1q
looomooon

ľ0

x ľ 0.

Equality holds iff x “ 0, i.e., a “ b.

Remark. By carefully choosing x ą 0 in the above, one may see that, under the assumption

ab ă
1

4
, inequality (2.53) is, in general, wrong. QED
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Problem 2.39. Write a “ 1 ` x, b “ 1 ` y, c “ 1 ` z, where x, y, z ľ 0. With these
substitutions, (2.54) becomes x3 ` y3 ` z3 ľ 3xyz, which follows from (AM-GM). QED

Problem 2.40. It is natural to set, as for a triangle,

´a ` b ` c ` d “ 4x ą 0, a ´ b ` c ` d “ 4y ą 0, etc.,

so that

a ` b ` c ` d “ 2px ` y ` z ` tq, a “ ´x ` y ` z ` t, etc.

With these substitutions, (2.55) becomes

44xyzt ĺ 24pz ` tqpt ` xqpx ` yqpy ` zq,

which follows from z ` t ľ 2
?
zt, etc. QED

Problem 2.41. The last constraint, 2d ą a, seems superfluous, since, if all the other con-
straints except this one are satisfied, then the inequality to prove is clear. Therefore, we
keep only the first three constraints, and write, with x, y, z ą 0,

a “
b

2
` 4x, b “

c

2
` 4y, c “

d

2
` 4z,

leading to

a “
d

8
` 4x ` 2y ` z, b “

d

4
` 4y ` 2z, c “

d

2
` 4z. (5.107)

By homogeneity, we may choose d “ 8, and then, inserting (5.107) into (2.56), we have
to prove that

83xyzp16 ´ p1 ` 4x ` 2y ` zqq ĺ p1 ` 4x ` 2y ` zqp2 ` 4y ` 2zqp4 ` 4zq8,

which is equivalent to

128xyz ĺ p1 ` 4x ` 2y ` zqp1 ` 2y ` zqp1 ` zq ` 8xyzp1 ` 4x ` 2y ` zq — R.

This inequality could be proved by majorization, but a simpler approach consists of
applying (AM-GM) to each expression above, by writing, e.g.,

1 ` 4x ` 2y ` z “ 1 ` x ` x ` x ` x ` y ` y ` z ľ 8
`

1 ¨ x4 ¨ y2 ¨ z
˘1{8

.

We then get

R ľ8
`

1 ¨ x4 ¨ y2 ¨ z
˘1{8

¨ 4
`

1 ¨ y2 ¨ z
˘1{4

¨ 2p1 ¨ zq
1{2

` 8xyz ¨ 8
`

1 ¨ x4 ¨ y2 ¨ z
˘1{8

“64x1{2y1{4z1{8
´

y1{2z3{4 ` xyz
¯

ľ 128x1{2y1{4z1{8
´

y1{2z3{4 ¨ xyz
¯1{2

“128xyz.

QED
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5.3 More on inequalities

Problem 3.1. If A “ pajkq1ĺj,kĺn, then, clearly, ajk ľ 0 and (with δ standing for the
Kronecker symbol)

ajk “
ÿ

σPSn

λσδkσpjq.

We have
n
ÿ

k“1

ajk “

n
ÿ

k“1

ÿ

σPSn

λσδkσpjq “
ÿ

σPSn

n
ÿ

k“1

λσδkσpjq “
ÿ

σPSn

λσ “ 1, @ j,

and similarly
řn

j“1 ajk “ 1, @ k. QED

Problem 3.2. (1) Each line (and each column) must contain a non-zero entry.

(2) By the above, on each line and on each column of A there is exactly one non-zero
entry, which has to be one. If ajfpjq denotes non-zero entry on line j, then f is injective,
(for otherwise the column fpjq would contain two non-zero entries), and thus f is a
permutation and A “ Pf . QED

Problem 3.3. Since A is not a permutation matrix, it contains some entry aj1k1 P p0, 1q.
Since the sum of the entries on the line j1 is 1, there has to be another entry on this line
such that aj1k2 P p0, 1q. Similarly, there has to be an entry on the column k2, different from
aj1k2 P p0, 1q and such that aj2k2 P p0, 1q. We continue as above until the (finite) step where
we obtain again one of the entries considered before. This yields m different entries, with
m ľ 4. Consider now the smallest m that occurs in such a process. We claim that m is
even, whence the conclusion of the problem. Argue by contradiction and assume that m
is odd. Then the first, the second, and the last entry in the chain are on the same line.
This means that we can: (i) remove the first and the last entry in the chain; (ii) replace the
first entry with the last one, and obtain a chain of pm ´ 1q entries, contradicting thus the
minimality of m. QED

Problem 3.4. (1) Let

α – mintaj1k1 , aj2k2 , . . .u ą 0,

respectively

β – mintaj1k2 , aj2k3 , . . .u ą 0.

Let B, respectively C, be the matrix obtained by replacing, in A, the cycle aj1k1 , . . . , ajℓk1
with aj1k1 ´ α, aj1k2 ` α, aj2k2 ´ α, aj2k3 ` α, . . . , ajℓk1 ` α, respectively aj1k1 ` β, aj1k2 ´

β, aj2k2 ` β, aj2k3 ´ β, 91s, ajℓk1 ´ β.

By definition of α, respectively β, B, respectively C, have at least one zero entry
more than A. B and C are also clearly DS. Finally, if we set t –

α

α ` β
P p0, 1q, then
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p1 ´ tqC ` tD “ A. (This can be checked separately on the entries of the form ajℓkℓ ,
ajℓkℓ`1

, and on the entries that are not in the cycle.)

(2) By Problem 3.2, iterating the process in item (1), we express, in at most n2 ´ n steps,
A as a convex combination of permutation matrices. QED

Problem 3.5. The square matrices of size n form a vector space of dimension n2. QED

Problem 3.6. If A is of size n, set B – A´ Id, B “ pbjkq1ĺj,kĺn. Consider the application

ΦpAq – pbjkq1ĺj,kĺn´1.

When A is DS, B (and thus A) is completely determined by ΦpAq, since

bjn “ ´

n´1
ÿ

k“1

bjk, @ 1 ĺ j ĺ n ´ 1, bnk “ ´

n´1
ÿ

j“1

, @ 1 ĺ k ĺ n.

Thus Φ is one-to-one on the set of DS matrices, which can therefore be identified with
a set of matrices of size pn ´ 1q, and thus with a part of a space of dimension pn ´ 1q

2.

Les A be DS. Write, as in Theorem 3.1, A “
ř

σPSn
λσPσ. Clearly, ΦpAq “

ř

σPSn
λσΦpPσq.

By the Steinitz lemma, we may assume that at most pn ´ 1q
2 of the λσ’s are non-zero. Fi-

nally, A “
ř

σPSn
λσPσ, where at most pn ´ 1q

2 of the λσ’s are non-zero. QED

Problem 3.7. We have to consider the case where g1 is (strictly) increasing. The proof is
essentially the same as the one of Theorem 3.3. Using the same notation, it is convenient
to write, this time,

Kpx, y, zq “ r

ˆ

γ ´ β

γ ´ α
α `

β ´ α

γ ´ α
γ

˙

´
γ ´ β

γ ´ α
rpαq ´

β ´ α

γ ´ α
rpγq.

If xj ă xj`1, then γpxj`1q ą βpxj`1q ą αpxj`1q, and we find that F 1pxj`1q ą 0.
If xj “ xj`1, then, as in the proof of Theorem 3.3, for y ą xj`1 close to xj`1 we have
F 1pyq ą 0. In both cases, we obtain a contradiction. QED

Problem 3.9. (1) (3.19) is equivalent to

4px ` yq
?
xy ĺ px ` yq

2
` 4xy, @x, y ą 0,

which in turn amounts to
`?

x ´
?
y
˘4

ľ 0.

(2) Assume that (3.20) holds. Then

θ ľ
G ´ H

A ´ H
, @x, y ą 0, x ‰ y,

and in particular, by taking x “ t, y “
1

t
, with t ‰ 1, we find that

θ ľ lim
tÑ1

G ´ H

A ´ H
“ lim

tÑ1

2t

pt ` 1q
2 “

1

2
.
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Finally, when θ ľ
1

2
, (3.20) follows from (3.19), since

θA ` p1 ´ θqH “
1

2
A `

1

2
H `

ˆ

θ ´
1

2

˙

pA ´ Hq ľ
1

2
A `

1

2
H. QED

Problem 3.10. Testing (3.21) with x1 “ ε ą 0 and x2 “ ¨ ¨ ¨ “ xn “ 1 and letting ε Ñ 0,

we find that θ ľ

ˆ

n ´ 1

n

˙n´1

. Same proof for (3.22). QED

Problem 3.11. By homogeneity, we may assume that xy “ 1 and thus y “ 1{x. In this
case, we have M´r “ 1{Mr and M0 “ 1, so that (3.23) is proved as follows:

1

2
M q

r `
1

2
M q

´r ľ pMrM´rq
q{2

“ 1 “ M q
0 .

The optimality of (3.23) amounts to the fact that, if

θM q
r ` p1 ´ θqM q

´r ľ 1, @x, y ą 0, (5.108)

then θ ľ 1{2. Let y “ 1{x, so that

M q
r “

ˆ

xr ` x´r

2

˙q{r

,M q
´r “

1

M q
r
.

Since the image of the function

r1,8q Q x ÞÑ M q
r

is r1,8q, the validity of (5.108) for this choice of y amounts to

fptq – θt ` p1 ´ θq
1

t
ľ 1, @ t ľ 1. (5.109)

If θ ă 1{2, then f has a minimum equal to 2
a

θp1 ´ θq ă 2 at t “

c

1 ´ θ

θ
. Therefore,

(5.109) implies that θ ľ 1{2.

Alternatively, since fp1q “ 1, if (5.109) holds then f 1p1q ľ 0, i.e., θ ľ 1{2. QED

Problem 3.12. Step 1. We follow the first hint. By homogeneity and symmetry, we may
assume that xy “ 1 and x ľ 1. Since (3.24) is clear when x “ y “ 1, we may further
assume that x ą 1, so that we may write x “ et, with t ą 0. We have reduced the
problem to

fptq –
ert ` e´rt

2
` r

ˆ

2

et ` e´t

˙r

ą r ` 1, @ t ą 0. (5.110)
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Step 2. We follow the second hint. Since fp0q “ r ` 1, it thus suffices to prove that
f 1ptq ą 0, @ t ą 0. Writing f in the more compact form fptq “ coshprtq ` rpcosh tq´r and
using the fact that cosh1 “ sinh, we have to prove that

sinhprtq

r
pcosh tqr`1

ą sinh t, @ t ą 0. (5.111)

Step 3. We follow the third hint. In order to prove (5.111), we rely on (3.25)–(3.26) and
find that (5.111) amounts to

ˆ

t `
r2t3

3!
`

r4t5

5!
` ¨ ¨ ¨

˙ˆ

1 `
t2

2!
`

t4

4!
` ¨ ¨ ¨

˙r`1

ą t `
t3

3!
`

t5

5!
` ¨ ¨ ¨ ,

which clearly holds, since

ˆ

t `
r2t3

3!
`

r4t5

5!
` ¨ ¨ ¨

˙ˆ

1 `
t2

2!
`

t4

4!
` ¨ ¨ ¨

˙r`1

ąt

ˆ

1 `
t2

2!
`

t4

4!
` ¨ ¨ ¨

˙

ąt `
t3

3!
`

t5

5!
` ¨ ¨ ¨

Step 4. The optimality of (3.24). Let x “ et, y “ e´t, with t ľ 0. Set

gptq – θM r
r ` p1 ´ θqM r

´1 “ θ coshprtq ` p1 ´ θqpcosh tq´r.

It suffices to prove that, if gptq ľ 1, @ t ľ 0, then θ ľ
1

r ` 1
. For this purpose, we note that

g1ptq “ θr sinhprtq ´ p1 ´ θqrpsinh tqpcosh tq´r´1,

g2ptq “ θr2 coshprtq ` p1 ´ θqrpr ` 1qpsinh tq2pcosh tq´r´2
´ p1 ´ θqrpcosh tq´r.

We have gp0q “ 1 and g1p0q “ 0. Therefore, if gptq ľ 1, @ t, then g2p0q ľ 0. Since

g2p0q “ θr2 ´ p1 ´ θqr, we find that θ ľ
1

r ` 1
. QED

Problem 3.13. Step 1. Initial reductions. The case where r “ 1 was settled in Problem
3.11. We therefore assume that 0 ă r ă 1. The reduction to the case where y “ 1{x and
x ą 1 is obtained as in the previous problem.

Step 2. Identification of the limiting case. The derivative of the right-hand side of (3.27) is

q

r ` 1

`

xr´1 ´ x´r´1
˘

ˆ

xr ` x´r

2

˙q{r´1

´
qr

r ` 1

`

1 ´ x´2
˘

ˆ

x ` x´1

2

˙´q´1

,

and thus it suffices to prove that

`

xr´1 ´ x´r´1
˘

ˆ

xr ` x´r

2

˙q{r´1

ą r
`

1 ´ x´2
˘

ˆ

x ` x´1

2

˙´q´1

,

@ 0 ă r ă 1, @ q ą 0, @x ą 1.

(5.112)
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For fixed x, the left-hand side of (5.112) increases with q, while the right-hand side
decreases with q. Therefore, it suffices to prove the counterpart of (5.112) when q “ 0,
namely,

`

xr´1 ´ x´r´1
˘

ˆ

xr ` x´r

2

˙´1

ą r
`

1 ´ x´2
˘

ˆ

x ` x´1

2

˙´1

,

@ 0 ă r ă 1, @x ą 1.

(5.113)

Step 3. Proof of (5.113). Multiplying (5.113) with
xr`2

2

`

xr ` x´r
˘`

x ` x´1
˘

, we see that
we have to prove that fpxq ą 0, @x ą 1, where

fpxq –
`

x2r ´ 1
˘`

x2 ` 1
˘

´ r
`

x2 ´ 1
˘`

x2r ` 1
˘

“p1 ´ rqx2r`2 ´ p1 ` rqx2 ` p1 ` rqx2r ´ p1 ´ rq, @x ą 0.

By intimidation, we have

f 1pxq “ 2
`

1 ´ r2
˘

x2r`1 ´ 2p1 ` rqx ` 2rp1 ` rqx2r´1,

f2pxq “ 2
`

1 ´ r2
˘

p2r ` 1qx2r ´ 2p1 ` rq ` 2rp1 ` rqp2r ´ 1qx2r´2,

f3pxq “ 4r
`

1 ´ r2
˘

p2r ` 1qx2r´1 ´ 4r
`

1 ´ r2
˘

p2r ´ 1qx2r´3,

so that fp1q “ 0, f 1p1q “ 0, f2p1q “ 0, and

f3pxq “ 4r
`

1 ´ r2
˘

x2r´3
“

p2r ` 1q
`

x2 ´ 1
˘

` 2
‰

ą 0, @ 0 ă r ă 1, @x ą 1.

We find that, indeed, fpxq ą 0, @x ą 1, and we are done.

Step 4. Optimality. Assume that θ is such that M q
0 ĺ θM q

r ` p1 ´ θqM q
´1. With y “ 1{x, set

gpxq – θM q
r ` p1 ´ θqM q

´1.

Again by intimidation, we have

g1pxq “ θq
`

xr´1 ´ x´r´1
˘

M q´1
r ´ p1 ´ θq

`

1 ´ x´2
˘

M q´1
´1 ,

g2pxq “θqpq ´ 1q
`

xr´1 ´ x´r´1
˘2
M q´2

r ` θq
`

pr ´ 1qxr´2 ` pr ` 1qx´r´2
˘

M q´1
r

` p1 ´ θqqpq ´ 1q
`

1 ´ x´2
˘2
M q´2

´1 ´ 2p1 ´ θqqx´3M q´1
´1 .

Since gp1q “ 1 and g1p1q “ 0, if gpxq ľ 1, @x ą 0, then g2p1q ľ 0. This amounts to

θ ľ
1

r ` 1
.

Step 5. Bonus. (Proof by intimidation.) We use notation similar to the one in Step 4 in
Problem 3.12. Write x “ et, y “ e´t, and set

gptq –
1

r ` 1
M q

r `
r

r ` 1
M q

´1 “
1

r ` 1
rcoshprtqs

q{r
`

r

r ` 1
rcosh ts´q.
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By intimidation, we have gp0q “ 1, g1p0q “ 0, g2p0q “ 0, g3p0q “ 0, and

gp4qp0q “
qr

r ` 1

`

2 ´ 2r2 ` 3q ` 3qr
˘

.

Since r ą 1, for sufficiently small q ą 0 we have gp4qp0q ă 0. For such q, for sufficiently
small t ą 0, we have gptq ă 1, and therefore (3.27) does not hold. QED

Problem 3.14. Step 1. Initial reductions. Letting y “ 1{x, x “ et, with t ą 0, it suffices to
prove that

1

r ` 1
rcoshprtqs

q{r
`

r

r ` 1
rcosh ts´q

ą 1, @ t ą 0, (5.114)

and therefore it suffices to prove that the derivative of the left-hand side of (5.114) is ą 0
when t ą 0. This amounts to

sinhprtqrcoshprtqs
q{r´1

ą r sinhprtqrcosh ts´q´1, @ t ą 0. (5.115)

Since the left-hand side of (5.115) increases with q, while the right-hand decreases
with q, it suffices to prove (5.115) when q “ 1. This amounts to

sinhprtq

r sinh t
rcosh ts2 ą rcoshprtqs

1´1{r. (5.116)

Step 2. We use the hint (ii): since r ą 1 and t ą 0, we have

sinhprtq

r sinh t
“

rt

1!
`

r3t3

3!
`

r5t5

5!
` ¨ ¨ ¨

rt

1!
`

rt3

3!
`

rt5

5!
` ¨ ¨ ¨

ą 1. (5.117)

Step 3. We use the hint (iii): when 0 ă r ĺ 2, we have

rcoshprtqs
1´1{r

“
“

2 cosh2prt{2q ´ 1
‰1´1{r

ĺ
“

2 cosh2 t ´ 1
‰1´1{r

ĺ
“

2 cosh2 t ´ 1
‰1{2

.
(5.118)

In view of (5.117) and (5.118), we are done if

cosh2 t ľ
“

2 cosh2 t ´ 1
‰1{2

.

But this reduces to
“

cosh2 t ´ 1
‰2

ľ 0.

Step 4. We prove that (3.28) does not hold when r “ 3 and q “ 1. Following the hint, we
let y “ 1{x and set

z – x `
1

x
ľ 2.
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Since

x3 `
1

x3
“ z3 ´ 3z,

and, for any z ľ 2, one can find some x ą 0 such that z “ x`1{x, the inequality we want
to disprove reads

1 ĺ
1

4

3

c

z3 ´ 3z

2
`

3

4

2

z
,@ z ľ 2.

Equivalently, we want to disprove the inequality

z3
`

z3 ´ 3z
˘

´ 16p2z ´ 2q
3

ľ 0,@ z ľ 2,

which is in turn equivalent to fpzq ľ 0, @ z ľ 2, where, by intimidation,

fpzq –z6 ´ 3z4 ´ 128z3 ` 576z2 ´ 864z ` 432

“pz ´ 2q
2`z4 ` 4z3 ` 9z2 ´ 108z ` 108

˘

.

Since the expression in the last bracket is ă 0 when z “ 2, we find that, indeed, (3.28)
does not hold when r “ 3 and q “ 1. QED

Problem 3.16. Similarly to the solution of Problem 3.15, we have to prove that fptq ľ 2r,
@ 0 ĺ t ĺ 1, where

fptq – p1 ` tqr ` p1 ´ tqr ` αP ptq, α – 2r ´ 2, P ptq –
`

1 ´ t2
˘r{2

.

Arguing as in Step 2 in the solution of Problem 3.16, we are done if we prove that

gptq – p1 ` tqr ´ p1 ´ tqr ´ 2rt ą 0, @ 0 ă t ĺ 1. (5.119)

Since gp0q “ 0, (5.119) follows if g1ptq ą 0, @ 0 ă t ĺ 1. In turn, this follows from the
strict convexity of r0,8q Q x ÞÑ hpxq – xr´1, which implies that

g1ptq “ 2r

„

1

2
hp1 ` tq `

1

2
hp1 ´ tq ´ h

ˆ

1

2
p1 ` tq `

1

2
p1 ´ tq

˙ȷ

ą 0, @ 0 ă t ĺ 1.

For the optimality part, assume that θ is such that

M r
1 ĺ θM r

r ` p1 ´ θqM r
0 , @x, y ą 0. (5.120)

Testing (5.120) with x “ 1 and y “ 1 ` 2t, t ľ 0, we find that

fptq –
θ

2
r1 ` p1 ` 2tqrs ` p1 ´ θqp1 ` 2tqr{2

´ p1 ` tqr ľ 0, @ t ľ 0.

By intimidation, we have fp0q “ 1, f 1p0q “ 0,

f2p0q “ 2θrpr ´ 1q ` p1 ´ θqrpr ´ 2q ´ rpr ´ 1q.

If (5.120) holds, then f2p0q ľ 0, which is equivalent to θ ľ 1{r. QED
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Problem 3.17. With no loss of generality, we may assume that q ă r and x` y “ 2. Then
M1 “ 1, 0 ĺ M0 ĺ 1, and (3.29) reads

pM q
r q

p
“ M r

r ľ2r´1 ´
`

2r´1 ´ 1
˘

M r
0

“2pq´q{rqp ´

´

2pq´q{rqp ´ 1p
¯

pM q
0 q

p
.

(5.121)

Using (5.121) and the inequality (2.1) in Problem 2.2, we find that

M q
r ľ

”

2pq´q{rqp ´

´

2pq´q{rqp ´ 1p
¯

pM q
0 q

p
ı1{p

ľ2q´q{r ´

´

2q´q{r ´ 1
¯

M q
0 “ 2q´q{rM q

1 ´

´

2q´q{r ´ 1
¯

M q
0 ,

which is equivalent to (3.33).

The optimality of θ “
1

2q´q{r
when

M q
1 ĺ θM q

r ` p1 ´ θqM q
0 , @x, y ą 0, (5.122)

holds is obtained by testing (5.122) with x “ 2 and y “ 0. QED

Problem 3.20. Proof by contradiction. Take x1 “ t ą 0 and x2 “ ¨ ¨ ¨ “ xn “ 1, and set

F ptq – θM r
r ` p1 ´ θqM r

0 ´ M r
1 “ θ

pn ´ 1q ` tr

n
` p1 ´ θqtr{n ´

ˆ

n ´ 1 ` t

n

˙r

.

For θ as in the statement, we have F p0q “ 0. On the other hand, when r ą n we have

F 1p0q “ ´
r

n

ˆ

n ´ 1

n

˙r´1

ă 0,

and thus, for small t ą 0, we have F ptq ă 0, implying that (3.40) does not hold. QED

Problem 3.21. For the validity of (3.47), repeat the solution of Problem 3.17, assuming,
e.g., that

ř

xj “ n. For the optimality, test (3.47) with x1 “ ε, x2 “ ¨ ¨ ¨ “ xn “ 1, and let
ε Ñ 0. QED

Problem 3.22. Fix x1, . . . , xn. For 1 ă r ĺ n and q “ 1 (3.33) (when n “ 2), respectively
(3.47) (when n ľ 3) are equivalent to F prq ľ 0, where

F prq – pn ´ 1q
1´1{r

˜

n
ÿ

j“1

xrj

¸1{r

`

´

n ´ n1{rpn ´ 1q
1´1{r

¯

n
ź

j“1

x
1{n
j ´

n
ÿ

j“1

xj .

Since, clearly, F p1q “ 0, we find that F 1p1q ľ 0. Next, with

S “ Sprq –

n
ÿ

j“1

xrj ,
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we have, by intimidation,

F 1prq “
1

r2
pn ´ 1q

1´1{rS1{r lnpn ´ 1q

` pn ´ 1q
1´1{rS1{r

»

—

—

—

—

–

´
1

r2
lnS `

1

r

n
ÿ

j“1

xrj lnxj

S

fi

ffi

ffi

ffi

ffi

fl

`
1

r2
n1{rpn ´ 1q

1´1{r ln

ˆ

n

n ´ 1

˙ n
ź

j“1

x
1{n
j .

In particular, we have

F 1p1q “ Sp1q lnpn ´ 1q ´ Sp1q lnSp1q `

n
ÿ

j“1

xj lnxj ` n ln

ˆ

n

n ´ 1

˙ n
ź

j“1

x
1{n
j ,

so that, by intimidation, the condition F 1p1q ľ 0 is precisely (3.49). QED

5.4 Problems on inequalities

Problem 4.1. With no loss of generality, we may assume that xn ĺ xj , @ j, and in partic-
ular xn ĺ x2. Then

x1
x2 ` x1

`
xn

xn ` x1
ĺ

x1
xn ` x1

`
xn

xn ` x1
“ 1. (5.123)

Since, on the other hand, we clearly have
xj

xj ` xj`1
ă 1,@ 2 ĺ j ĺ n ´ 1, (5.124)

we obtain (4.1) from (5.123) and (5.124).

In order to prove the optimality of (4.1), assume that it holds for some C (in place of
n ´ 1). Letting xn – 1, xn´1 – t ą 0, xn´2 – t2, . . . , x1 – tn´1, we find that

C ľ lim
tÑ8

ˆ

tn´1

tn´1 ` tn´2
` ¨ ¨ ¨ `

t

t ` 1
`

1

1 ` tn

˙

“ n ´ 1. QED

Problem 4.2. We will establish the inequality

a1 ` ¨ ¨ ¨ ` an
n

´ n
?
a1 ¨ ¨ ¨ an ľ

1

n
p
?
a1 ´

?
a2q

2 , @n ľ 2, @ a1, . . . , an ą 0. (5.125)

Granted (5.125), we have, by symmetry,

a1 ` ¨ ¨ ¨ ` an
n

´ n
?
a1 ¨ ¨ ¨ an ľ

1

n

`?
aj ´

?
ak
˘2

,

@n ľ 2, @ 1 ĺ j ă k ĺ n, @ a1, . . . , an ą 0,
(5.126)
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and summing up all the inequalities (5.126) we obtain (4.2). Incidentally, (4.2) implies
that equality in (AM-GM) requires a1 “ ¨ ¨ ¨ “ an.

We now check the validity of (5.125). The case n “ 2 is clear (with equality). Let
fnpa1, . . . , anq denote the left-hand side of (5.126). We will prove the inequality

fnpa1, . . . , anq ľ
n ´ 1

n
fn´1pa1, . . . , an´1q,

@n ľ 3, @ a1, . . . , an ą 0.
(5.127)

(Clearly, (5.127) implies (5.125).)

Fix a1, . . . , an´1. Then a ÞÑ fnpa1, . . . , an´1, aq attains its minimum for

a – n´1
?
a1 ¨ ¨ ¨ an´1,

and for this a we have

fnpa1, . . . , an´1, aq “
n ´ 1

n
fn´1pa1, . . . , an´1q,

whence the conclusion. QED

Problem 4.3. The function

p´8, T q Q x ÞÑ fpxq –
x

T ´ x
“ ´1 `

T

T ´ x

is strictly convex. (This can be checked either directly via (J), or by noting that f2pxq “

2T {pT ´ xq
3

ą 0.) (GJ) yields

f

ˆ

S

n

˙

ĺ

n
ÿ

j“1

1

n
fpajq,

which amounts to (4.3). Moreover, equality occurs in (4.3) iff a1 “ . . . “ an. QED

Problem 4.4. With a, c fixed, we study the function

pc,8q Q b ÞÑ fpbq –
?
ab ´

a

cpa ´ cq ´
a

cpb ´ cq.

We have

f 1pbq “ ppa ´ cqb ´ acqgpbq,

with gpbq ą 0. Thus f is decreasing on pc, , b0s and increasing on rb0,8q, where b0 –
ac

a ´ c
ą c. Since fpb0q “ 0, we have fpbq ľ 0, @ b ą c. QED

Problem 4.5. Setting fpΛq – xΛ, Λ P R3, inequality (4.5) is equivalent to

fp1, 0,´1q ` fp´1, 1, 0q ` fp0,´1, 1q

ĺ fpα,´α, 0q ` fp0, α,´αq ` fp´α, 0, αq.
(5.128)
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Using Problem 2.4 and the fact that α ľ 2, we have

fp1, 0,´1q “ f

ˆ

α ` 3

3α
pα,´α, 0q `

α ` 3

3α
p0, α,´αq `

α ´ 2

3α
p´α, 0, αq

˙

ĺ
α ` 3

3α
fpα,´α, 0q `

α ` 3

3α
fp0, α,´αq `

α ´ 2

3α
fp´α, 0, αq,

and two other similar inequalities. We obtain (5.128) by taking the sum of these three
inequalities. QED

Problem 4.6. Possibly by interchanging a and b, we may assume that r ľ s. Let t –

s{r ĺ 1. Denoting x – ar, y – br, y – cs, we are looking for

max
␣

xt`1 ` yt`1 ` zt`1 ´ xyt ´ yzt ´ zxt; αr ĺ x, y, z ĺ βr
(

. (5.129)

The maximum in (5.129) is achieved (“continuous function on a compact”). Fix y and
z and consider the function

p0,8q Q x ÞÑ fpxq – xt`1 ` yt`1 ` zt`1 ´ xyt ´ yzt ´ zxt.

Since 0 ă t ĺ 1, have

f2pxq “ tpt ` 1qxt´1 ´ tpt ´ 1qzxt´2 ą 0, @ t ą 0,

and thus f is convex. We find that fpxq ĺ max pfpαrq, fpβrqq. The same argument holds
in the variables y and z. We find that the expression considered in (5.129) has a maximum
point px, y, zq P tαr, βru

3. Calculating the expression at the 8 possible triples, we find that
max “ pβr ´ αrqpβs ´ αsq. QED

Problem 4.7. The function p0,8q Q x ÞÑ 1{x2 being convex, we try to use Theorem 1.1.
The equation

2x ` 2y ` z “ αp4x ` yq ` βp4y ` zq ` p4z ` xq

(with α, β, γ independent of x, y, z) has, by identification of coefficients, the solution α “

6{13, β “ 5{13, γ “ 2{13. We find that
¨

˝

2x ` 2y ` z
2y ` 2z ` x
2z ` 2z ` y

˛

‚“ A

¨

˝

4x ` y
4y ` z
4z ` x

˛

‚, where A “

¨

˝

α β γ
γ α β
β γ α

˛

‚.

A being DS, we conclude via Theorem 1.1. QED

Problem 4.8. Let fpa, b, cq denote the left-hand side of (4.8). The form of the denomina-
tors suggests writing

a3

a2 ` ab ` b2
“

a3 ´ b3

a2 ` ab ` b2
`

b3

a2 ` ab ` b2
“ a ´ b `

b3

a2 ` ab ` b2
. (5.130)
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Summing (5.130) and its permutations, we find that fpa, b, cq “ fpb, a, cq, and thus

2fpa, b, cq “fpa, b, cq ` fpb, a, cq

“
a3 ` b3

a2 ` ab ` b2
`

b3 ` c3

b2 ` bc ` c2
`

c3 ` a3

c2 ` ca ` a2

“
pa ` bq

`

a2 ´ ab ` b2
˘

a2 ` ab ` b2
`

pb ` cq
`

b2 ´ bc ` c2
˘

b2 ` bc ` c2
`

pc ` aq
`

c2 ´ ca ` a2
˘

c2 ` ca ` a2

“2pa ` b ` cq ´ 2
abpa ` bq

a2 ` ab ` b2
´ 2

bcpb ` cq

b2 ` bc ` c2
´ 2

capc ` aq

c2 ` ca ` a2
.

Therefore, (4.8) amounts to

abpa ` bq

a2 ` ab ` b2
`

bcpb ` cq

b2 ` bc ` c2
`

capc ` aq

c2 ` ca ` a2
ĺ

2

3
pa ` b ` cq. (5.131)

Since 3ab ĺ a2 ` ab ` b2, we find that

abpa ` bq

a2 ` ab ` b2
ĺ

a ` b

3
. (5.132)

(5.131) is obtained by summing (5.132) and its permutations.

Alternatively, one can see that we are in the special case fpxq “ x3, x ą 0, of (2.20). QED

Problem 4.9. With fptq –
at ` bt

at{2bt{2
, the conclusion amounts to fp2r ` 1q ą fp1q, @ r ą 0.

It thus suffices to prove that f is increasing on p0,8q. Assuming, e.g., that a ą b, write
a{b “ e2x, with x ą 0. Then fptq “ ext ` e´xt and therefore

f 1ptq “ x
`

ext ´ e´xt
˘

ą 0, @ t ą 0. QED

Problem 4.10. With no loss of generality, we may assume that a ľ b ľ c. (4.9) may be
rewritten as

fpaq –
`

a3 ` b3 ` c3 ` 3abc
˘

´
`

a2b ` ab2 ` b2c ` bc2 ` c2a ` ca2
˘

ľ 0.

We have

f 1paq “
`

3a2 ` 3bc
˘

´
`

2ab ` b2 ` c2 ` 2ac
˘

,

f2paq “ 6a ´ 2pb ` cq ľ 0, @ a ľ b ľ c.

Therefore,

f 1paq ľ f 1pbq “ cpb ´ cq ľ 0

and thus

fpaq ľ fpbq “ c3 ` b2c ´ 2bc2 “ cpb ´ cq2 ľ 0. QED

111



Solutions 5.4 Problems on inequalities

Problem 4.11. Denote fpa, b, c, dq the difference between the left-hand side and the right-
hand side of (4.10), so that (4.10) amounts to fpa, b, c, dq ľ 0. With no loss of generality,
we may assume that a ľ b ľ c ľ d ľ 0. Set, with b, c, d fixed, gpaq – fpa, b, c, dq. Then

g2paq “ 12a2 ´ 2
`

b2 ` c2 ` d2
˘

ľ 0, @ a ľ b,

and thus

g1paq ľ g1pbq “ 2b
`

b2 ` cd ´ c2 ´ d2
˘

ľ 2b
`

c2 ` cd ´ c2 ´ d2
˘

“ 2bdpc ´ dq ľ 0.

We find that fpa, b, c, dq ľ fpb, b, c, dq, and thus it suffices to prove that fpb, b, c, dq ľ 0
if b ľ c ľ d ľ 0.

Setting, with c, d fixed, hpbq – fpb, b, c, dq, we have

h1pbq “ 4b
`

b2 ` cd ´ c2 ´ d2
˘

ľ 4b
`

c2 ` cd ´ c2 ´ d2
˘

“ 4bdpc ´ dq ľ 0,

and thus hpbq ľ hpcq.

Finally,

fpa, b, c, dq ľ fpb, b, c, dq ľ fpc, c, c, dq “ dpc ´ dq
`

2c2 ´ cd ´ d2
˘

ľ 0. QED

Problem 4.12. We may assume that a ľ b ľ c. Let fpaq denote the left-hand side of
(4.11). Then

f 1paq “
1

1 ` bc
´

bc

p1 ` caq
2 ´

bc

p1 ` abq2
ľ

1

1 ` bc
´

bc

p1 ` bcq2
´

bc

p1 ` bcq2

“
1 ´ bc

p1 ` bcq2
ľ 0 (since bc ĺ 1).

Therefore,

fpaq ĺ fp1q “
1

1 ` bc
`

b

1 ` c
`

c

1 ` b
— gpbq.

We have

g1pbq “ ´
c

p1 ` bcq2
`

1

1 ` c
´

c

p1 ` bq2
ľ ´

c

p1 ` cq2
`

1

1 ` c
´

1

p1 ` bq2

“
1

p1 ` cq2
´

1

p1 ` bq2
ľ 0,

and thus

gpbq ĺ gp1q “
1

1 ` c
`

1

1 ` c
`

c

2
“

4 ` c ` c2

2 ` 2c
ĺ

4 ` c ` c

2 ` 2c
ĺ 2. QED

Problem 4.13. This is a special case of (2.10) (with f “ ln). QED
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Problem 4.14. Setting aj “ exj , with xj ă 0, @ j, (4.13) amounts to

f

˜

n
ÿ

j“1

1

n
xj

¸

ľ

n
ÿ

j“1

1

n
fpxjq, (5.133)

where fpxq – ln p1 ´ exq, @x ă 0. Since

f2pxq “ ´
ex

p1 ´ exq
2 ă 0, @x ă 0,

f is concave, and (5.133) follows from (GJ).

Incidentally, f is strictly concave, and equality in (5.133) occurs iff x1 “ ¨ ¨ ¨ “ xn, so
that equality in (4.13) occurs iff a1 “ ¨ ¨ ¨ “ an. QED

Problem 4.15. By symmetry, it suffices to find the maximal value in (4.14) under the

additional assumption a ľ b ľ c. Set fpxq – x `
1

x
, @x ą 0. Then the quantity under

investigation is

gpa, b, cq – f
´

a

a{b
¯

f
´

a

b{c
¯

f
´

a

c{a
¯

.

Noting that f is decreasing on p0, 1s and increasing on r1,8q, we find that

gpa, b, cq ĺf
´

a

α{b
¯

f
´

a

b{c
¯

f
´

a

c{α
¯

ĺ f
´

a

α{b
¯

f
´?

αb
¯

f
´

a

1{α2
¯

“
α2 ` 1

α2

`

αfpbq `
`

α2 ` 1
˘˘

ĺ
α2 ` 1

α2

`

αfp1q `
`

α2 ` 1
˘˘

“

`

α2 ` 1
˘

pα ` 1q
2

α2
— M.

Since, in the above, equality is achieved when a “ α, c “ 1{α, b “ 1, we find that the
value M is max in (4.14). QED

Problem 4.16. With fpxq “–
1

x
, x ą 0, (4.15) becomes

n´1
ÿ

j“1

pxj ´ xj`1qf
´

xkj ` xk´1
j xj`1 ` ¨ ¨ ¨ ` xjx

k´1
j`1 ` xkj`1

¯

ľ px1 ´ xnqf
´

xk1 ` xk´1
1 xn ` ¨ ¨ ¨ ` x1x

k´1
n ` xkn

¯

.

(5.134)

By homogeneity, we may assume that x1 ´xn “ 1, and then (5.134) follows from (GJ),
using the convexity of f and the identities

n´1
ÿ

j“1

pxj ´ xj`1q

´

xkj ` xk´1
j xj`1 ` ¨ ¨ ¨ ` xjx

k´1
j`1 ` xkj`1

¯

“

n´1
ÿ

j“1

´

xk`1
j ´ xk`1

j`1

¯

“ px1 ´ xnq

´

xk1 ` xk´1
1 xn ` ¨ ¨ ¨ ` x1x

k´1
n ` xkn

¯

.

QED
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Problem 4.17. This is a generalization of Problem 4.8 (which corresponds to k “ 2).
However, when k is odd, we cannot repeat the proof of (4.8). We present a similar, but
different approach, which holds for every k, even or odd.

For notational simplicity, set

fpx, yq –
xk`1

xk ` xk´1y ` ¨ ¨ ¨ ` xyk´1 ` yk
, @x, y ą 0.

As in Problem 4.8, we have fpx, yq “ x ´ y ` fpy, xq, and thus

n
ÿ

j“1

fpxj , xj`1q “

n
ÿ

j“1

fpxj`1, xjq “
1

2

n
ÿ

j“1

rfpxj , xj`1q ` fpxj`1, xjqs

“
1

2

n
ÿ

j“1

xk`1
j ` xk`1

j`1

xkj ` xk´1
j xj`1 ` ¨ ¨ ¨ ` xjx

k´1
j`1 ` xkj`1

.

(5.135)

In view of (5.135), order to complete the proof of (4.16) it suffices to prove that

pk ` 1q

´

xk`1 ` yk`1
¯

ľ px ` yq

k
ÿ

ℓ“0

xℓyk´ℓ, @x, y ą 0. (5.136)

In turn, (5.136) can be obtained either by majorization, or by using (GMI) as follows.
For 1 ĺ ℓ ĺ k ` 1, we have

xk`1 ` yk`1 “

ˆ

ℓ

k ` 1
xk`1 `

k ` 1 ´ ℓ

k ` 1
yk`1

˙

`

ˆ

k ` 1 ´ ℓ

k ` 1
xk`1 `

ℓ

k ` 1
yk`1

˙

ľ xℓyk`1´ℓ ` xk`1´ℓyℓ.

(5.137)

Adding the inequalities (5.137) with ℓ “ 1, . . . , k ` 1, we obtain (5.136). QED

Problem 4.18. If we have

1

aα ` bα ` 2α ´ 2
ĺ

1

4α

ˆ

1

a
`

1

b

˙

, @ a, b ą 0, (5.138)

then we are done. In turn, (5.138) is equivalent to

pa ` bqpaα ` bα ` 2α ´ 2q ľ 4αab,

which follows from (AM-GM) and (GMI):

pa ` bq

ˆ

1

2α
aα `

1

2α
bα `

2α ´ 2

2α

˙

ľ 2
?
ab ¨ aα{p2αq ¨ bα{p2αq ¨ 1p2α´2q{2α “ 2ab. QED
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Problem 4.19. Set Sj – b1 ` ¨ ¨ ¨ bj , @ 1 ĺ j ĺ n, and S0 – 0. Then Sj ľ 0 and bj “

Sj ´ Sj´1, @ 1 ĺ j ĺ n, so that

n
ÿ

j“1

ajbj “

n
ÿ

j“1

ajpSj ´ Sj´1q “

n
ÿ

j“1

ajSj ´

n
ÿ

j“1

ajSj´1 “

n
ÿ

j“1

ajSj ´

n´1
ÿ

j“0

aj`1Sj

“

n
ÿ

j“1

ajSj ´

n´1
ÿ

j“1

aj`1Sj “

n´1
ÿ

j“1

paj ´ aj`1qSj ` anSn,

from which the conclusion follows easily.

NB. The identity

n
ÿ

j“1

ajbj “

n´1
ÿ

j“1

paj ´ aj`1qSj ` anSn

is known as the Abel summation formula. QED
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