A muggle's approach to Bernstein's approximation theorem

March 19, 2024

Captatio benevolentiæ. Bernstein's approximation theorem provides an explicit approximating sequence for continuous functions on [0,1]. More specifically, it asserts that, if $f \in C([0,1])$ and we set

$$T_n f(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}, \ \forall \ x \in [0,1],$$
 (1)

then

$$T_n f \to f$$
 uniformly on $[0,1]$ as $n \to \infty$. (2)

We propose here a muggle's proof of the theorem, involving essentially no trick. We next implement a slightly less natural approach, relying on easier calculations. *The emphasis here is about the non-magical proof.* It is definitely longer than the shortest available ones, but it is straightforward.

Proof of Bernstein's theorem. The starting point is standard. The operators T_n : $C([0,1]) \to C([0,1])$ are linear, continuous, and satisfy the uniform bound $||T_n|| \le 1$, $\forall n$. Therefore,

it suffices to establish (2) for
$$f \in A$$
, with $A \subset C([0,1])$, $\overline{\operatorname{span}(A)} = C([0,1])$. (3)

The standard choice is to consider $A = \{x^{\ell}; \ell \in \mathbb{N}\}$. We propose here a different choice, for which $T_n f$ is *easily and explicitly computable when* $f \in A$. Let

$$f_a(x) := \exp(ax), \ a \in \mathbb{C}.$$
 (4)

Clearly,

$$T_n f_a(x) = \sum_{k=0}^n \binom{n}{k} \exp(ak/n) x^k (1-x)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (x \exp(a/n))^k (1-x)^{n-k} = (x \exp(a/n) + 1 - x)^n,$$
(5)

and thus proving the theorem for f_a amounts to

$$(x \exp(a/n) + 1 - x)^n \to \exp(ax)$$
 uniformly on [0, 1] as $n \to \infty$. (6)

Note that, at least for the pointwise convergence, (6) is clear, since

$$(x\exp(a/n) + 1 - x)^n = (x(1 + a/n + O(a^2/n^2)) + 1 - x)^n = (1 + ax/n + O(a^2x/n^2))^n$$

$$\to \exp(ax) \text{ as } n \to \infty.$$
(7)

We next present two possible choices of exponentials.

Choice 1. Consider $A_1 := \{f_a; a \in 2i\pi\mathbb{Z}\}$. The space $\overline{\operatorname{span}(A_1)}$ consists of all the 1-periodic continuous functions. Since every continuous function on [0,1] is the sum of a continuous 1-periodic function and of an appropriate multiple of the identity, we are led to the choice $A := \{\operatorname{id}\} \cup A_1$. Noting that, for $n \geq 1$, we have

$$T_n id(x) = \sum_{k=0}^n \binom{n}{k} \frac{k}{n} x^k (1-x)^{n-k} = \sum_{k=1}^n \binom{n-1}{k-1} x^k (1-x)^{n-k}$$
$$= x \sum_{\ell=0}^{n-1} \binom{n-1}{\ell} x^{\ell} (1-x)^{n-1-\ell} = x,$$

we find (2) holds for f = id, and therefore it suffices to check (2) for $f \in A_1$. This requires writing estimates for *complex* exponentials, and may be tricky to implement in class.

Therefore, we rather go for a slightly less natural

Choice 2. Consider $A := \{f_a; a \in \mathbb{R}_+\}$. To start with, it is not clear that span(A) is dense in C([0,1]). This is indeed the case, but requires a proof. We present below a proof of (3) for this A, relying on very elementary estimates, in principle well-known to students.

Step 0. Elementary inequalities. Using the second order Taylor formula

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(c)$$
 for some $c \in [0, x]$,

we find that

$$1 + x \le \exp(x) \le 1 + x + x^2 \text{ if } x \le \ln 2,$$
(8)

$$x - x^2/2 \le \ln(1+x) \le x \text{ if } x \ge 0.$$
 (9)

Step 1. (6) *holds for* f_a , $a \in \mathbb{R}_+$. On the one hand, we have

$$(x \exp(a/n) + 1 - x)^{n} \ge (x(1 + a/n) + 1 - x)^{n} = (1 + ax/n)^{n}$$

$$= \exp(n \ln(1 + ax/n)) \ge \exp(n(ax/n - a^{2}x^{2}/2n^{2}))$$

$$= \exp(ax) \exp(-a^{2}x^{2}/2n) \ge \exp(-a^{2}/2n) \exp(ax), \ \forall x \in [0, 1].$$
(10)

On the other hand, if $n \ge a/\ln 2$, we have

$$(x\exp(a/n) + 1 - x)^{n} \le (x(1 + a/n + a^{2}/n^{2}) + 1 - x)^{n} = (1 + ax/n + a^{2}x/n^{2})^{n}$$

$$= \exp(n\ln(1 + ax/n + a^{2}x/n^{2})) \le \exp(n(ax/n + a^{2}x/n^{2}))$$

$$= \exp(ax)\exp(a^{2}x/n) \le \exp(a^{2}/n)\exp(ax), \ \forall x \in [0, 1].$$
(11)

Combining (10)–(11), we find, for $n \ge \alpha/\ln 2$,

$$||T_n f_a - f_a||_{\infty} \le \exp(a) \max \{1 - \exp(-a^2/2n), \exp(a^2/n) - 1\}$$

 $\to 0 \text{ as } n \to \infty.$

Step 2. $\operatorname{span}(A)$ is dense in C([0,1]). Since polynomials are dense in C([0,1]), it suffices to prove that the closure of $\operatorname{span}(A)$ contains all the monomials. At least intuitively, this follows from

$$\lim_{\varepsilon \to 0+} \underbrace{\left(\frac{\exp(\varepsilon x) - 1}{\varepsilon}\right)^{\ell}}_{:=f_{\ell,\varepsilon}(x)} = x^{\ell}, \forall x \in [0,1], \forall \ell \in \mathbb{N};$$
(12)

here, the limit is pointwise. Noting that $f_{\ell,\varepsilon}$ belongs to $\operatorname{span}(A)$, $\forall \varepsilon \neq 0$, $\forall \ell \in \mathbb{N}$, in order to conclude it suffices to prove that the limit in (12) can be upgraded to a uniform limit. To prove this, we rely again on (8) and obtain, for $\varepsilon \leq \ln 2$,

$$x^{\ell} \le \left(\frac{\exp(\varepsilon x) - 1}{\varepsilon}\right)^{\ell} \le x^{\ell} (1 + \varepsilon x)^{\ell} \le (1 + \varepsilon)^{\ell} x^{\ell},$$

so that

$$\left\| \left(\frac{\exp(\varepsilon x) - 1}{\varepsilon} \right)^{\ell} - x^{\ell} \right\|_{\infty} \le (1 + \varepsilon)^{\ell} - 1 \to 0 \text{ as } \varepsilon \to 0 + .$$