A muggle’s approach to Bernstein’s approximation
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Captatio benevolentise. Bernstein’s approximation theorem provides an explicit ap-
proximating sequence for continuous functions on [0, 1]. More specifically, it asserts that,
if f € C([0,1]) and we set

Tof(x)= ) (n)f(@)xk(l—x)n—k, Vxel0,1], (1)
r=o\k n
then
T.f — f uniformly on [0,1] as n — co. (2)

We propose here a muggle’s proof of the theorem, involving essentially no trick. We next
implement a slightly less natural approach, relying on easier calculations. The emphasis
here is about the non-magical proof. It is definitely longer than the shortest available
ones, but it is straightforward.

Proof of Bernstein’s theorem. The starting point is standard. The operators T, :
C([0,1]) — C([0,1]) are linear, continuous, and satisfy the uniform bound ||T,| <1, Vn.
Therefore,

it suffices to establish (2) for f € A, with A < C([0, 1]), span(A) = C([0,1]). 3)

The standard choice is to consider A = {x’; ¢ € N}. We propose here a different choice,
for which T, f is easily and explicitly computable when f € A. Let

fu(x) := explax), a € C. (4)
Clearly,

Tnfa(x

(Z) exp(ak/n)x"(1—x)"*
(5)
k

n
)=)
k=0
" (n
=) |, |« exp(a/n))*(1-x)" % = (xexp(a/n) +1—x)",
k=0
and thus proving the theorem for f, amounts to
(xexp(a/n)+1—x)"* — exp(ax) uniformly on [0,1] as n — co. (6)

Note that, at least for the pointwise convergence, (6) is clear, since

(xexp(a/n)+1-x)" =(x(1+a/n +0@@?/n?)+1-x)" = (1 +ax/n + O(a®x/n?))"

— exp(ax) as n — oco.

(7)
We next present two possible choices of exponentials.
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Choice 1. Consider A1 :={fy;a € 2inZ}. The space span(A1) consists of all the 1-
periodic continuous functions. Since every continuous function on [0, 1] is the sum
of a continuous 1-periodic function and of an appropriate multiple of the identity,
we are led to the choice A :={id} U A;. Noting that, for n > 1, we have

Tnid(x):i(;:)i (1) = i( )k(l ok

k=0
n-1 -1

we find (2) holds for f =id, and therefore it suffices to check (2) for f € A;. This re-
quires writing estimates for complex exponentials, and may be tricky to implement
in class.

Therefore, we rather go for a slightly less natural

Choice 2. Consider A :={f,;a € R,}. To start with, it is not clear that span(A) is
dense in C([0,1]). This is indeed the case, but requires a proof. We present below a
proof of (3) for this A, relying on very elementary estimates, in principle well-known
to students.

Step 0. Elementary inequalities. Using the second order Taylor formula

2
fx)=fO0)+xf' (0)+ f"(c) for some c € [0, x],

we find that

l+x<explx)<l+x+xifx<In2, (8)
x—x2/2<In(l+x)<xifx>0. 9)

Step 1. (6) holds for f,, a € R;.. On the one hand, we have

(xexpla/n)+1-x)"=(x(1+a/n)+1-x)" =1 +ax/n)*
=exp(nIn(1+ ax/n)) = exp(n(ax/n — a®x%/2n?)) (10)

=exp(ax)exp(—a x2/2n)>exp( a2/2n)exp(ax) VxelO0,1].

On the other hand, if n = a/In2, we have

(xexp(a/n)+1-x)" <(x(1+a/n+a®n? +1-x)" = (1 +ax/n +a’x/n?"
=exp(nln(l+ax/n+ a’x/n?)) < exp(n(ax/n + a’x/n?)) (11)

=exp(ax) exp(azx/n) < exp(a2/n) exp(ax), Vx€[0,1].

Combining (10)—(11), we find, for n = a/In2,

I Ty fa = falloo <exp(a)max {1 - exp(—a®/2n),exp(a®/n) - 1}

— 0 asn—oo.



Step 2. span(A) is dense in C([0,1]). Since polynomials are dense in C([0, 1]), it suffices
to prove that the closure of span(A) contains all the monomials. At least intuitively, this
follows from

—1\¢
lim (M) =x/,Vx€e[0,1],V/eN; (12)
e—0+ E
—_—

=)

here, the limit is pointwise. Noting that f, . belongs to span(A), Ve #0, V¢ €N, in order
to conclude it suffices to prove that the limit in (12) can be upgraded to a uniform limit.
To prove this, we rely again on (8) and obtain, for ¢ <In2,

x€<

(exp(ex) -1

¢
) <x‘Q+ex)! <1+ 8)[9/,
€

so that

<(1+e)f-1—>0ase—0+. O

(exp(ex) -1 )[ ¢
— —x
€

o0



