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Captatio benevolentiæ. Bernstein’s approximation theorem provides an explicit ap-
proximating sequence for continuous functions on [0,1]. More specifically, it asserts that,
if f ∈ C([0,1]) and we set

Tn f (x)=
n∑

k=0

(
n
k

)
f
(

k
n

)
xk(1− x)n−k, ∀x ∈ [0,1], (1)

then

Tn f → f uniformly on [0,1] as n →∞. (2)

We propose here a muggle’s proof of the theorem, involving essentially no trick. We next
implement a slightly less natural approach, relying on easier calculations. The emphasis
here is about the non-magical proof. It is definitely longer than the shortest available
ones, but it is straightforward.
Proof of Bernstein’s theorem. The starting point is standard. The operators Tn :
C([0,1]) → C([0,1]) are linear, continuous, and satisfy the uniform bound ||Tn|| ≤ 1, ∀n.
Therefore,

it suffices to establish (2) for f ∈ A, with A ⊂ C([0,1]), span(A)= C([0,1]). (3)

The standard choice is to consider A = {xℓ; ℓ ∈N}. We propose here a different choice,
for which Tn f is easily and explicitly computable when f ∈ A. Let

fa(x) := exp(ax), a ∈C. (4)

Clearly,

Tn fa(x)=
n∑

k=0

(
n
k

)
exp(ak/n)xk(1− x)n−k

=
n∑

k=0

(
n
k

)
(xexp(a/n))k(1− x)n−k = (xexp(a/n)+1− x)n,

(5)

and thus proving the theorem for fa amounts to

(xexp(a/n)+1− x)n → exp(ax) uniformly on [0,1] as n →∞. (6)

Note that, at least for the pointwise convergence, (6) is clear, since

(xexp(a/n)+1− x)n =(x(1+a/n+O(a2/n2))+1− x)n = (1+ax/n+O(a2x/n2))n

→ exp(ax) as n →∞.
(7)

We next present two possible choices of exponentials.
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Choice 1. Consider A1 := { fa; a ∈ 2ıπZ}. The space span(A1) consists of all the 1-
periodic continuous functions. Since every continuous function on [0,1] is the sum
of a continuous 1-periodic function and of an appropriate multiple of the identity,
we are led to the choice A := {id}∪ A1. Noting that, for n ≥ 1, we have

Tnid(x)=
n∑

k=0

(
n
k

)
k
n

xk(1− x)n−k =
n∑

k=1

(
n−1
k−1

)
xk(1− x)n−k

=x
n−1∑
ℓ=0

(
n−1
ℓ

)
xℓ(1− x)n−1−ℓ = x,

we find (2) holds for f = id, and therefore it suffices to check (2) for f ∈ A1. This re-
quires writing estimates for complex exponentials, and may be tricky to implement
in class.

Therefore, we rather go for a slightly less natural

Choice 2. Consider A := { fa; a ∈ R+}. To start with, it is not clear that span(A) is
dense in C([0,1]). This is indeed the case, but requires a proof. We present below a
proof of (3) for this A, relying on very elementary estimates, in principle well-known
to students.

Step 0. Elementary inequalities. Using the second order Taylor formula

f (x)= f (0)+ xf ′(0)+ x2

2
f ′′(c) for some c ∈ [0, x],

we find that

1+ x ≤ exp(x)≤ 1+ x+ x2 if x ≤ ln2, (8)

x− x2/2≤ ln(1+ x)≤ x if x ≥ 0. (9)

Step 1. (6) holds for fa, a ∈R+. On the one hand, we have

(xexp(a/n)+1− x)n ≥(x(1+a/n)+1− x)n = (1+ax/n)n

=exp(n ln(1+ax/n))≥ exp(n(ax/n−a2x2/2n2))

=exp(ax)exp(−a2x2/2n)≥ exp(−a2/2n)exp(ax), ∀x ∈ [0,1].

(10)

On the other hand, if n ≥ a/ ln2, we have

(xexp(a/n)+1− x)n ≤(x(1+a/n+a2/n2)+1− x)n = (1+ax/n+a2x/n2)n

=exp(n ln(1+ax/n+a2x/n2))≤ exp(n(ax/n+a2x/n2))

=exp(ax)exp(a2x/n)≤ exp(a2/n)exp(ax), ∀x ∈ [0,1].

(11)

Combining (10)–(11), we find, for n ≥ a/ ln2,

||Tn fa − fa||∞ ≤exp(a)max
{
1−exp(−a2/2n),exp(a2/n)−1

}
→ 0 as n →∞.
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Step 2. span(A) is dense in C([0,1]). Since polynomials are dense in C([0,1]), it suffices
to prove that the closure of span(A) contains all the monomials. At least intuitively, this
follows from

lim
ε→0+

(
exp(εx)−1

ε

)ℓ
︸ ︷︷ ︸

:= fℓ,ε(x)

= xℓ,∀x ∈ [0,1], ∀ℓ ∈N; (12)

here, the limit is pointwise. Noting that fℓ,ε belongs to span(A), ∀ε ̸= 0, ∀ℓ ∈N, in order
to conclude it suffices to prove that the limit in (12) can be upgraded to a uniform limit.
To prove this, we rely again on (8) and obtain, for ε≤ ln2,

xℓ ≤
(
exp(εx)−1

ε

)ℓ
≤ xℓ(1+εx)ℓ ≤ (1+ε)ℓxℓ,

so that∣∣∣∣∣
∣∣∣∣∣
(
exp(εx)−1

ε

)ℓ
− xℓ

∣∣∣∣∣
∣∣∣∣∣∞ ≤ (1+ε)ℓ−1→ 0 as ε→ 0+ . □

3


